
Journal of Computational Physics 404 (2020) 109119
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Solving electrical impedance tomography with deep learning

Yuwei Fan a,∗, Lexing Ying b

a Department of Mathematics, Stanford University, Stanford, CA 94305, United States of America
b Department of Mathematics and ICME, Stanford University, Stanford, CA 94305, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 June 2019
Received in revised form 6 November 2019
Accepted 9 November 2019
Available online 20 November 2019

Keywords:
Dirichlet-to-Neumann map
Electrical impedance tomography
Inverse problem
Neural networks
BCR-Net
Convolutional neural network

This paper introduces a new approach for solving electrical impedance tomography (EIT)
problems using deep neural networks. The mathematical problem of EIT is to invert the
electrical conductivity from the Dirichlet-to-Neumann (DtN) map. Both the forward map
from the electrical conductivity to the DtN map and the inverse map are high-dimensional
and nonlinear. Motivated by the linear perturbative analysis of the forward map and based
on a numerically low-rank property, we propose compact neural network architectures for
the forward and inverse maps for both 2D and 3D problems. Numerical results demonstrate
the efficiency of the proposed neural networks.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Electrical impedance tomography (EIT) is the problem of determining the electrical conductivity distribution of an un-
known medium by making voltage and current measurements at the boundary of the object. As a radiation-free imaging
technique, EIT allows repeated, non-invasive measurements of regional changes in the object; thus it has been used as a
monitoring tool in a variety of applications in critical care medicine, for instance, monitoring of ventilation distribution [52],
assessment of lung overdistension [41] and detection of pneumothorax[18], and many industrial applications [53].

Background. At the center of the mathematical formulations of EIT is the Dirichlet-to-Neumann (DtN) map, a critical object
in the analysis of elliptic partial differential equations that plays a significant role in the classical Calderón problem [14,50,
8].

The governing equation of EIT, or equivalently the inverse conductivity problem, is

−div(γ (x)∇φ(x)) = 0, in � ⊂ Rd,

φ(x) = ψ(x), on ∂�,
(1.1)

where � is a bounded Lipschitz domain, φ(x) is the voltage, γ (x) > 0 is the conductivity distribution, and ψ(x) is the
voltage applied on the boundary. The corresponding DtN map is defined by

�γ : H
1
2 (∂�) → H− 1

2 (∂�), ψ(x) |∂�→ γ (x)
∂φ(x)

∂n(x)
|∂�,

* Corresponding author.
E-mail addresses: ywfan@stanford.edu (Y. Fan), lexing@stanford.edu (L. Ying).
https://doi.org/10.1016/j.jcp.2019.109119
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.109119
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:ywfan@stanford.edu
mailto:lexing@stanford.edu
https://doi.org/10.1016/j.jcp.2019.109119
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.109119&domain=pdf

2 Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119
where n(x) is the outer normal vector. Here H
1
2 (∂�) is the space of L2(∂�) functions that are traces of functions in H1(�)

and H− 1
2 (∂�) is its dual. We refer the readers to [48] for more details of the DtN map.

A closely related inverse conductivity problem involves the DtN map of the Schrödinger equation at zero energy [48],
which takes the following form

(−� + η(x))u(x) = 0, in �,

u(x) = f (x), on ∂�.
(1.2)

The DtN map for the Schrödinger equation is then defined by

�η : H
1
2 (∂�) → H− 1

2 (∂�), f (x) |∂�→ ∂u(x)

∂n(x)
|∂� . (1.3)

These two DtN maps �η and �γ are closely related. If φ is the solution of (1.1), then u = √
γ φ is the solution of (1.2)

with η = �
√

γ√
γ and f = √

γ ψ . Moreover, �η = γ −1/2�γ γ −1/2 + 1

2γ

∂γ

∂n
. Actually, the two maps �η and �γ carry the

same information and they can be determined from each other [48]. This paper shall focus on the DtN map �η for the
Schrödinger equation. All the results can be extended to the DtN map �γ without many difficulties.

Since the DtN map �η is linear [8] for a fixed η, there exists a distribution kernel λη(r, s) for r, s ∈ ∂� such that

(�η f)(r) = ∂u

∂n
(r) =

∫
∂�

λη(r, s) f (s)dS(s). (1.4)

The forward problem for the DtN map is that, given η(x), to solve for the kernel λη(r, s), i.e., η → λη .
The task of the inverse problem is to recover η(x) in � based on the observation data, which is typically a collection

of pairs (f , �η f) of the Dirichlet boundary condition f and the corresponding Neumann data �η f . Under the assumption
that the Dirichlet boundary condition is sufficiently sampled, it is possible to assume that the kernel λη is known and,
therefore, the inverse problem is to recover η from λη , i.e., λη → η. Since λη(r, s) |r,s∈∂� is a function of 2(d − 1) variables
while η(x) is a function of d variables, the inverse problem is not solvable if d = 1 due to a simple dimension counting. For
d ≥ 2, in principle, the solution of the inverse problem exists and is unique under certain conditions [51]. However, due to
the elliptic nature of EIT, the inverse problem is severely ill-conditioned [2–4,12] even for d ≥ 2.

Numerical solution of the forward and inverse problems can be challenging. The forward problem is a map from a d
dimensional function to a 2(d − 1) dimensional function. For 3D problems, computing and representing the whole DtN map
�η for a fixed η can be quite expensive. For the inverse problem, the inverse map �η → η is numerically unstable [2–4,12]
due to ill-conditioning. In order to avoid instability, an application-dependent regularization term is often required in order
to stabilize the inverse problem, see, for instance, [30,16,33]. Algorithmically, the inverse problem is usually solved with
iterative methods [30,27,11,12], which often requires a significant number of iterations.

In the last few years, deep neural networks (DNNs) have achieved great successes in computer vision, image process-
ing, speech recognition, and many other artificial intelligence applications [31,37,26,43,39,47,38,46]. More recently, methods
based on DNNs have also been applied to solving PDEs [34,9,28,23,22,6,44,21,36]. These attempts can be classified into two
categories. The first category [45,15,28,35,20] aims to represent the solutions of high-dimensional PDEs with DNNs (rather
than the classical methods such as finite element and finite difference methods). The second category [42,29,34,23,22,21,
36,40,7] works with parameterized PDE problems and uses the DNNs to represent the map from the high-dimensional
parameters of the PDE to the solution of the PDE.

Contributions. Deep neural networks have several advantages when applied to solve the forward and inverse problems. For
the forward problem, since applying neural network to input data can be carried out rapidly due to novel software and
hardware architectures, the forward problem can be significantly accelerated when the forward map is represented with
a DNN. For the inverse problem, the choices of the solution algorithm and the regularization term are two critical issues.
Fortunately, deep neural networks can help in both aspects. First, concerning the solution algorithm, due to its flexibility in
representing high-dimensional functions, DNN can potentially be used to approximate the full inverse map, thus avoiding
the iterative solution process. Second, concerning the regularization term, recent work in machine learning shows that DNNs
often can automatically extract features from the data and offer a data-driven regularization prior.

This paper applies the deep learning approach to the EIT problem by representing the inverse map from �η to η using a
novel neural network architecture. The motivation of the new architecture comes from a perturbative analysis of the linear
approximation of both the forward and inverse maps of the EIT problem. The analysis shows that the maps between η and
�η are locally numerically low-rank after a reparameterization of the DtN map �η . This observation allows us to reduce
the map between the d-dimensional η and 2(d − 1)-dimensional �η to a map between two (quasi) (d − 1)-dimensional
functions. Being translation-invariant and global, this new map is represented with the recently proposed BCR-Net [10],
which is a multiscale neural network based on the nonstandard form of the wavelet decomposition. This neural network
architecture is used to approximate both the forward and inverse maps. For the test problems being considered, the resulting

Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119 3
neural networks have only 104 ∼ 105 parameters for the 2D case and 105 ∼ 106 parameters for the 3D case, thanks to the
dimension reduction and the compact structure of the BCR-Net. The rather small number of parameters allow for training
on rather limited data sets, which are often the case for EIT problems.

