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This paper introduces a new approach for solving electrical impedance tomography (EIT) 
problems using deep neural networks. The mathematical problem of EIT is to invert the 
electrical conductivity from the Dirichlet-to-Neumann (DtN) map. Both the forward map 
from the electrical conductivity to the DtN map and the inverse map are high-dimensional 
and nonlinear. Motivated by the linear perturbative analysis of the forward map and based 
on a numerically low-rank property, we propose compact neural network architectures for 
the forward and inverse maps for both 2D and 3D problems. Numerical results demonstrate 
the efficiency of the proposed neural networks.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Electrical impedance tomography (EIT) is the problem of determining the electrical conductivity distribution of an un-
known medium by making voltage and current measurements at the boundary of the object. As a radiation-free imaging 
technique, EIT allows repeated, non-invasive measurements of regional changes in the object; thus it has been used as a 
monitoring tool in a variety of applications in critical care medicine, for instance, monitoring of ventilation distribution [52], 
assessment of lung overdistension [41] and detection of pneumothorax[18], and many industrial applications [53].

Background. At the center of the mathematical formulations of EIT is the Dirichlet-to-Neumann (DtN) map, a critical object 
in the analysis of elliptic partial differential equations that plays a significant role in the classical Calderón problem [14,50,
8].

The governing equation of EIT, or equivalently the inverse conductivity problem, is

−div(γ (x)∇φ(x)) = 0, in � ⊂ Rd,

φ(x) = ψ(x), on ∂�,
(1.1)

where � is a bounded Lipschitz domain, φ(x) is the voltage, γ (x) > 0 is the conductivity distribution, and ψ(x) is the 
voltage applied on the boundary. The corresponding DtN map is defined by

�γ : H
1
2 (∂�) → H− 1

2 (∂�), ψ(x) |∂�→ γ (x)
∂φ(x)

∂n(x)
|∂�,
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where n(x) is the outer normal vector. Here H
1
2 (∂�) is the space of L2(∂�) functions that are traces of functions in H1(�)

and H− 1
2 (∂�) is its dual. We refer the readers to [48] for more details of the DtN map.

A closely related inverse conductivity problem involves the DtN map of the Schrödinger equation at zero energy [48], 
which takes the following form

(−� + η(x))u(x) = 0, in �,

u(x) = f (x), on ∂�.
(1.2)

The DtN map for the Schrödinger equation is then defined by

�η : H
1
2 (∂�) → H− 1

2 (∂�), f (x) |∂�→ ∂u(x)

∂n(x)
|∂� . (1.3)

These two DtN maps �η and �γ are closely related. If φ is the solution of (1.1), then u = √
γ φ is the solution of (1.2)

with η = �
√

γ√
γ and f = √

γ ψ . Moreover, �η = γ −1/2�γ γ −1/2 + 1

2γ

∂γ

∂n
. Actually, the two maps �η and �γ carry the 

same information and they can be determined from each other [48]. This paper shall focus on the DtN map �η for the 
Schrödinger equation. All the results can be extended to the DtN map �γ without many difficulties.

Since the DtN map �η is linear [8] for a fixed η, there exists a distribution kernel λη(r, s) for r, s ∈ ∂� such that

(�η f )(r) = ∂u

∂n
(r) =

∫
∂�

λη(r, s) f (s)dS(s). (1.4)

The forward problem for the DtN map is that, given η(x), to solve for the kernel λη(r, s), i.e., η → λη .
The task of the inverse problem is to recover η(x) in � based on the observation data, which is typically a collection 

of pairs ( f , �η f ) of the Dirichlet boundary condition f and the corresponding Neumann data �η f . Under the assumption 
that the Dirichlet boundary condition is sufficiently sampled, it is possible to assume that the kernel λη is known and, 
therefore, the inverse problem is to recover η from λη , i.e., λη → η. Since λη(r, s) |r,s∈∂� is a function of 2(d − 1) variables 
while η(x) is a function of d variables, the inverse problem is not solvable if d = 1 due to a simple dimension counting. For 
d ≥ 2, in principle, the solution of the inverse problem exists and is unique under certain conditions [51]. However, due to 
the elliptic nature of EIT, the inverse problem is severely ill-conditioned [2–4,12] even for d ≥ 2.

Numerical solution of the forward and inverse problems can be challenging. The forward problem is a map from a d
dimensional function to a 2(d − 1) dimensional function. For 3D problems, computing and representing the whole DtN map 
�η for a fixed η can be quite expensive. For the inverse problem, the inverse map �η → η is numerically unstable [2–4,12]
due to ill-conditioning. In order to avoid instability, an application-dependent regularization term is often required in order 
to stabilize the inverse problem, see, for instance, [30,16,33]. Algorithmically, the inverse problem is usually solved with 
iterative methods [30,27,11,12], which often requires a significant number of iterations.

In the last few years, deep neural networks (DNNs) have achieved great successes in computer vision, image process-
ing, speech recognition, and many other artificial intelligence applications [31,37,26,43,39,47,38,46]. More recently, methods 
based on DNNs have also been applied to solving PDEs [34,9,28,23,22,6,44,21,36]. These attempts can be classified into two 
categories. The first category [45,15,28,35,20] aims to represent the solutions of high-dimensional PDEs with DNNs (rather 
than the classical methods such as finite element and finite difference methods). The second category [42,29,34,23,22,21,
36,40,7] works with parameterized PDE problems and uses the DNNs to represent the map from the high-dimensional 
parameters of the PDE to the solution of the PDE.

Contributions. Deep neural networks have several advantages when applied to solve the forward and inverse problems. For 
the forward problem, since applying neural network to input data can be carried out rapidly due to novel software and 
hardware architectures, the forward problem can be significantly accelerated when the forward map is represented with 
a DNN. For the inverse problem, the choices of the solution algorithm and the regularization term are two critical issues. 
Fortunately, deep neural networks can help in both aspects. First, concerning the solution algorithm, due to its flexibility in 
representing high-dimensional functions, DNN can potentially be used to approximate the full inverse map, thus avoiding 
the iterative solution process. Second, concerning the regularization term, recent work in machine learning shows that DNNs 
often can automatically extract features from the data and offer a data-driven regularization prior.

This paper applies the deep learning approach to the EIT problem by representing the inverse map from �η to η using a 
novel neural network architecture. The motivation of the new architecture comes from a perturbative analysis of the linear 
approximation of both the forward and inverse maps of the EIT problem. The analysis shows that the maps between η and 
�η are locally numerically low-rank after a reparameterization of the DtN map �η . This observation allows us to reduce 
the map between the d-dimensional η and 2(d − 1)-dimensional �η to a map between two (quasi) (d − 1)-dimensional 
functions. Being translation-invariant and global, this new map is represented with the recently proposed BCR-Net [10], 
which is a multiscale neural network based on the nonstandard form of the wavelet decomposition. This neural network 
architecture is used to approximate both the forward and inverse maps. For the test problems being considered, the resulting 
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neural networks have only 104 ∼ 105 parameters for the 2D case and 105 ∼ 106 parameters for the 3D case, thanks to the 
dimension reduction and the compact structure of the BCR-Net. The rather small number of parameters allow for training 
on rather limited data sets, which are often the case for EIT problems.

Organization. This rest of the paper is outlined as follows. The mathematical background on the DtN map is studied in 
Section 2. The design and architecture of the DNNs of the forward and inverse maps for the 2D case are discussed in 
Section 3, along with numerical tests. The result is extended to the 3D case in Section 4.

2. Mathematical analysis of the DtN map

This section summarizes the necessary mathematical background of the DtN map. Let us denote L = −� + η and 
G = L−1 with G f (x) = ∫

�
G(x, y) f (y) dy, where G is the Green function of the operator L with the Dirichlet boundary 

condition. An application of the divergence theorem shows that

0 =
∫
∂�

∂u

∂n(y)
(y)G(x, y)dS(y) =

∫
�

divy(∇yu(y) · G(x, y))dy =
∫
�

(
�yu · G + ∇y G∇yu

)
dy. (2.1)

Analogously, a second application of the divergence theorem to the above result leads to∫
∂�

∂G

∂n(y)
(x, y) f (y)dS(y) =

∫
�

divy(∇y G(x, y) · u(y))dy

=
∫
�

(
�y G(x, y) · u(y) + ∇y G(x, y)∇yu(y)

)
dy

=
∫
�

(
�y G(x, y) · u(y) − �yu(y) · G(x, y)

)
dy

=
∫
�

(− (−�y + η(y)
)

G(x, y) · u(y) + (−�y + η(y)
)

u(y) · G(x, y)
)

dy

= −u(x).

(2.2)

Here the last equality uses the fact that G is the Green function of L = −� + η and u is the solution of (1.2). Taking the 
normal derivative of two sides of (2.2) with respect to n(x) for x ∈ ∂� gives rise to

∂u

∂n
(x) = −

∫
∂�

∂2G

∂n(x)n(y)
(x, y) f (y)dS(y), x ∈ ∂�, (2.3)

which describes the kernel of the DtN map �η(ψ) in terms of the Green function G:

λη(r, s) = − ∂2G

∂n(r)n(s)
(r, s), r, s ∈ ∂�. (2.4)

In order to avoid confusion, we use r, s to represent the points on the boundary and p, q for the points in the domain 
hereafter.

In order to understand how the DtN map depends on the potential η, we conduct a perturbative analysis of the map 
from η to λη for η > 0 close to a fixed η0. For simplicity, assume η0 = 0. Let us introduce E = −ηI with I the identity 
operator, L0 = −�, and G0 = L−1

0 (with kernel denoted by G0) as the Green function of L0 with the Dirichlet boundary 
condition. When η > 0 is sufficiently small, G can be expanded via a Neumann series

G = (L0 − E)−1 = G0 + G0EG0 + G0EG0EG0 + . . . . (2.5)

By introducing λ0(r, s) = λη(r, s) |η=η0 , which can be calculated by the knowledge of the background case η = η0, it is 
equivalent to focus on the difference λη − λ0 (often called difference imaging, see [13] for details), which is also the kernel 
of G −G0. For a sufficiently small η, the operator G −G0 can be approximated by its first term G0EG0, which is linear in E . 
Using the fact that E = −ηI leads to the following approximation for the difference DtN map μ,

μ(r, s) := (λη − λ0)(r, s) = −∂2(G − G0)

∂n(r)∂n(s)
(r, s) ≈

∫
�

(
∂G0

∂n(r)
(r, p)

∂G0

∂n(s)
(p, s)

)
η(p)dp, (2.6)

which serves as the motivation of the design of the NN architectures.
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Fig. 1. Illustration of the problem setup. In the one-sided detection, the electrodes are only placed on the top and the zero Dirichlet boundary condition is 
applied on the bottom. In the two-sided detection, the electrodes are placed on both the top and bottom. In both cases, periodic boundary conditions are 
applied on the left and right boundaries.

3. Neural network for the 2D case

Consider the domain � = [0, 1] × [−Z , Z ] where Z is a fixed constant. The periodic boundary condition is specified at 
the left and right boundaries for simplicity. As illustrated in Fig. 1, the electrodes are allowed to be placed on either only 
the top boundary (one-sided detection) or both the top and bottom boundaries (two-sided detection). For the one-sided 
detection, the zero Dirichlet boundary condition is assumed at the bottom for simplicity, though other boundary conditions 
are also relevant. In what follows, we shall first consider the forward and inverse maps for the one-sided detection. The 
architecture is then extended to the two-sided detection case.

In most of the EIT problems, the electrical conductivity is known near the domain boundary. This implies that there 
exists a constant δ > 0 such that η(p) is supported in [0, 1] × [−(Z − δ), Z − δ].

3.1. Forward map for the one-sided detection

For the one-sided detection, the DtN map is limited on the top boundary. Let r = (r1, Z), s = (s1, Z) and p = (x, z), where 
x is for the horizontal coordinate and z is the depth coordinate. The map (2.6) can be rewritten as

μ((r1, Z), (s1, Z)) ≈
∫
�

∂G0

∂n(r)
((r1, Z), (x, z))

∂G0

∂n(s)
((s1, Z), (x, z))η(x, z)dx dz. (3.1)

Note that p and q are used for the points in the domain �, r and s for the points on the boundary, and x and z for the 
horizontal and depth coordinates.