Organization. This rest of the paper is outlined as follows. The mathematical background on the DtN map is studied in
Section 2. The design and architecture of the DNNs of the forward and inverse maps for the 2D case are discussed in
Section 3, along with numerical tests. The result is extended to the 3D case in Section 4.

2. Mathematical analysis of the DtN map

This section summarizes the necessary mathematical background of the DtN map. Let us denote L = −� + η and
G = L−1 with G f (x) = ∫

�
G(x, y) f (y) dy, where G is the Green function of the operator L with the Dirichlet boundary

condition. An application of the divergence theorem shows that

0 =
∫
∂�

∂u

∂n(y)
(y)G(x, y)dS(y) =

∫
�

divy(∇yu(y) · G(x, y))dy =
∫
�

(
�yu · G + ∇y G∇yu

)
dy. (2.1)

Analogously, a second application of the divergence theorem to the above result leads to∫
∂�

∂G

∂n(y)
(x, y) f (y)dS(y) =

∫
�

divy(∇y G(x, y) · u(y))dy

=
∫
�

(
�y G(x, y) · u(y) + ∇y G(x, y)∇yu(y)

)
dy

=
∫
�

(
�y G(x, y) · u(y) − �yu(y) · G(x, y)

)
dy

=
∫
�

(− (−�y + η(y)
)

G(x, y) · u(y) + (−�y + η(y)
)

u(y) · G(x, y)
)

dy

= −u(x).

(2.2)

Here the last equality uses the fact that G is the Green function of L = −� + η and u is the solution of (1.2). Taking the
normal derivative of two sides of (2.2) with respect to n(x) for x ∈ ∂� gives rise to

∂u

∂n
(x) = −

∫
∂�

∂2G

∂n(x)n(y)
(x, y) f (y)dS(y), x ∈ ∂�, (2.3)

which describes the kernel of the DtN map �η(ψ) in terms of the Green function G:

λη(r, s) = − ∂2G

∂n(r)n(s)
(r, s), r, s ∈ ∂�. (2.4)

In order to avoid confusion, we use r, s to represent the points on the boundary and p, q for the points in the domain
hereafter.

In order to understand how the DtN map depends on the potential η, we conduct a perturbative analysis of the map
from η to λη for η > 0 close to a fixed η0. For simplicity, assume η0 = 0. Let us introduce E = −ηI with I the identity
operator, L0 = −�, and G0 = L−1

0 (with kernel denoted by G0) as the Green function of L0 with the Dirichlet boundary
condition. When η > 0 is sufficiently small, G can be expanded via a Neumann series

G = (L0 − E)−1 = G0 + G0EG0 + G0EG0EG0 + (2.5)

By introducing λ0(r, s) = λη(r, s) |η=η0 , which can be calculated by the knowledge of the background case η = η0, it is
equivalent to focus on the difference λη − λ0 (often called difference imaging, see [13] for details), which is also the kernel
of G −G0. For a sufficiently small η, the operator G −G0 can be approximated by its first term G0EG0, which is linear in E .
Using the fact that E = −ηI leads to the following approximation for the difference DtN map μ,

μ(r, s) := (λη − λ0)(r, s) = −∂2(G − G0)

∂n(r)∂n(s)
(r, s) ≈

∫
�

(
∂G0

∂n(r)
(r, p)

∂G0

∂n(s)
(p, s)

)
η(p)dp, (2.6)

which serves as the motivation of the design of the NN architectures.

4 Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119
Fig. 1. Illustration of the problem setup. In the one-sided detection, the electrodes are only placed on the top and the zero Dirichlet boundary condition is
applied on the bottom. In the two-sided detection, the electrodes are placed on both the top and bottom. In both cases, periodic boundary conditions are
applied on the left and right boundaries.

3. Neural network for the 2D case

Consider the domain � = [0, 1] × [−Z , Z] where Z is a fixed constant. The periodic boundary condition is specified at
the left and right boundaries for simplicity. As illustrated in Fig. 1, the electrodes are allowed to be placed on either only
the top boundary (one-sided detection) or both the top and bottom boundaries (two-sided detection). For the one-sided
detection, the zero Dirichlet boundary condition is assumed at the bottom for simplicity, though other boundary conditions
are also relevant. In what follows, we shall first consider the forward and inverse maps for the one-sided detection. The
architecture is then extended to the two-sided detection case.

In most of the EIT problems, the electrical conductivity is known near the domain boundary. This implies that there
exists a constant δ > 0 such that η(p) is supported in [0, 1] × [−(Z − δ), Z − δ].

3.1. Forward map for the one-sided detection

For the one-sided detection, the DtN map is limited on the top boundary. Let r = (r1, Z), s = (s1, Z) and p = (x, z), where
x is for the horizontal coordinate and z is the depth coordinate. The map (2.6) can be rewritten as

μ((r1, Z), (s1, Z)) ≈
∫
�

∂G0

∂n(r)
((r1, Z), (x, z))

∂G0

∂n(s)
((s1, Z), (x, z))η(x, z)dx dz. (3.1)

Note that p and q are used for the points in the domain �, r and s for the points on the boundary, and x and z for the
horizontal and depth coordinates.

A key step for both analysis and architecture design is to introduce new horizontal variables m and h such that r1 = m +h
and s1 = m − h. Reparameterizing the difference DtN map μ with the new variable yields

μ(m,h) := μ((m + h, Z), (m − h, Z)) ≈
∫
�

K (m,h, x, z)η(x, z)dx dz, (3.2)

with the kernel K given by

K (m,h, x, z) := ∂G0

∂n
((m + h, Z), (x, z))

∂G0

∂n
((m − h, Z), (x, z)). (3.3)

Here n = (0, 1) and
∂G0

∂n
(·, ·) is the directional derivative of G0 in the first variable. Noticing that G0 is the Green function

of the operator −� on the domain � with the periodic boundary condition on left and right and the Dirichlet boundary
condition on top and bottom, one can write down G0 explicitly as [25]

G0(p,q) =
∑
�∈Z2

(
(p − q + (�1,2�2 Z)) − (p − q∗ + (�1,2�2 Z))

)
, (3.4)

where q∗ = (q1, 2Z + q2) and is the Green function of the operator −� on the whole space R2. Since G0 as the Green
function for the case η = η0 is translation-invariant in the horizontal direction,

∂G0

∂n
((m ± h, Z), (x, z)) = ∂G0

∂n
((±h, Z), (x − m, z)). (3.5)

For the rest of the discussion, it is convenient to treat h and z as parameters and introduce

Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119 5
∂G0,±h,z

∂n
(x − m) := ∂G0

∂n
((±h, Z), (x − m, z), ηz(x) := η(x, z),

kh,z(m) := ∂G0,+h,z

∂n
(m)

∂G0,−h,z

∂n
(m), μh(m) := μ(m,h).

With the new notations, (3.2) can be reformulated as

μh(m) ≈
Z∫

−Z

(kh,z ∗ ηz)(m)dz =
Z−δ∫

−(Z−δ)

(kh,z ∗ ηz)(m)dz, (3.6)

where the convolution is in m. The last equality holds due to the consideration that η is supported between −(Z − δ) and
Z − δ in the depth direction.

Low-rank approximation and dimension reduction. A key observation is that

the kernel kh,z(m) is smooth in h for h ∈ [0, 1] and z ∈ (−(Z − δ), Z − δ).