A key step for both analysis and architecture design is to introduce new horizontal variables m and h such that r1 = m +h
and s1 = m − h. Reparameterizing the difference DtN map μ with the new variable yields

μ(m,h) := μ((m + h, Z), (m − h, Z)) ≈
∫
�

K (m,h, x, z)η(x, z)dx dz, (3.2)

with the kernel K given by

K (m,h, x, z) := ∂G0

∂n
((m + h, Z), (x, z))

∂G0

∂n
((m − h, Z), (x, z)). (3.3)

Here n = (0, 1) and 
∂G0

∂n
(·, ·) is the directional derivative of G0 in the first variable. Noticing that G0 is the Green function 

of the operator −� on the domain � with the periodic boundary condition on left and right and the Dirichlet boundary 
condition on top and bottom, one can write down G0 explicitly as [25]

G0(p,q) =
∑
�∈Z2

(
(p − q + (�1,2�2 Z)) − (p − q∗ + (�1,2�2 Z))

)
, (3.4)

where q∗ = (q1, 2Z + q2) and  is the Green function of the operator −� on the whole space R2. Since G0 as the Green 
function for the case η = η0 is translation-invariant in the horizontal direction,

∂G0

∂n
((m ± h, Z), (x, z)) = ∂G0

∂n
((±h, Z), (x − m, z)). (3.5)

For the rest of the discussion, it is convenient to treat h and z as parameters and introduce
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∂G0,±h,z

∂n
(x − m) := ∂G0

∂n
((±h, Z), (x − m, z), ηz(x) := η(x, z),

kh,z(m) := ∂G0,+h,z

∂n
(m)

∂G0,−h,z

∂n
(m), μh(m) := μ(m,h).

With the new notations, (3.2) can be reformulated as

μh(m) ≈
Z∫

−Z

(kh,z ∗ ηz)(m)dz =
Z−δ∫

−(Z−δ)

(kh,z ∗ ηz)(m)dz, (3.6)

where the convolution is in m. The last equality holds due to the consideration that η is supported between −(Z − δ) and 
Z − δ in the depth direction.

Low-rank approximation and dimension reduction. A key observation is that

the kernel kh,z(m) is smooth in h for h ∈ [0, 1] and z ∈ (−(Z − δ), Z − δ).

An inspection of the definition of K in (3.3) shows that kh,z(m) is only singular when z = Z . Therefore, the kernel kh,z(m)

is uniformly smooth for h ∈ [0, 1], m ∈ [0, 1], and z ∈ (−(Z − δ), Z − δ). The smoothness in the h and z variable indicates 
that kh,z(m) can be well-approximated in h and z by an approximation scheme with a small number of terms. To simplify 
the discussion, assume without loss of generality that a stable interpolation scheme (such as Chebyshev interpolation) is 
adopted. By denoting the sets of interpolation points in the h variable and z variable as {ĥ} and {ẑ}, such an interpolation 
reads

kh,z(m) ≈
∑

ĥ

∑
ẑ

Rh,ĥkĥ,ẑ(m)Rz,ẑ, (3.7)

where Rh,ĥ and Rz,ẑ are the interpolation operators in the h and z variables, respectively.
This approximation for kh,z naturally implies an approximation for (3.6)

μh(m) ≈
∑

ĥ

Rh,ĥ

⎛
⎜⎝∑

ẑ

kĥ,ẑ ∗
⎛
⎜⎝

Z−δ∫
−(Z−δ)

Rz,ẑηz dz

⎞
⎟⎠

⎞
⎟⎠ (m). (3.8)

Algorithmically, this approximation allows one to factorize the forward map into three steps:

1. Compress the two-dimensional function ηz = η(x, z) to a set of one-dimensional function

η̃ẑ(x) :=
Z−δ∫

−(Z−δ)

Rz,ẑηz(x)dz;

2. Convolve with kĥ,ẑ in the one-dimensional space to obtain

μ̃ĥ(m) :=
⎛
⎝∑

ẑ

kĥ,ẑ ∗ η̃ẑ

⎞
⎠ (m);

3. Interpolate the set of one-dimensional functions μ̃ĥ(m) to a two-dimensional function

μh(m) =
∑

ĥ

Rh,ĥμ̃ĥ(m).

This effectively reduces the forward map to a number of 1D convolutions. This dimension reduction in (3.8) is fundamental 
in the construction of the neural network.

Remark 1. The assumption that η(p) is supported in [0, 1] ×[−(Z −δ), Z −δ] can be removed. Actually, we can split [−Z , Z ]
into three intervals [−Z , −(Z − δ)], [−(Z − δ), Z − δ] and [Z − δ, Z ] with δ � Z , and then study the property of the kernel 
kh,z(m) restricted to each interval one by one. Since δ � Z , the low-rank approximation (3.8) is still valid.
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Fig. 2. Neural network architecture for the forward problem of the one-sided detection.

Discretization. The analysis till now is in the continuous setting. A simple numerical treatment discretizes the domain �
by a uniform Cartesian grid, with the Laplacian approximated by a 5-point central difference scheme and the directional 
derivative on the boundary replaced by the one-sided first-order difference. The numerical Green function is defined to be 
the inverse of the discrete Laplacian operator with zero boundary condition. Let Nr be the number of electrodes. The DtN 
map is evaluated by solving (1.2) Nr times with f (x) set as a delta function at one electrode each time. With a slight abuse 
of notation, the same letters are used to denote the continuous kernels and their discretizations. The discrete version of 
(3.8) reads

μh(m) ≈
∑

ĥ

Rh,ĥ

⎛
⎝∑

ẑ

kĥ,ẑ ∗
(∑

z

Rz,ẑηz

)⎞
⎠ (m). (3.9)

Neural network architecture. The perturbative analysis shows that, if η > 0 is sufficiently small, the forward map η → μ can 
be approximated by (3.9). As detailed below, the three steps of computing (3.9) can be naturally formulated as a neural 
network with three modules:

• an encoding module that compresses the two-dimensional data η to a set of one-dimensional data η̃ẑ;
• an intermediate module that convolves kĥ,ẑ with the one-dimensional data η̃ẑ to obtain μ̃ĥ;
• a decoding module that extends the set of one-dimensional data μ̃ĥ to two-dimensional data μ.

When η fails to be sufficiently small, the linear approximation for the forward map η → μ is not accurate. In order 
to extend the neural network of (3.9) to the nonlinear case, a straightforward solution is to include nonlinear activation 
functions and increase the number of layers, for instance in [23,21]. For simplicity, we assume that the size Nẑ of {ẑ} and 
the size Nĥ of {ĥ} are both equal to a constant parameter c.

Algorithm 1 Neural network architecture for the one-sided detection forward map η → μ.

Require: c = Nẑ = Nĥ, ncnn ∈N , η ∈RNx×Nz

Ensure: μ ∈RNm×Nh

1: η̃ ← Encoding[c](η)

2: μ̃ ← BCR-Net1d[c, ncnn](η̃)

3: μ ← Decoding[Nh](μ̃)

4: return μ

The resulting neural network architecture for the forward map for the one-sided detection is summarized in Algorithm 1
and illustrated in Fig. 2. Let us explain these three components of the neural network one by one.

• Encoding module. η̃ = Encoding[c](η) compresses the data η ∈ RNx×Nz to η̃ ∈ RNx×c by compressing only in the 
z-dimension. It can be implemented with a one-dimensional convolutional layer Conv1d with window size 1 and chan-
nel number c by taking the second dimension of η as channels. The linear activation function is sufficient for the
Conv1d layer used here.

• Intermediate module. Since the kernel kĥ,ẑ for the linear case in (3.9) is a convolution, it can be implemented by a 
one-dimensional convolutional layer Conv1d with window size Nx , channel number c and linear activation function. For 
nonlinear case, a natural extension is to use multiple convolution layers and to add a nonlinear activation function such 
as a rectified-linear unit (ReLU) function after each layer.
For problems with fine discretizations, a convolution layer with window size Nx might have many parameters. Recently, 
several multiscale NNs with fewer parameters have been proposed as an efficient alternative to full-width convolution 
layers. Examples include the ones based on hierarchical matrices in [23,22] and the BCR-Net [21]. Here, the BCR-Net is 
used to represent the intermediate module. BCR-Net is motivated by the data-sparse nonstandard wavelet representation 
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of the pseudo-differential operators [10]. It processes the information at different scale separately and each scale can be 
understood as a local convolutional neural network. The one-dimensional μ̃ = BCR-Net1d[c, ncnn](η̃) maps η̃ ∈ RNx×c

to μ̃ ∈ RNx×c , where the number of channels and layers in the local convolutional neural network in each scale are c
and ncnn, respectively. The readers are referred to [21] for more details on the BCR-Net.

• Decoding module. μ = Decoding[Nh](μ̃) decodes the set of one-dimensional data μ̃ ∈ RNm×c to the two-dimensional 
data μ ∈RNm×Nh . In the implementation, this decoding module is implemented by the one-dimensional convolutional 
layer Conv1d with window size 1, channel number Nh , and linear activation function.

3.2. Inverse map for the one-sided detection

The perturbative analysis shows that if η is sufficiently small, the forward map can be well-approximated by

μ ≈ Kη, (3.10)

which is the operator notation of the discretization (3.2). Here, η is a vector indexed by (x, z), μ is indexed by (m, h), and 
K is a matrix with rows indexed by (m, h) and columns indexed by (x, z). The usual filtered back-projection algorithm [32]
takes the form

η ≈ (K T K + ε I)−1 K Tμ,

where ε is a regularization parameter.
Following the above discussion, the dimension reduction approximation applied to K is also valid for K T

(K Tμ)z(x) ≈
∑

ẑ

Rz,ẑ

⎛
⎝∑

ẑ

kĥ,ẑ ∗
(∑

h

Rh,ĥμh

)⎞
⎠ (x).

As a result, one obtains a similar three-step algorithm for applying K T to μ and this algorithm can also be formulated as a 
neural network with three modules:

• Encode from μ to μ̃ĥ = ∑
h Rh,ĥμh .

• Convolve to form η̃ẑ = ∑
ĥ kĥ,ẑ ∗ μ̃ĥ .

• Decode from η̃ẑ to (K Tμ)z = ∑
ẑ Rz,ẑη̃ẑ

The part (K T K + ε I)−1 can be viewed as a post-processing of K Tμ. The definition of K (3.3) implies that the operator 
(K T K +ε I) is a convolution operator. As a deconvolution operator, (K T K +ε I)−1 can also be implemented with a convolution 
neural network.

Combining these two components suggests that for the inverse map a suitable architecture is the NN architecture of 
the forward map followed by a 2d convolutional neural network. The resulting neural network architecture for the inverse 
map is outlined in Algorithm 2 and illustrated in Fig. 3. The layers in Algorithm 2 share the same definitions as those in 
Algorithm 1 except the CNN2d layer, which is defined as follows.

• Post-processing module. η = CNN2d[w, ncnn2](η̄) that maps η̄ ∈ RNx×Nz to η ∈ RNx×Nz is a two-dimensional convolu-
tional neural network with ncnn2 convolutional layers and w as the window size. ReLU is used as the activation function 
for all intermediate layers. However, as η can take any real number, the last layer uses a linear activation function.

Algorithm 2 Neural network architecture for the one-sided detection inverse map μ → η.

Require: c, w, ncnn, ncnn2 ∈N , μ ∈RNm×Nh

Ensure: η ∈RNx×Nz

1: μ̃ ← Encoding[c](μ)

2: η̃ ← BCR-Net1d[c, ncnn](μ̃)

3: η̄ ← Decoding[Nz](η̃)

4: η ← CNN2d[w, ncnn2](η̄)

5: return η

3.3. Inverse map for the two-sided detection

For the two-sided detection, the electrodes are placed on both the top and bottom boundaries. The DtN map hence 
contains four parts: top-to-top (T2T), top-to-bottom (T2B), bottom-to-top (B2T), and bottom-to-bottom (B2B). Since the top 
boundary corresponds to z = Z and the bottom corresponds to z = −Z , the superscripts + and − are used to identify the 
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Fig. 3. Neural network architecture for the inverse problem of the one-sided detection.

top and bottom boundaries, respectively. Following the derivation for the one-sided detection, when η is sufficiently small 
one can approximate the linearized map from η to μ±± as

μ±±(m,h) ≈
∫
�

∂G0

∂n(r)
((m + h,±Z), (x, z))

∂G0

∂n(s)
((m − h,±Z), (x, z))η(x, z)dx dz, (3.11)

where the first and second ± in μ±± corresponds to first and second ± on the right hand side, respectively. After the 
discretization, the vector form reads⎡

⎢⎢⎣
μ++
μ+−
μ−+
μ−−

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

K ++
K +−
K −+
K −−

⎤
⎥⎥⎦η, or simply denoted as μ = Kη. (3.12)

Following the discussion in Section 3.1, one can factorize each of the four components K ±± using dimension reduction 
into three steps. Hence, the forward map η → μ±± can be split into four independent forward problems for the one-sided 
detection, and we shall not repeat the study here.