An inspection of the definition of K in (3.3) shows that kh,z(m) is only singular when z = Z . Therefore, the kernel kh,z(m)

is uniformly smooth for h ∈ [0, 1], m ∈ [0, 1], and z ∈ (−(Z − δ), Z − δ). The smoothness in the h and z variable indicates
that kh,z(m) can be well-approximated in h and z by an approximation scheme with a small number of terms. To simplify
the discussion, assume without loss of generality that a stable interpolation scheme (such as Chebyshev interpolation) is
adopted. By denoting the sets of interpolation points in the h variable and z variable as {ĥ} and {ẑ}, such an interpolation
reads

kh,z(m) ≈
∑

ĥ

∑
ẑ

Rh,ĥkĥ,ẑ(m)Rz,ẑ, (3.7)

where Rh,ĥ and Rz,ẑ are the interpolation operators in the h and z variables, respectively.
This approximation for kh,z naturally implies an approximation for (3.6)

μh(m) ≈
∑

ĥ

Rh,ĥ

⎛
⎜⎝∑

ẑ

kĥ,ẑ ∗
⎛
⎜⎝

Z−δ∫
−(Z−δ)

Rz,ẑηz dz

⎞
⎟⎠

⎞
⎟⎠ (m). (3.8)

Algorithmically, this approximation allows one to factorize the forward map into three steps:

1. Compress the two-dimensional function ηz = η(x, z) to a set of one-dimensional function

η̃ẑ(x) :=
Z−δ∫

−(Z−δ)

Rz,ẑηz(x)dz;

2. Convolve with kĥ,ẑ in the one-dimensional space to obtain

μ̃ĥ(m) :=
⎛
⎝∑

ẑ

kĥ,ẑ ∗ η̃ẑ

⎞
⎠ (m);

3. Interpolate the set of one-dimensional functions μ̃ĥ(m) to a two-dimensional function

μh(m) =
∑

ĥ

Rh,ĥμ̃ĥ(m).

This effectively reduces the forward map to a number of 1D convolutions. This dimension reduction in (3.8) is fundamental
in the construction of the neural network.

Remark 1. The assumption that η(p) is supported in [0, 1] ×[−(Z −δ), Z −δ] can be removed. Actually, we can split [−Z , Z]
into three intervals [−Z , −(Z − δ)], [−(Z − δ), Z − δ] and [Z − δ, Z] with δ � Z , and then study the property of the kernel
kh,z(m) restricted to each interval one by one. Since δ � Z , the low-rank approximation (3.8) is still valid.

6 Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119
Fig. 2. Neural network architecture for the forward problem of the one-sided detection.

Discretization. The analysis till now is in the continuous setting. A simple numerical treatment discretizes the domain �
by a uniform Cartesian grid, with the Laplacian approximated by a 5-point central difference scheme and the directional
derivative on the boundary replaced by the one-sided first-order difference. The numerical Green function is defined to be
the inverse of the discrete Laplacian operator with zero boundary condition. Let Nr be the number of electrodes. The DtN
map is evaluated by solving (1.2) Nr times with f (x) set as a delta function at one electrode each time. With a slight abuse
of notation, the same letters are used to denote the continuous kernels and their discretizations. The discrete version of
(3.8) reads

μh(m) ≈
∑

ĥ

Rh,ĥ

⎛
⎝∑

ẑ

kĥ,ẑ ∗
(∑

z

Rz,ẑηz

)⎞
⎠ (m). (3.9)

Neural network architecture. The perturbative analysis shows that, if η > 0 is sufficiently small, the forward map η → μ can
be approximated by (3.9). As detailed below, the three steps of computing (3.9) can be naturally formulated as a neural
network with three modules:

• an encoding module that compresses the two-dimensional data η to a set of one-dimensional data η̃ẑ;
• an intermediate module that convolves kĥ,ẑ with the one-dimensional data η̃ẑ to obtain μ̃ĥ;
• a decoding module that extends the set of one-dimensional data μ̃ĥ to two-dimensional data μ.

When η fails to be sufficiently small, the linear approximation for the forward map η → μ is not accurate. In order
to extend the neural network of (3.9) to the nonlinear case, a straightforward solution is to include nonlinear activation
functions and increase the number of layers, for instance in [23,21]. For simplicity, we assume that the size Nẑ of {ẑ} and
the size Nĥ of {ĥ} are both equal to a constant parameter c.

Algorithm 1 Neural network architecture for the one-sided detection forward map η → μ.

Require: c = Nẑ = Nĥ, ncnn ∈N , η ∈RNx×Nz

Ensure: μ ∈RNm×Nh

1: η̃ ← Encoding[c](η)

2: μ̃ ← BCR-Net1d[c, ncnn](η̃)

3: μ ← Decoding[Nh](μ̃)

4: return μ

The resulting neural network architecture for the forward map for the one-sided detection is summarized in Algorithm 1
and illustrated in Fig. 2. Let us explain these three components of the neural network one by one.

• Encoding module. η̃ = Encoding[c](η) compresses the data η ∈ RNx×Nz to η̃ ∈ RNx×c by compressing only in the
z-dimension. It can be implemented with a one-dimensional convolutional layer Conv1d with window size 1 and chan-
nel number c by taking the second dimension of η as channels. The linear activation function is sufficient for the
Conv1d layer used here.

• Intermediate module. Since the kernel kĥ,ẑ for the linear case in (3.9) is a convolution, it can be implemented by a
one-dimensional convolutional layer Conv1d with window size Nx , channel number c and linear activation function. For
nonlinear case, a natural extension is to use multiple convolution layers and to add a nonlinear activation function such
as a rectified-linear unit (ReLU) function after each layer.
For problems with fine discretizations, a convolution layer with window size Nx might have many parameters. Recently,
several multiscale NNs with fewer parameters have been proposed as an efficient alternative to full-width convolution
layers. Examples include the ones based on hierarchical matrices in [23,22] and the BCR-Net [21]. Here, the BCR-Net is
used to represent the intermediate module. BCR-Net is motivated by the data-sparse nonstandard wavelet representation

Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119 7
of the pseudo-differential operators [10]. It processes the information at different scale separately and each scale can be
understood as a local convolutional neural network. The one-dimensional μ̃ = BCR-Net1d[c, ncnn](η̃) maps η̃ ∈ RNx×c

to μ̃ ∈ RNx×c , where the number of channels and layers in the local convolutional neural network in each scale are c
and ncnn, respectively. The readers are referred to [21] for more details on the BCR-Net.

• Decoding module. μ = Decoding[Nh](μ̃) decodes the set of one-dimensional data μ̃ ∈ RNm×c to the two-dimensional
data μ ∈RNm×Nh . In the implementation, this decoding module is implemented by the one-dimensional convolutional
layer Conv1d with window size 1, channel number Nh , and linear activation function.

3.2. Inverse map for the one-sided detection

The perturbative analysis shows that if η is sufficiently small, the forward map can be well-approximated by

μ ≈ Kη, (3.10)

which is the operator notation of the discretization (3.2). Here, η is a vector indexed by (x, z), μ is indexed by (m, h), and
K is a matrix with rows indexed by (m, h) and columns indexed by (x, z). The usual filtered back-projection algorithm [32]
takes the form

η ≈ (K T K + ε I)−1 K Tμ,

where ε is a regularization parameter.
Following the above discussion, the dimension reduction approximation applied to K is also valid for K T

(K Tμ)z(x) ≈
∑

ẑ

Rz,ẑ

⎛
⎝∑

ẑ

kĥ,ẑ ∗
(∑

h

Rh,ĥμh

)⎞
⎠ (x).

As a result, one obtains a similar three-step algorithm for applying K T to μ and this algorithm can also be formulated as a
neural network with three modules:

• Encode from μ to μ̃ĥ = ∑
h Rh,ĥμh .

• Convolve to form η̃ẑ = ∑
ĥ kĥ,ẑ ∗ μ̃ĥ .

• Decode from η̃ẑ to (K Tμ)z = ∑
ẑ Rz,ẑη̃ẑ

The part (K T K + ε I)−1 can be viewed as a post-processing of K Tμ. The definition of K (3.3) implies that the operator
(K T K +ε I) is a convolution operator. As a deconvolution operator, (K T K +ε I)−1 can also be implemented with a convolution
neural network.