3.3.1. Architecture for the inverse map
When η is small, the filtered back-projection algorithm for the inverse problem from μ±± to η takes the form

η ≈ (
K T K + ε I

)−1 [
(K ++)T (K +−)T (K −+)T (K −−)T

]
⎡
⎢⎢⎣

μ++
μ+−
μ−+
μ−−

⎤
⎥⎥⎦

Following the discussion in Section 3.2, an NN architecture for the inverse map of the two-sided detection would be to 
repeat the main part of Algorithm 2 expect the post-processing module for each of μ++, μ+−, μ−+, μ−− , and then to sum 
the results together, and to apply the post-processing at last.

Due to the nonlinearity of the inverse problem, a slightly different approach gives better performance. Instead of sum-
ming the decoded results, one combines, before the decoding step, the results of μ++, μ+−, μ−+, μ−− into a single array of 
size Nx ×4c and then perform a decoding step together. The resulting neural network architecture is detailed in Algorithm 3
and also illustrated in Fig. 4. The modules Encoding, BCR-Net1d, Encoding and CNN2d are same as those in Algorithm 2. The 
only new layers are the Concatenate layer: η ← Concatenate(η1, η2, η3, η4), which concatenates the matrices ηi ∈ RNx×c , 
i = 1, 2, 3, 4 to a matrix with size η ∈ RNx×4c on the column direction, and the Conv1d [c, w] layer: one-dimensional con-
volutional layer Conv1d with channel number c and window size w .

Let us denote η̃±,± by η̃i , i = 1, 2, 3, 4 in Algorithm 3, respectively. Due to the symmetry of the domain �, the map 
μ+,+ → η̃+,+ is mirror symmetry to the map μ−,− → η̃−,− . Hence, the B2B part should share the weights with the T2T 
part. In the implementation, one can use the same layers for the two maps and then flip the output for the B2B part to 
achieve the mirror symmetry. Analogously, the T2B part is also mirror symmetry to the B2T part. We use the same way to 
carry out it.

3.4. Numerical results

Below we report some numerical results of the neural network proposed above for the 2D EIT problem. The NN is 
implemented with Keras [17] (running on top of TensorFlow [1]). Nadam is chosen as the optimizer [19] with a step size 
10−3 and the mean squared error is used as the loss function. The parameters of the network are initialized randomly from 
the normal distribution, and the batch size is set as two percent of the size of the training set. The number of layers in 
the BCR-Net is set as ncnn = 6. For the CNN2d in Algorithms 2 and 3, the number of convolutional layers is set as ncnn2 = 6
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Algorithm 3 Neural network architecture for the two-sided detection inverse map μ±± → η.

Require: c, ncnn, ncnn2, ncnn3, w, w2 ∈N , μ±± ∈RNm×Nh

Ensure: η ∈RNx×Nz

1: Denote μi , i = 1, 2, 3, 4 by all the cases of μ±±
2: for i from 1 to 4 do
3: μ̃i ← Encoding[c](μi)

4: η̃i ← BCR-Net1d[c, ncnn](μ̃i)

5: end for
6: η̃ ← Concatenate(η̃1, ̃η2, ̃η3, ̃η4)

7: for k from 1 to ncnn3 do
8: η̃ ← Conv1d [4c, w2](η̃)

9: end for
10: η̄ ← Decoding[Nx](η̃)

11: η ← CNN2d[w, ncnn2](η̄)

12: return η

Fig. 4. Neural network architecture for the inverse problem of the two-sided detection.

with window size w = 3. For the one-dimensional convolutional part in Algorithm 3, the number of convolutional layers is 
set as ncnn3 = 3 with window size equal to w2 = 3. The right value for the channel number c will be studied for each test.

In this section, the half width of the domain Z is set to be 1/4 and the domain � is discretized by a 160 × 80 Cartesian 
grid. Thus, Nx = Nm = 160, Nh = 40 and Nz = 80. Both the training data and test data are generated by numerically solving 
(1.2). In each test, 10K pairs of (η, μ) are used to train the neural network and another 10K pairs are used as the test data.

For each sample of the training and test data, η is randomly sampled and μ (or μ±±) denote the exact difference DtN 
kernel solved by numerical discretization of (1.2). The predictions of the NNs for the forward and inverse maps are denoted 
by μN N and ηN N , respectively. The accuracy is measured by the relative error in the �2 norm:

‖μ − μNN‖�2

‖μ‖�2
,

‖η − ηNN‖�2

‖η‖�2
. (3.13)

For each experiment, the test error is then obtained by averaging (3.13) over a given set of test samples. The numerical 
results presented below are obtained by repeating the training process five times, using different random seeds.

3.4.1. Smooth potential case
We first study the smooth potential case, where the potential η(x) is assumed to take the form

η(x) =
ng∑

i=1

ρ exp

(
−1

2
(x − c(i))T(�(i))−1(x − c(i))

)
, (3.14)

with ρ = 1000. Each matrix �(i) ∈ R2×2 is generated with the eigenvalues uniformly sampled in [0.0125, 0.05] and the 
eigenvectors uniformly sampled in the unit circle S1. Two types of data sets are generated to test the neural networks.
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Fig. 5. The relative error and the number of parameters for the one-sided detection forward and inverse problem for different number of channels c and 
different number of Gaussians ng with shallow inclusions.

Fig. 6. A sample in the test data for the one-sided detection with shallow inclusions with ng = 4. (a) The data μ; (b) The potential η. In each figure, the 
upper one is the reference solution and the lower one is the prediction of the neural network. For the forward problem, the channel number of the neural 
network is c = 8 and the relative error for this sample is 3.9e − 3. For the inverse problem, the channel number is c = 10 and the relative error for this 
sample is 6.3e − 2.

• Shallow inclusions. The centers of Gaussians are sampled as c(i) ∈ U([0, 1] × [0.05, 0.2]). This data is used to test the 
forward and inverse problem for the one-sided detection.

• Deep inclusions. The centers of Gaussians are sampled as c(i) ∈ U([0, 1] × [−0.2, 0.2]). This data can be used to show 
the instability of the inverse map: the one-sided detection would fail to resolve the inverse problem well, while the 
two-sided detection works.