Combining these two components suggests that for the inverse map a suitable architecture is the NN architecture of
the forward map followed by a 2d convolutional neural network. The resulting neural network architecture for the inverse
map is outlined in Algorithm 2 and illustrated in Fig. 3. The layers in Algorithm 2 share the same definitions as those in
Algorithm 1 except the CNN2d layer, which is defined as follows.

• Post-processing module. η = CNN2d[w, ncnn2](η̄) that maps η̄ ∈ RNx×Nz to η ∈ RNx×Nz is a two-dimensional convolu-
tional neural network with ncnn2 convolutional layers and w as the window size. ReLU is used as the activation function
for all intermediate layers. However, as η can take any real number, the last layer uses a linear activation function.

Algorithm 2 Neural network architecture for the one-sided detection inverse map μ → η.

Require: c, w, ncnn, ncnn2 ∈N , μ ∈RNm×Nh

Ensure: η ∈RNx×Nz

1: μ̃ ← Encoding[c](μ)

2: η̃ ← BCR-Net1d[c, ncnn](μ̃)

3: η̄ ← Decoding[Nz](η̃)

4: η ← CNN2d[w, ncnn2](η̄)

5: return η

3.3. Inverse map for the two-sided detection

For the two-sided detection, the electrodes are placed on both the top and bottom boundaries. The DtN map hence
contains four parts: top-to-top (T2T), top-to-bottom (T2B), bottom-to-top (B2T), and bottom-to-bottom (B2B). Since the top
boundary corresponds to z = Z and the bottom corresponds to z = −Z , the superscripts + and − are used to identify the

8 Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119
Fig. 3. Neural network architecture for the inverse problem of the one-sided detection.

top and bottom boundaries, respectively. Following the derivation for the one-sided detection, when η is sufficiently small
one can approximate the linearized map from η to μ±± as

μ±±(m,h) ≈
∫
�

∂G0

∂n(r)
((m + h,±Z), (x, z))

∂G0

∂n(s)
((m − h,±Z), (x, z))η(x, z)dx dz, (3.11)

where the first and second ± in μ±± corresponds to first and second ± on the right hand side, respectively. After the
discretization, the vector form reads⎡

⎢⎢⎣
μ++
μ+−
μ−+
μ−−

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

K ++
K +−
K −+
K −−

⎤
⎥⎥⎦η, or simply denoted as μ = Kη. (3.12)

Following the discussion in Section 3.1, one can factorize each of the four components K ±± using dimension reduction
into three steps. Hence, the forward map η → μ±± can be split into four independent forward problems for the one-sided
detection, and we shall not repeat the study here.

3.3.1. Architecture for the inverse map
When η is small, the filtered back-projection algorithm for the inverse problem from μ±± to η takes the form

η ≈ (
K T K + ε I

)−1 [
(K ++)T (K +−)T (K −+)T (K −−)T

]
⎡
⎢⎢⎣

μ++
μ+−
μ−+
μ−−

⎤
⎥⎥⎦

Following the discussion in Section 3.2, an NN architecture for the inverse map of the two-sided detection would be to
repeat the main part of Algorithm 2 expect the post-processing module for each of μ++, μ+−, μ−+, μ−− , and then to sum
the results together, and to apply the post-processing at last.

Due to the nonlinearity of the inverse problem, a slightly different approach gives better performance. Instead of sum-
ming the decoded results, one combines, before the decoding step, the results of μ++, μ+−, μ−+, μ−− into a single array of
size Nx ×4c and then perform a decoding step together. The resulting neural network architecture is detailed in Algorithm 3
and also illustrated in Fig. 4. The modules Encoding, BCR-Net1d, Encoding and CNN2d are same as those in Algorithm 2. The
only new layers are the Concatenate layer: η ← Concatenate(η1, η2, η3, η4), which concatenates the matrices ηi ∈ RNx×c ,
i = 1, 2, 3, 4 to a matrix with size η ∈ RNx×4c on the column direction, and the Conv1d [c, w] layer: one-dimensional con-
volutional layer Conv1d with channel number c and window size w .

Let us denote η̃±,± by η̃i , i = 1, 2, 3, 4 in Algorithm 3, respectively. Due to the symmetry of the domain �, the map
μ+,+ → η̃+,+ is mirror symmetry to the map μ−,− → η̃−,− . Hence, the B2B part should share the weights with the T2T
part. In the implementation, one can use the same layers for the two maps and then flip the output for the B2B part to
achieve the mirror symmetry. Analogously, the T2B part is also mirror symmetry to the B2T part. We use the same way to
carry out it.

3.4. Numerical results

Below we report some numerical results of the neural network proposed above for the 2D EIT problem. The NN is
implemented with Keras [17] (running on top of TensorFlow [1]). Nadam is chosen as the optimizer [19] with a step size
10−3 and the mean squared error is used as the loss function. The parameters of the network are initialized randomly from
the normal distribution, and the batch size is set as two percent of the size of the training set. The number of layers in
the BCR-Net is set as ncnn = 6. For the CNN2d in Algorithms 2 and 3, the number of convolutional layers is set as ncnn2 = 6

Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119 9
Algorithm 3 Neural network architecture for the two-sided detection inverse map μ±± → η.

Require: c, ncnn, ncnn2, ncnn3, w, w2 ∈N , μ±± ∈RNm×Nh

Ensure: η ∈RNx×Nz

1: Denote μi , i = 1, 2, 3, 4 by all the cases of μ±±
2: for i from 1 to 4 do
3: μ̃i ← Encoding[c](μi)

4: η̃i ← BCR-Net1d[c, ncnn](μ̃i)

5: end for
6: η̃ ← Concatenate(η̃1, ̃η2, ̃η3, ̃η4)

7: for k from 1 to ncnn3 do
8: η̃ ← Conv1d [4c, w2](η̃)

9: end for
10: η̄ ← Decoding[Nx](η̃)

11: η ← CNN2d[w, ncnn2](η̄)

12: return η

Fig. 4. Neural network architecture for the inverse problem of the two-sided detection.

with window size w = 3. For the one-dimensional convolutional part in Algorithm 3, the number of convolutional layers is
set as ncnn3 = 3 with window size equal to w2 = 3. The right value for the channel number c will be studied for each test.

In this section, the half width of the domain Z is set to be 1/4 and the domain � is discretized by a 160 × 80 Cartesian
grid. Thus, Nx = Nm = 160, Nh = 40 and Nz = 80. Both the training data and test data are generated by numerically solving
(1.2). In each test, 10K pairs of (η, μ) are used to train the neural network and another 10K pairs are used as the test data.

For each sample of the training and test data, η is randomly sampled and μ (or μ±±) denote the exact difference DtN
kernel solved by numerical discretization of (1.2). The predictions of the NNs for the forward and inverse maps are denoted
by μN N and ηN N , respectively. The accuracy is measured by the relative error in the �2 norm:

‖μ − μNN‖�2

‖μ‖�2
,

‖η − ηNN‖�2

‖η‖�2
. (3.13)

For each experiment, the test error is then obtained by averaging (3.13) over a given set of test samples. The numerical
results presented below are obtained by repeating the training process five times, using different random seeds.

3.4.1. Smooth potential case
We first study the smooth potential case, where the potential η(x) is assumed to take the form

η(x) =
ng∑

i=1

ρ exp

(
−1

2
(x − c(i))T(�(i))−1(x − c(i))

)
, (3.14)

with ρ = 1000. Each matrix �(i) ∈ R2×2 is generated with the eigenvalues uniformly sampled in [0.0125, 0.05] and the
eigenvectors uniformly sampled in the unit circle S1. Two types of data sets are generated to test the neural networks.

10 Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119
Fig. 5. The relative error and the number of parameters for the one-sided detection forward and inverse problem for different number of channels c and
different number of Gaussians ng with shallow inclusions.