One-sided detection for shallow inclusions. Fig. 5 gives the test error and the number of parameters for both the forward and 
inverse maps with different values of c (the channel number) and ng (the number of Gaussians). The NN predictions μN N
and ηN N along with the exact solutions are illustrated in Fig. 6. For the forward problem, the test error is relatively small 
even for c = 6, where only 28K parameters are used in the neural network (compared with the size 12, 800 = 160 × 80 of 
η). As the number of channels c increases, the test error decays first and then stagnates. The choice of c = 8 is a balance 
between accuracy and efficiency for this forward problem.

For the inverse problem, the test error is relatively small when c = 10, where 78K parameters are used in the neural 
network. Judging from the plots, the neural network produces accurate results in term of the location, the shape, and the 
magnitude of the Gaussians. These results demonstrate that the neural network architectures proposed in this section are 
capable of representing the forward and inverse maps for shallow inclusions.

One-sided detection for deep inclusions. Fig. 7 plots the test error and number of parameters for different values of c and ng . 
The predicted μN N and ηN N and the reference solution of one specific test sample are presented in Fig. 8. For the forward 
map, the test error is comparable with the case of shallow inclusions. However, the neural network for the inverse map fails 
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Fig. 7. The relative error and the number of parameters for the one-sided detection forward and inverse problem for different values of c and ng with deep 
inclusions.

Fig. 8. A sample in the test data for the one-sided detection with deep inclusions. (a) The data μ; (b) The potential η. In each figure, the upper one is the 
reference solution and the lower one is the prediction of the neural network. For the forward problem, the channel number of the neural network is c = 8
and the relative error for this sample is 5.8e − 3. For the inverse problem, the channel number is c = 14 and the relative error for this sample is 0.30.

to produce a good prediction. In Fig. 8, the prediction is pretty close near the top boundary but gives significant error near 
the bottom boundary. This result agrees with the conclusion in [4] that the resolution near the boundary is much better 
than deep in the interior, which is caused by the instability of the inverse problem [3,4,50]. To avoid it, more information 
on the object must be provided, for instance, add electrodes on the bottom boundary, i.e., the two-sided detection.

Two-sided detection for deep inclusions. As we have seen, due to the instability of the inverse problem, the one-sided detection 
fails to resolve the problem with deep inclusions. Here we test the neural network for the two-sided detection for deep 
inclusions.

Fig. 9 shows the test error and number of parameters for different values of c and ng . The NN predictions μN N and ηN N
along with the reference solution of the same sample in Fig. 8 are summarized in Fig. 10. The test error is significantly 
decreased and is even slightly less than that in Fig. 5 of the one-sided problem for the shallow inclusions. Notice that the 
test error is relatively small even for the case c = 10 with 177K parameters in the neural network.

3.4.2. Shape reconstruction
Section 3.4.1 studied the behavior of the proposed NN architectures for smooth potentials and show that the proposed 

NN architectures have the ability to give a good prediction on both the forward and inverse problems. Here the focus is 
on shape reconstruction with noise measurement. The numerical results in Figs. 5 and 9 show that the choice of channel 
number c = 10 is a good balance between accuracy and efficiency for the inverse problem. To simplify the discussion, we 
set c = 10 in all the test in this subsection.

The potential η(x) is assumed to be a piecewise constant. Four shapes are placed in �, where each can be a regular 
triangle, square, pentagon and hexagon. η(x) is set to 1000 in the shapes and is 0 otherwise. For each shape, the circumcircle 
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Fig. 9. The relative error and the number of parameters for the two-sided detection inverse problem for different number of channels c and different 
number of Gaussians ng with deep inclusions.

Fig. 10. A sample in the test data for the two-sided detection inverse problem with c = 10 and ng = 4. (a) The data μ±±; (b) The exact solution η (the 
upper one) and the prediction ηN N (the lower one). The relative error for this sample is 3.1e − 2.

radius is uniformly sampled in [0.05, 0.1] and the direction is uniformly sampled in the unit circle S1. For the shallow 
inclusion case, the center the shape is uniformly sampled in [0, 1] × [0.05, 0.2], while it is uniform from [0, 1] × [−0.2, 0.2]
for the deep inclusion case.

To model the uncertainty in the measurement data, noises have been added to the DtN map in the data set by setting 
λδ
η,i ≡ (1 + Ziδ)λη,i , where Zi is a Gaussian random variable with zero mean and unit variance and δ controls the signal-

to-noise ratio. In the following tests, the noise level is chosen as δ = 0, 0.5% and 1%. In the numerical experiments, an 
independent NN is trained and tested with the noise data set {μδ

i , η} with μδ
i ≡ λδ

η,i − λ0 for each noise level. It is worth 

noting that the mean of ‖λη−λ0‖
‖λη‖ for all the samples for the shallow or deep inclusions cases are both about 10% and hence 

the signal-to-noise ratio for the difference μ is about 10 · δ.

One-sided detection for shallow inclusions. Fig. 11 shows a sample in the test data for different noise level δ. When there is no 
noise in the measurement data, the NN provides a good prediction of the potential η in terms of both shape and position. 
As is noted in Section 3.4.1, since the inverse problem is ill-posed, the resolution near the boundary is accurate while the 
shape boundaries deep in the interior is blurry. For the same reason, when there is noise in the measurement data, the 
shape boundaries become more blurry as the noise level grows. However, the positions and number of shapes are correctly 
predicted.

Two-sided detection for deep inclusions. Fig. 12 presents a sample from the test data for different noise levels δ for the deep 
inclusion. The conclusions for the one-sided detection for shallow inclusions still hold for this case. Comparing the results 
in Figs. 11 and 12, one finds that the NN for the two-sided detection gives a better prediction for the shapes in the middle 
(i.e. close to z = 0). This agrees with the fact that the two-sided detection utilizes more information (not only μ++ and 
μ−− , but also μ+− and μ−+).
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Fig. 11. A sample in the test data for the one-sided detection for the shape reconstruction with shallow inclusion for different noise level δ = 0%,0.5%,1%.

Fig. 12. A sample in the test data for the two-sided detection for the shape reconstruction with deep inclusion with different noise level δ = 0%,0.5%,1%.

All the numerical tests show that the NNs in Algorithms 1 to 3 are capable of learning the forward and inverse problem 
of EIT for various setups.

4. Neural network for 3D the case

For the 3D case, the domain is assumed to be � = [0, 1] × [0, 1] × [−Z , Z ]. The periodic boundary condition is applied 
on the left, right, front, and back for simplicity. Similar to the 2D case, the electrodes are allowed to be placed on either the 
top (one-sided detection) or both top and bottom (two-sided detection), as shown in Fig. 13. For the one-sided detection, 
the zero Dirichlet boundary condition is applied on the bottom boundary.

4.1. Analysis and NN architecture

Most of the 2D analysis for the maps η → μ and μ → η can be extended to the 3D case. The main difference is that the 
data μ is a four-dimensional function while the potential η is a three-dimensional function. Below we will first study the 
extension for the one-sided detection and then briefly discuss the two-sided detection.

One-sided detection. The DtN map for the one-sided detection is limited on the top boundary. Let r = (r1, r2, Z), s =
(s1, s2, Z), and p = (x, y, z), where x, y are for the horizontal directions and z is for the depth direction. The map (2.6)
for the 3D case can be written as
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Fig. 13. Illustration of the problem setup for 3D case. In the one-sided detection, the electrodes are only placed on the top and the zero Dirichlet boundary 
condition is applied on the bottom. In the two-sided detection, the electrodes are placed on both the top and bottom. In both cases, periodic boundary 
conditions are applied on the left and right, and front and back boundaries.

μ((r1, r2, Z), (s1, s2, Z)) ≈
∫
�

∂G0

∂n(r)
((r1, r2, Z), (x, y, z))

∂G0

∂n(s)
((s1, s2, Z), (x, y, z))η(x, y, z)dx dy dz. (4.1)

Introducing the new variables m = (m1, m2) and h = (h1, h2) with r1 = m1 +h1, r2 = m2 +h2, s1 = m1 −h1 and s2 = m2 −h2

yields

μ(m,h) := μ((m1 + h1,m2 + h2, Z), (m1 − h1,m2 − h2, Z)) ≈
∫
�

K (m,h, x, y, z)η(x, y, z)dx dy dz, (4.2)

where

K (m,h, x, y, z) := ∂G0

∂n
((m1 + h1,m2 + h2, Z), (x, y, z))

∂G0

∂n
((m1 − h1,m2 − h2, Z), (x, y, z)). (4.3)

Applying the same argument for the 2D case shows that the factorization of K in (3.7) can be extended to the 3D case. 
More precisely, the Green function G0 can be directly obtained as

G0(p,q) =
∑
�∈Z3

(
(p − q + (�1, �2,2�3 Z)) − (p − q∗ + (�1, �2,2�3 Z))

)
, (4.4)

where q∗ = (q1, q2, 2Z + q3) and  is the Green function of the operator −� on the whole space R3. By taking h = (h1, h2)

and z as parameters and using the similar notations as the 2D case, one can reformulate (4.2) as

μh(m) ≈
Z∫

−Z

(kh,z ∗ ηz)(m)dz =
Z−δ∫

−(Z−δ)

(kh,z ∗ ηz)(m)dz (4.5)

where ∗ stands for the two-dimensional convolution with respect to the variables m1 and m2. The same argument used in 
2D case shows that one can factorize kh,z as

kh,z(m) ≈
∑

ĥ

∑
ẑ

Rh,ĥkĥ,ẑ(m)Rz,ẑ, (4.6)

by choosing proper interpolating sets {ẑ} and {ĥ}, where Rh,ĥ and Rz,ẑ are the interpolation operators in the h and z
variables, respectively.

With the help of this approximation, (4.2) can be simplified as

μh(m1,m2) ≈
∑

ĥ

Rh,ĥ

⎛
⎜⎝∑

ẑ

kĥ,ẑ ∗
⎛
⎜⎝

Z−δ∫
−(Z−δ)

Rz,ẑηz dz

⎞
⎟⎠

⎞
⎟⎠ (m1,m2). (4.7)

This results the same three-step procedure for effectively approximating the forward map, with the minor differences that 
the interpolation over the h variable is now two-dimensional and the convolution is for 2D.
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Algorithm 4 Neural network architecture for the one-sided detection inverse map μ → η for 3D case.

Require: c, ncnn, ncnn2 ∈N , μ ∈RNm1 ×Nm2 ×Nh1 ×Nh2

Ensure: η ∈RNx×N y×Nz

1: Reshape μ to a three-dimensional tensor by vectorizing the last two-dimension and still denote it by μ
2: μ̃ ← Encoding3d[c](μ)

3: η̃ ← BCR-Net2d[c, ncnn](μ̃)

4: η̄ ← Decoding3d[Nz](η̃)

5: η ← CNN3d[w, ncnn2](η̄)

6: return η

Following the same reasoning for the 2D case, the NN architecture for the inverse map for the one-sided detection in 
Algorithm 4. Below we briefly comment on the layers used, focusing on the differences with the 2D case.

• Encoding module. μ̃ = Encoding3d[c](μ) compresses the data μ ∈ RN1×N2×N3 to μ̃ ∈ RN1×N2×c locally with respect 
to the first and second dimensions. Similar as the 2D case, this layer can be implemented by a two-dimensional con-
volution Conv2d with window size 1 × 1 and channel number c by taking the third dimension of μ as the channel 
direction. Noticing the compressed layer is essentially a restriction operator, we only use one Conv2d layer with linear 
activation function.

• BCR-Net2d. In Section 3.1, the network BCR-Net1d[c, ncnn] can be treated as a compact form of the full-width convo-
lutional layers with number of layer ncnn and channel number c. Here the BCR-Net2d[c, ncnn] is the compact form of 
the full-width convolutional layers with number of layer ncnn and channel number c. We refer readers to [10] for more 
details.

• Decoding module. η = Decoding3d[Nz](η̃) extends the set of two-dimensional data η̃ ∈ RN1×N2×c to the three-
dimensional data η ∈RN1×N2×N3 . This module can be implemented by the two-dimensional convolutional layer Conv2d
with window size 1 × 1 and channel number Nz by one layer with linear activation function.

• CNN3d. In Section 3.2, η = CNN2d[w, ncnn](η̄) is a post-processing module on the output of the decoding. η =
CNN3d[w, ncnn](η̄) which maps the data η̄ ∈RNx×N y×Nz to η ∈RNx×N y×Nz , is the three-dimensional analog of CNN2d. 
It is a three-dimensional convolutional neural network with ncnn convolutional layers and w as the window size. ReLU 
is used as the activation function for all intermediate layers and no activation function is applied after the last layer.