Fig. 6. A sample in the test data for the one-sided detection with shallow inclusions with ng = 4. (a) The data μ; (b) The potential η. In each figure, the
upper one is the reference solution and the lower one is the prediction of the neural network. For the forward problem, the channel number of the neural
network is c = 8 and the relative error for this sample is 3.9e − 3. For the inverse problem, the channel number is c = 10 and the relative error for this
sample is 6.3e − 2.

• Shallow inclusions. The centers of Gaussians are sampled as c(i) ∈ U([0, 1] × [0.05, 0.2]). This data is used to test the
forward and inverse problem for the one-sided detection.

• Deep inclusions. The centers of Gaussians are sampled as c(i) ∈ U([0, 1] × [−0.2, 0.2]). This data can be used to show
the instability of the inverse map: the one-sided detection would fail to resolve the inverse problem well, while the
two-sided detection works.

One-sided detection for shallow inclusions. Fig. 5 gives the test error and the number of parameters for both the forward and
inverse maps with different values of c (the channel number) and ng (the number of Gaussians). The NN predictions μN N
and ηN N along with the exact solutions are illustrated in Fig. 6. For the forward problem, the test error is relatively small
even for c = 6, where only 28K parameters are used in the neural network (compared with the size 12, 800 = 160 × 80 of
η). As the number of channels c increases, the test error decays first and then stagnates. The choice of c = 8 is a balance
between accuracy and efficiency for this forward problem.

For the inverse problem, the test error is relatively small when c = 10, where 78K parameters are used in the neural
network. Judging from the plots, the neural network produces accurate results in term of the location, the shape, and the
magnitude of the Gaussians. These results demonstrate that the neural network architectures proposed in this section are
capable of representing the forward and inverse maps for shallow inclusions.

One-sided detection for deep inclusions. Fig. 7 plots the test error and number of parameters for different values of c and ng .
The predicted μN N and ηN N and the reference solution of one specific test sample are presented in Fig. 8. For the forward
map, the test error is comparable with the case of shallow inclusions. However, the neural network for the inverse map fails

Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119 11
Fig. 7. The relative error and the number of parameters for the one-sided detection forward and inverse problem for different values of c and ng with deep
inclusions.

Fig. 8. A sample in the test data for the one-sided detection with deep inclusions. (a) The data μ; (b) The potential η. In each figure, the upper one is the
reference solution and the lower one is the prediction of the neural network. For the forward problem, the channel number of the neural network is c = 8
and the relative error for this sample is 5.8e − 3. For the inverse problem, the channel number is c = 14 and the relative error for this sample is 0.30.

to produce a good prediction. In Fig. 8, the prediction is pretty close near the top boundary but gives significant error near
the bottom boundary. This result agrees with the conclusion in [4] that the resolution near the boundary is much better
than deep in the interior, which is caused by the instability of the inverse problem [3,4,50]. To avoid it, more information
on the object must be provided, for instance, add electrodes on the bottom boundary, i.e., the two-sided detection.

Two-sided detection for deep inclusions. As we have seen, due to the instability of the inverse problem, the one-sided detection
fails to resolve the problem with deep inclusions. Here we test the neural network for the two-sided detection for deep
inclusions.

Fig. 9 shows the test error and number of parameters for different values of c and ng . The NN predictions μN N and ηN N
along with the reference solution of the same sample in Fig. 8 are summarized in Fig. 10. The test error is significantly
decreased and is even slightly less than that in Fig. 5 of the one-sided problem for the shallow inclusions. Notice that the
test error is relatively small even for the case c = 10 with 177K parameters in the neural network.

3.4.2. Shape reconstruction
Section 3.4.1 studied the behavior of the proposed NN architectures for smooth potentials and show that the proposed

NN architectures have the ability to give a good prediction on both the forward and inverse problems. Here the focus is
on shape reconstruction with noise measurement. The numerical results in Figs. 5 and 9 show that the choice of channel
number c = 10 is a good balance between accuracy and efficiency for the inverse problem. To simplify the discussion, we
set c = 10 in all the test in this subsection.

The potential η(x) is assumed to be a piecewise constant. Four shapes are placed in �, where each can be a regular
triangle, square, pentagon and hexagon. η(x) is set to 1000 in the shapes and is 0 otherwise. For each shape, the circumcircle

12 Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119
Fig. 9. The relative error and the number of parameters for the two-sided detection inverse problem for different number of channels c and different
number of Gaussians ng with deep inclusions.

Fig. 10. A sample in the test data for the two-sided detection inverse problem with c = 10 and ng = 4. (a) The data μ±±; (b) The exact solution η (the
upper one) and the prediction ηN N (the lower one). The relative error for this sample is 3.1e − 2.

radius is uniformly sampled in [0.05, 0.1] and the direction is uniformly sampled in the unit circle S1. For the shallow
inclusion case, the center the shape is uniformly sampled in [0, 1] × [0.05, 0.2], while it is uniform from [0, 1] × [−0.2, 0.2]
for the deep inclusion case.

To model the uncertainty in the measurement data, noises have been added to the DtN map in the data set by setting
λδ
η,i ≡ (1 + Ziδ)λη,i , where Zi is a Gaussian random variable with zero mean and unit variance and δ controls the signal-

to-noise ratio. In the following tests, the noise level is chosen as δ = 0, 0.5% and 1%. In the numerical experiments, an
independent NN is trained and tested with the noise data set {μδ

i , η} with μδ
i ≡ λδ

η,i − λ0 for each noise level. It is worth

noting that the mean of ‖λη−λ0‖
‖λη‖ for all the samples for the shallow or deep inclusions cases are both about 10% and hence

the signal-to-noise ratio for the difference μ is about 10 · δ.

One-sided detection for shallow inclusions. Fig. 11 shows a sample in the test data for different noise level δ. When there is no
noise in the measurement data, the NN provides a good prediction of the potential η in terms of both shape and position.
As is noted in Section 3.4.1, since the inverse problem is ill-posed, the resolution near the boundary is accurate while the
shape boundaries deep in the interior is blurry. For the same reason, when there is noise in the measurement data, the
shape boundaries become more blurry as the noise level grows. However, the positions and number of shapes are correctly
predicted.

Two-sided detection for deep inclusions. Fig. 12 presents a sample from the test data for different noise levels δ for the deep
inclusion. The conclusions for the one-sided detection for shallow inclusions still hold for this case. Comparing the results
in Figs. 11 and 12, one finds that the NN for the two-sided detection gives a better prediction for the shapes in the middle
(i.e. close to z = 0). This agrees with the fact that the two-sided detection utilizes more information (not only μ++ and
μ−− , but also μ+− and μ−+).

Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119 13
Fig. 11. A sample in the test data for the one-sided detection for the shape reconstruction with shallow inclusion for different noise level δ = 0%,0.5%,1%.

Fig. 12. A sample in the test data for the two-sided detection for the shape reconstruction with deep inclusion with different noise level δ = 0%,0.5%,1%.

All the numerical tests show that the NNs in Algorithms 1 to 3 are capable of learning the forward and inverse problem
of EIT for various setups.

4. Neural network for 3D the case

For the 3D case, the domain is assumed to be � = [0, 1] × [0, 1] × [−Z , Z]. The periodic boundary condition is applied
on the left, right, front, and back for simplicity. Similar to the 2D case, the electrodes are allowed to be placed on either the
top (one-sided detection) or both top and bottom (two-sided detection), as shown in Fig. 13. For the one-sided detection,
the zero Dirichlet boundary condition is applied on the bottom boundary.

4.1. Analysis and NN architecture

Most of the 2D analysis for the maps η → μ and μ → η can be extended to the 3D case. The main difference is that the
data μ is a four-dimensional function while the potential η is a three-dimensional function. Below we will first study the
extension for the one-sided detection and then briefly discuss the two-sided detection.