Two-sided detection. Following the 2D case, the two-sided detection can be treated as a combination of four one-sided 
detections and a post-process to combine the four parts. The NN architecture is summarized in Algorithm 5. Below we 
briefly comment on the two new layers used.

• Concatenate layer. η ← Concatenate2d(η1, η2, η3, η4) concatenates the 3-tensors ηi ∈ RN1×N2×c , i = 1, 2, 3, 4 to a 
3-tensor with size η ∈RN1×N2×4c on the third direction.

• Convolutional layer. η ← Conv2d [c, w](η) is the two-dimensional convolutional layer with channel number c and win-
dow size w .

Algorithm 5 Neural network architecture for the two-sided detection inverse map μ±± → η for 3D case.

Require: c, ncnn, ncnn2, ncnn3, w, w2 ∈N , μ±± ∈RNm1 ×Nm2 ×Nh1 ×Nh2

Ensure: η ∈RNx×N y×Nz

1: Denote μi , i = 1, 2, 3, 4 by all the cases of μ±±
2: for i from 1 to 4 do
3: Reshape μi to a three-dimensional tensor by vectorizing the last two-dimension and still denote it by μi

4: μ̃i ← Encoding3d[c](μi)

5: η̃i ← BCR-Net2d[c, ncnn](μ̃i)

6: end for
7: η̃ ← Concatenate2d(η̃1, ̃η2, ̃η3, ̃η4)

8: for k from 1 to ncnn3 do
9: η̃ ← Conv2d [4c, w2](η̃)

10: end for
11: η̄ ← Decoding3d[Nz](η̃)

12: η ← CNN3d[w, ncnn2](η̄)

13: return η

4.2. Numerical results

The setup of the neural network is almost the same as that for the 2D case in Section 3.4. The only difference is that the 
window size of the convolutional layers in Algorithms 4 and 5 is set as w = w2 = (3, 3) rather than w = w2 = 3 for the 2D 
case. For each sample of the training and test data sets, η(x) is of the form
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Fig. 14. The relative error and the number of parameters for the one-sided detection inverse problem for different number of channels c for 3D case.

η(x) =
4∑

i=1

ρ exp

(
−1

2
(x − c(i))T(�(i))−1(x − c(i))

)
, (4.8)

where ρ = 1000. The matrix �(i) ∈R3×3 is generated with the eigenvalues uniformly distributed in [0.0125, 0.05] and the 
eigenvectors uniformly sampled from the unit sphere S2. Similar as the 2D case, Z = 1/4. Two types of data are generated 
to test the performance of the proposed NNs:

• Shallow inclusions. The location of Gaussians is c(i) ∈ U([0, 1] × [0, 1] × [0.05, 0.2]), which is used for the test of the 
one-sided detection.

• Deep inclusions. The location of Gaussians is c(i) ∈ U([0, 1] × [0, 1] × [−0.2, 0.2]), used for the test of the two-sided 
detection.

The domain � is discretized by a 40 × 40 × 20 Cartesian grid. Both the training data and test data are generated by 
numerically solving (1.2).

One-sided detection for shallow inclusions. The NN for the inverse map in Algorithm 4 is tested with shallow inclusions. 10K 
pairs of (η, μ) are used to train the NN parameters and another 5K pairs are reserved as the test data. The data set is 
smaller compared to the 2D case due to the memory limitation of the current GPUs. Fig. 14 plots the test error and the 
number of parameters for different choices of c. The test error is comparable with that of the 2D case. As c increases, the 
error decays first and then stagnates around c = 10. Fig. 15 illustrates the NN prediction and the reference solution of a 
specific sample from the test data set. The plots indicate that the NN produces accurate results in terms of the location, the 
shape, and the magnitude of the inclusions.

Two-sided detection for deep inclusions. The neural network in Algorithm 5 for two-sided detection is tested with deep in-
clusions. 8K pairs of (η, μ) are used to train the neural network and another 2K pairs are reserved for testing. Fig. 16
summarizes the test error and the number of parameters for different values for c. The test accuracy is comparable with 
that of the 2D two-sided detection case. Fig. 17 plots the prediction solution and the reference solution of a specific sample 
in the test data.

5. Conclusions

This paper proposes novel neural network architectures for EIT problems. Mathematically, these NNs approximate the 
forward and inverse maps between the electrical conductivity and the resulting DtN map. A perturbative analysis for the 
weak-inclusion regime suggests a dimension-reduction approximation, which further inspires the NN architecture design. 
Numerical results demonstrate that the proposed NNs approximate the forward or inverse maps with reasonable accuracy.

Using neural networks for approximating the forward and inverse maps has several clear advantages. First, once the 
neural networks are well trained, they can produce rather accurate prediction efficiently; Second, the correct regularization 
for the inverse map can be automatically captured by the neural network from the training set; Third, the neural networks 
proposed in this paper are compact and easy to train, thus applicable to applications with rather limited data.

The discussion here focuses on the rectangle/cuboid domains. For the spherical domains, one can turn them into the 
rectangle/cuboid configuration by resorting to the polar/spherical transformations. For arbitrary convex bounded Lipschitz 
domains, it is possible to extend the current NN architectures by carefully reparametrizing the domain, though it could 
require technical efforts.
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Fig. 15. A sample in the test data for the one-sided detection inverse problem with c = 8 on the shallow inclusions for 3D case. (a) Some slice of the data 
μ; (b) The reference solution η; (c) The prediction ηN N . The relative error of this sample is 5.2e − 2.

Fig. 16. The relative error and the number of parameters for the two-sided detection inverse problem for different number of channels c for 3D case.

Recently in medical imaging applications, adversarial attack [49,5,24] has become an important issue for deep learning. 
As our NN architecture is quite compact, the resulting NN does not overfit the training data. It is expected that our NN 
could be less vulnerable to adversarial attacks. Detailed study in this direction would be part of future work.
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Fig. 17. A sample in the test data for the two-sided detection inverse problem with c = 8 on deep inclusions for 3D case. (a) Some slice of the data μ+,+; 
(b) The reference solution η; (c) The prediction ηN N . The relative error of this sample is 8.1e − 2.
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