One-sided detection. The DtN map for the one-sided detection is limited on the top boundary. Let r = (r1, r2, Z), s =
(s1, s2, Z), and p = (x, y, z), where x, y are for the horizontal directions and z is for the depth direction. The map (2.6)
for the 3D case can be written as

14 Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119
Fig. 13. Illustration of the problem setup for 3D case. In the one-sided detection, the electrodes are only placed on the top and the zero Dirichlet boundary
condition is applied on the bottom. In the two-sided detection, the electrodes are placed on both the top and bottom. In both cases, periodic boundary
conditions are applied on the left and right, and front and back boundaries.

μ((r1, r2, Z), (s1, s2, Z)) ≈
∫
�

∂G0

∂n(r)
((r1, r2, Z), (x, y, z))

∂G0

∂n(s)
((s1, s2, Z), (x, y, z))η(x, y, z)dx dy dz. (4.1)

Introducing the new variables m = (m1, m2) and h = (h1, h2) with r1 = m1 +h1, r2 = m2 +h2, s1 = m1 −h1 and s2 = m2 −h2

yields

μ(m,h) := μ((m1 + h1,m2 + h2, Z), (m1 − h1,m2 − h2, Z)) ≈
∫
�

K (m,h, x, y, z)η(x, y, z)dx dy dz, (4.2)

where

K (m,h, x, y, z) := ∂G0

∂n
((m1 + h1,m2 + h2, Z), (x, y, z))

∂G0

∂n
((m1 − h1,m2 − h2, Z), (x, y, z)). (4.3)

Applying the same argument for the 2D case shows that the factorization of K in (3.7) can be extended to the 3D case.
More precisely, the Green function G0 can be directly obtained as

G0(p,q) =
∑
�∈Z3

(
(p − q + (�1, �2,2�3 Z)) − (p − q∗ + (�1, �2,2�3 Z))

)
, (4.4)

where q∗ = (q1, q2, 2Z + q3) and is the Green function of the operator −� on the whole space R3. By taking h = (h1, h2)

and z as parameters and using the similar notations as the 2D case, one can reformulate (4.2) as

μh(m) ≈
Z∫

−Z

(kh,z ∗ ηz)(m)dz =
Z−δ∫

−(Z−δ)

(kh,z ∗ ηz)(m)dz (4.5)

where ∗ stands for the two-dimensional convolution with respect to the variables m1 and m2. The same argument used in
2D case shows that one can factorize kh,z as

kh,z(m) ≈
∑

ĥ

∑
ẑ

Rh,ĥkĥ,ẑ(m)Rz,ẑ, (4.6)

by choosing proper interpolating sets {ẑ} and {ĥ}, where Rh,ĥ and Rz,ẑ are the interpolation operators in the h and z
variables, respectively.

With the help of this approximation, (4.2) can be simplified as

μh(m1,m2) ≈
∑

ĥ

Rh,ĥ

⎛
⎜⎝∑

ẑ

kĥ,ẑ ∗
⎛
⎜⎝

Z−δ∫
−(Z−δ)

Rz,ẑηz dz

⎞
⎟⎠

⎞
⎟⎠ (m1,m2). (4.7)

This results the same three-step procedure for effectively approximating the forward map, with the minor differences that
the interpolation over the h variable is now two-dimensional and the convolution is for 2D.

Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119 15
Algorithm 4 Neural network architecture for the one-sided detection inverse map μ → η for 3D case.

Require: c, ncnn, ncnn2 ∈N , μ ∈RNm1 ×Nm2 ×Nh1 ×Nh2

Ensure: η ∈RNx×N y×Nz

1: Reshape μ to a three-dimensional tensor by vectorizing the last two-dimension and still denote it by μ
2: μ̃ ← Encoding3d[c](μ)

3: η̃ ← BCR-Net2d[c, ncnn](μ̃)

4: η̄ ← Decoding3d[Nz](η̃)

5: η ← CNN3d[w, ncnn2](η̄)

6: return η

Following the same reasoning for the 2D case, the NN architecture for the inverse map for the one-sided detection in
Algorithm 4. Below we briefly comment on the layers used, focusing on the differences with the 2D case.

• Encoding module. μ̃ = Encoding3d[c](μ) compresses the data μ ∈ RN1×N2×N3 to μ̃ ∈ RN1×N2×c locally with respect
to the first and second dimensions. Similar as the 2D case, this layer can be implemented by a two-dimensional con-
volution Conv2d with window size 1 × 1 and channel number c by taking the third dimension of μ as the channel
direction. Noticing the compressed layer is essentially a restriction operator, we only use one Conv2d layer with linear
activation function.

• BCR-Net2d. In Section 3.1, the network BCR-Net1d[c, ncnn] can be treated as a compact form of the full-width convo-
lutional layers with number of layer ncnn and channel number c. Here the BCR-Net2d[c, ncnn] is the compact form of
the full-width convolutional layers with number of layer ncnn and channel number c. We refer readers to [10] for more
details.

• Decoding module. η = Decoding3d[Nz](η̃) extends the set of two-dimensional data η̃ ∈ RN1×N2×c to the three-
dimensional data η ∈RN1×N2×N3 . This module can be implemented by the two-dimensional convolutional layer Conv2d
with window size 1 × 1 and channel number Nz by one layer with linear activation function.

• CNN3d. In Section 3.2, η = CNN2d[w, ncnn](η̄) is a post-processing module on the output of the decoding. η =
CNN3d[w, ncnn](η̄) which maps the data η̄ ∈RNx×N y×Nz to η ∈RNx×N y×Nz , is the three-dimensional analog of CNN2d.
It is a three-dimensional convolutional neural network with ncnn convolutional layers and w as the window size. ReLU
is used as the activation function for all intermediate layers and no activation function is applied after the last layer.

Two-sided detection. Following the 2D case, the two-sided detection can be treated as a combination of four one-sided
detections and a post-process to combine the four parts. The NN architecture is summarized in Algorithm 5. Below we
briefly comment on the two new layers used.

• Concatenate layer. η ← Concatenate2d(η1, η2, η3, η4) concatenates the 3-tensors ηi ∈ RN1×N2×c , i = 1, 2, 3, 4 to a
3-tensor with size η ∈RN1×N2×4c on the third direction.

• Convolutional layer. η ← Conv2d [c, w](η) is the two-dimensional convolutional layer with channel number c and win-
dow size w .

Algorithm 5 Neural network architecture for the two-sided detection inverse map μ±± → η for 3D case.

Require: c, ncnn, ncnn2, ncnn3, w, w2 ∈N , μ±± ∈RNm1 ×Nm2 ×Nh1 ×Nh2

Ensure: η ∈RNx×N y×Nz

1: Denote μi , i = 1, 2, 3, 4 by all the cases of μ±±
2: for i from 1 to 4 do
3: Reshape μi to a three-dimensional tensor by vectorizing the last two-dimension and still denote it by μi

4: μ̃i ← Encoding3d[c](μi)

5: η̃i ← BCR-Net2d[c, ncnn](μ̃i)

6: end for
7: η̃ ← Concatenate2d(η̃1, ̃η2, ̃η3, ̃η4)

8: for k from 1 to ncnn3 do
9: η̃ ← Conv2d [4c, w2](η̃)

10: end for
11: η̄ ← Decoding3d[Nz](η̃)

12: η ← CNN3d[w, ncnn2](η̄)

13: return η

4.2. Numerical results

The setup of the neural network is almost the same as that for the 2D case in Section 3.4. The only difference is that the
window size of the convolutional layers in Algorithms 4 and 5 is set as w = w2 = (3, 3) rather than w = w2 = 3 for the 2D
case. For each sample of the training and test data sets, η(x) is of the form

16 Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119
Fig. 14. The relative error and the number of parameters for the one-sided detection inverse problem for different number of channels c for 3D case.

η(x) =
4∑

i=1

ρ exp

(
−1

2
(x − c(i))T(�(i))−1(x − c(i))

)
, (4.8)

where ρ = 1000. The matrix �(i) ∈R3×3 is generated with the eigenvalues uniformly distributed in [0.0125, 0.05] and the
eigenvectors uniformly sampled from the unit sphere S2. Similar as the 2D case, Z = 1/4. Two types of data are generated
to test the performance of the proposed NNs:

• Shallow inclusions. The location of Gaussians is c(i) ∈ U([0, 1] × [0, 1] × [0.05, 0.2]), which is used for the test of the
one-sided detection.

• Deep inclusions. The location of Gaussians is c(i) ∈ U([0, 1] × [0, 1] × [−0.2, 0.2]), used for the test of the two-sided
detection.

The domain � is discretized by a 40 × 40 × 20 Cartesian grid. Both the training data and test data are generated by
numerically solving (1.2).

One-sided detection for shallow inclusions. The NN for the inverse map in Algorithm 4 is tested with shallow inclusions. 10K
pairs of (η, μ) are used to train the NN parameters and another 5K pairs are reserved as the test data. The data set is
smaller compared to the 2D case due to the memory limitation of the current GPUs. Fig. 14 plots the test error and the
number of parameters for different choices of c. The test error is comparable with that of the 2D case. As c increases, the
error decays first and then stagnates around c = 10. Fig. 15 illustrates the NN prediction and the reference solution of a
specific sample from the test data set. The plots indicate that the NN produces accurate results in terms of the location, the
shape, and the magnitude of the inclusions.

Two-sided detection for deep inclusions. The neural network in Algorithm 5 for two-sided detection is tested with deep in-
clusions. 8K pairs of (η, μ) are used to train the neural network and another 2K pairs are reserved for testing. Fig. 16
summarizes the test error and the number of parameters for different values for c. The test accuracy is comparable with
that of the 2D two-sided detection case. Fig. 17 plots the prediction solution and the reference solution of a specific sample
in the test data.

5. Conclusions

This paper proposes novel neural network architectures for EIT problems. Mathematically, these NNs approximate the
forward and inverse maps between the electrical conductivity and the resulting DtN map. A perturbative analysis for the
weak-inclusion regime suggests a dimension-reduction approximation, which further inspires the NN architecture design.
Numerical results demonstrate that the proposed NNs approximate the forward or inverse maps with reasonable accuracy.

Using neural networks for approximating the forward and inverse maps has several clear advantages. First, once the
neural networks are well trained, they can produce rather accurate prediction efficiently; Second, the correct regularization
for the inverse map can be automatically captured by the neural network from the training set; Third, the neural networks
proposed in this paper are compact and easy to train, thus applicable to applications with rather limited data.

The discussion here focuses on the rectangle/cuboid domains. For the spherical domains, one can turn them into the
rectangle/cuboid configuration by resorting to the polar/spherical transformations. For arbitrary convex bounded Lipschitz
domains, it is possible to extend the current NN architectures by carefully reparametrizing the domain, though it could
require technical efforts.

Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119 17
Fig. 15. A sample in the test data for the one-sided detection inverse problem with c = 8 on the shallow inclusions for 3D case. (a) Some slice of the data
μ; (b) The reference solution η; (c) The prediction ηN N . The relative error of this sample is 5.2e − 2.

Fig. 16. The relative error and the number of parameters for the two-sided detection inverse problem for different number of channels c for 3D case.

Recently in medical imaging applications, adversarial attack [49,5,24] has become an important issue for deep learning.
As our NN architecture is quite compact, the resulting NN does not overfit the training data. It is expected that our NN
could be less vulnerable to adversarial attacks. Detailed study in this direction would be part of future work.

18 Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119
Fig. 17. A sample in the test data for the two-sided detection inverse problem with c = 8 on deep inclusions for 3D case. (a) Some slice of the data μ+,+;
(b) The reference solution η; (c) The prediction ηN N . The relative error of this sample is 8.1e − 2.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The work of Y.F. and L.Y. is partially supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program. The work of L.Y. is also
partially supported by the National Science Foundation under award DMS-1818449. This work is also supported by the GCP
Research Credits Program from Google and AWS Cloud Credits for Research program from Amazon.

References

[1] M. Abadi, et al., Tensorflow: a system for large-scale machine learning, in: OSDI, vol. 16, 2016, pp. 265–283.
[2] G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal. 27 (1–3) (1988) 153–172.
[3] G. Alessandrini, Examples of instability in inverse boundary-value problems, Inverse Probl. 13 (4) (1997) 887.
[4] A. Allers, F. Santosa, Stability and resolution analysis of a linearized problem in electrical impedance tomography, Inverse Probl. 7 (4) (1991) 515.
[5] V. Antun, F. Renna, C. Poon, B. Adcock, A.C. Hansen, On instabilities of deep learning in image reconstruction–does AI come at a cost?, arXiv preprint

arXiv:1902 .05300, 2019.
[6] M. Araya-Polo, J. Jennings, A. Adler, T. Dahlke, Deep-learning tomography, Lead. Edge 37 (1) (2018) 58–66.
[7] L. Bar, N. Sochen, Unsupervised deep learning algorithm for PDE-based forward and inverse problems, arXiv preprint arXiv:1904 .05417, 2019.
[8] J. Behrndt, A. ter Elst, Dirichlet-to-Neumann maps on bounded Lipschitz domains, J. Differ. Equ. 259 (11) (2015) 5903–5926.
[9] J. Berg, K. Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317

(2018) 28–41.
[10] G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Commun. Pure Appl. Math. 44 (2) (1991) 141–183.
[11] L. Borcea, A nonlinear multigrid for imaging electrical conductivity and permittivity at low frequency, Inverse Probl. 17 (2) (2001) 329.
[12] L. Borcea, Electrical impedance tomography, Inverse Probl. 18 (6) (2002) R99.

http://refhub.elsevier.com/S0021-9991(19)30824-1/bib74656E736F72666C6F77s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib616C657373616E6472696E6931393838737461626C65s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib616C657373616E6472696E69313939376578616D706C6573s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib616C6C6572733139393173746162696C697479s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib616E74756E32303139696E73746162696C6974696573s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib616E74756E32303139696E73746162696C6974696573s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib41726179612D506F6C6F32303138s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib62617232303139756E73757065727669736564s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib626568726E6474323031356469726963686C6574s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6265726732303137756E6966696564s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6265726732303137756E6966696564s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib626372s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib626F72636561323030316E6F6E6C696E656172s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib626F7263656132303032656C656374726963616Cs1

Y. Fan, L. Ying / Journal of Computational Physics 404 (2020) 109119 19
[13] B.H. Brown, Electrical impedance tomography (EIT): a review, J. Med. Eng. Technol. 27 (3) (2003) 97–108.
[14] A.P. Calderón, On an inverse boundary value problem, Comput. Appl. Math. 25 (2–3) (2006) 133–138.
[15] G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355 (6325) (2017) 602–606.
[16] T.F. Chan, G.H. Golub, P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput. 20 (6) (1999)

1964–1977.
[17] F. Chollet, et al., Keras, https://keras .io, 2015.
[18] E.L. Costa, C.N. Chaves, S. Gomes, M.A. Beraldo, M.S. Volpe, M.R. Tucci, I.A. Schettino, S.H. Bohm, C.R. Carvalho, H. Tanaka, et al., Real-time detection of

pneumothorax using electrical impedance tomography, Crit. Care Med. 36 (4) (2008) 1230–1238.
[19] T. Dozat, Incorporating Nesterov momentum into adam, in: International Conference on Learning Representations, 2016.
[20] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1) (2018)

1–12.
[21] Y. Fan, C.O. Bohorquez, L. Ying, BCR-Net: a neural network based on the nonstandard wavelet form, J. Comput. Phys. 384 (2019) 1–15.
[22] Y. Fan, J. Feliu-Fabà, L. Lin, L. Ying, L. Zepeda-Núñez, A multiscale neural network based on hierarchical nested bases, Res. Math. Sci. 6 (2) (2019) 21.
[23] Y. Fan, L. Lin, L. Ying, L. Zepeda-Núñez, A multiscale neural network based on hierarchical matrices, arXiv preprint arXiv:1807.01883, 2018.
[24] S.G. Finlayson, J.D. Bowers, J. Ito, J.L. Zittrain, A.L. Beam, I.S. Kohane, Adversarial attacks on medical machine learning, Science 363 (6433) (2019)

1287–1289.
[25] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Classics in Mathematics, Springer, 2001.
[26] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, vol. 1, MIT Press, Cambridge, 2016.
[27] E. Haber, U.M. Ascher, D. Oldenburg, On optimization techniques for solving nonlinear inverse problems, Inverse Probl. 16 (5) (2000) 1263.
[28] J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (34) (2018) 8505–8510.
[29] J. Han, L. Zhang, R. Car, et al., Deep potential: a general representation of a many-body potential energy surface, arXiv preprint arXiv:1707.01478, 2017.
[30] M. Hanke, Regularizing properties of a truncated newton-cg algorithm for nonlinear inverse problems, Numer. Funct. Anal. Optim. 18 (9–10) (1997)

971–993.
[31] G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T.N. Sainath, B. Kingsbury, Deep neural networks for

acoustic modeling in speech recognition: the shared views of four research groups, IEEE Signal Process. Mag. 29 (6) (2012) 82–97.
[32] D.S. Holder, Electrical Impedance Tomography: Methods, History and Applications, CRC Press, 2004.
[33] J.P. Kaipio, V. Kolehmainen, M. Vauhkonen, E. Somersalo, Inverse problems with structural prior information, Inverse Probl. 15 (3) (1999) 713.
[34] Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks, arXiv preprint arXiv:1707.03351, 2017.
[35] Y. Khoo, J. Lu, L. Ying, Solving for high-dimensional committor functions using artificial neural networks, Res. Math. Sci. 6 (1) (2019) 1.
[36] Y. Khoo, L. Ying, SwitchNet: a neural network model for forward and inverse scattering problems, arXiv preprint arXiv:1810 .09675, 2018.
[37] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1, NIPS’12, Curran Associates Inc., USA, 2012, pp. 1097–1105.
[38] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (436) (2015).
[39] M.K.K. Leung, H.Y. Xiong, L.J. Lee, B.J. Frey, Deep learning of the tissue-regulated splicing code, Bioinformatics 30 (12) (2014) i121–i129.
[40] Y. Li, J. Lu, A. Mao, Variational training of neural network approximations of solution maps for physical models, arXiv preprint arXiv:1905 .02789, 2019.
[41] S. Lindgren, H. Odenstedt, C. Olegård, S. Söndergaard, S. Lundin, O. Stenqvist, Regional lung derecruitment after endotracheal suction during volume-or

pressure-controlled ventilation: a study using electric impedance tomography, Intensive Care Med. 33 (1) (2007) 172–180.
[42] Z. Long, Y. Lu, X. Ma, B. Dong, PDE-net: learning PDEs from data, in: J. Dy, A. Krause (Eds.), Proceedings of the 35th International Conference on Machine

Learning, Stockholmsmässan, Stockholm Sweden, 10–15 Jul, in: Proceedings of Machine Learning Research, vol. 80, PMLR, 2018, pp. 3208–3216.
[43] J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik, Deep neural nets as a method for quantitative structure-activity relationships, J. Chem. Inf. Model.

55 (2) (2015) 263–274.
[44] M. Raissi, G.E. Karniadakis, Hidden physics models: machine learning of nonlinear partial differential equations, J. Comput. Phys. 357 (2018) 125–141.
[45] K. Rudd, S. Ferrari, A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks, Neurocomputing

155 (2015) 277–285.
[46] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2015) 85–117.
[47] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks, in: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q.

Weinberger (Eds.), Advances in Neural Information Processing Systems, vol. 27, Curran Associates, Inc., 2014, pp. 3104–3112.
[48] J. Sylvester, G. Uhlmann, The Dirichlet to Neumann map and applications, in: Inverse Problems in Partial Differential Equations, vol. 42, 1990, p. 101.
[49] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I.J. Goodfellow, R. Fergus, Intriguing properties of neural networks, ICLR, arXiv:1312 .6199, 2013.
[50] G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inverse Probl. 25 (12) (2009) 123011.
[51] G. Uhlmann, The Dirichlet-to-Neumann Map and Inverse Prolems, 2016.
[52] J.A. Victorino, J.B. Borges, V.N. Okamoto, G.F. Matos, M.R. Tucci, M.P. Caramez, H. Tanaka, F.S. Sipmann, D.C. Santos, C.S. Barbas, et al., Imbalances in

regional lung ventilation: a validation study on electrical impedance tomography, Am. J. Respir. Crit. Care Med. 169 (7) (2004) 791–800.
[53] M. Wang, Industrial Tomography: Systems and Applications, Elsevier, 2015.

http://refhub.elsevier.com/S0021-9991(19)30824-1/bib65697432303033726576696577s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib63616C6465726F6E32303036696E7665727365s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6361726C656F32303137736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6368616E313939396E6F6E6C696E656172s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6368616E313939396E6F6E6C696E656172s1
https://keras.io
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib636F737461323030387265616Cs1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib636F737461323030387265616Cs1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib646F7A617432303135696E636F72706F726174696E67s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib7765696E616E3230313864656570s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib7765696E616E3230313864656570s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib66616E32303139626372s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib66616E323031386D6E6E6832s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib66616E323031386D6E6Es1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib66696E6C6179736F6E32303139616476657273617269616Cs1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib66696E6C6179736F6E32303139616476657273617269616Cs1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib706465326E6432303031s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib676F6F6466656C6C6F773230313664656570s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6861626572323030306F7074696D697A6174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib68616E32303138736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib68616E3230313764656570s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib68616E6B6531393937726567756C6172697A696E67s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib68616E6B6531393937726567756C6172697A696E67s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib48696E746F6E32303132s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib48696E746F6E32303132s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib686F6C64657232303034656C656374726963616Cs1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6B616970696F31393939696E7665727365s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6B686F6F32303137736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6B686F6F32303139636F6D6D6974746F72s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6B686F6F323031387377697463686E6574s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib4B72697A686576736B7932303132s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib4B72697A686576736B7932303132s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6C6543756E6E32303135s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib4C65756E6732303134s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6C6932303139766172696174696F6E616Cs1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6C696E646772656E32303037726567696F6E616Cs1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6C696E646772656E32303037726567696F6E616Cs1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6C6F6E6732303138706465s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib6C6F6E6732303138706465s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib4D61536865726964616E32303135s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib4D61536865726964616E32303135s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib52616973736932303138s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib7275646432303135636F6E73747261696E6564s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib7275646432303135636F6E73747261696E6564s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib5343484D4944485542455232303135s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib537574736B657665724E49505332303134s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib537574736B657665724E49505332303134s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib73796C766573746572313939306469726963686C6574s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib537A656765647932303133496E7472696775696E67504Fs1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib75686C6D616E6E32303039656C656374726963616Cs1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib75686C6D616E6E3230313664697263686C6574s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib766963746F72696E6F32303034696D62616C616E636573s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib766963746F72696E6F32303034696D62616C616E636573s1
http://refhub.elsevier.com/S0021-9991(19)30824-1/bib77616E6732303135696E647573747269616Cs1

	Solving electrical impedance tomography with deep learning
	1 Introduction
	2 Mathematical analysis of the DtN map
	3 Neural network for the 2D case
	3.1 Forward map for the one-sided detection
	3.2 Inverse map for the one-sided detection
	3.3 Inverse map for the two-sided detection
	3.3.1 Architecture for the inverse map

	3.4 Numerical results
	3.4.1 Smooth potential case
	3.4.2 Shape reconstruction

	4 Neural network for 3D the case
	4.1 Analysis and NN architecture
	4.2 Numerical results

	5 Conclusions
	Acknowledgements
	References

