
X. Tang et al. Res Math Sci (2023) 10:19
https://doi.org/10.1007/s40687-023-00381-3

RESEARCH

Generative modeling via tree tensor
network states
Xun Tang1* , YoonHaeng Hur2, Yuehaw Khoo3 and Lexing Ying4

*Correspondence:
xuntang@stanford.edu
1Institute for Computational and
Mathematical Engineering,
Stanford CA 94305, USA
Full list of author information is
available at the end of the article

Abstract

In this paper, we present a density estimation framework based on tree tensor-network
states. The proposed method consists of determining the tree topology with the
Chow-Liu algorithm and obtaining a linear system of equations that defines the
tensor-network components via sketching techniques. Novel choices of sketch
functions are developed in order to consider graphical models that contain loops. For a
wide class of d-dimensional density functions admitting the proposed ansatz, fast O(d)
sample complexity guarantees are provided and further corroborated by numerical
experiments.

Keywords: Tensor network, Tree tensor network states, The curse of dimensionality,
Generative modeling, Non-iterative method

1 Introduction
Generative modeling of a probability distribution is one of the most important tasks in
machine learning, engineering, and science. In a nutshell, the goal of generative modeling
is to approximate a high-dimensional distribution without the curse of dimensionality.
There are generally several properties one would like to have for a generative model: (1)
Can it be stored with a low memory complexity as the dimension grows? (2) Can it be
determined from the given input with a low computational complexity? (3) Can it be used
to generate samples with a low computational complexity? In this paper, we propose using
a tree tensor network state as a generative model that enjoys these properties.
We focus on the problem of density estimation. More precisely, given N independent

samples

(y(1)1 , . . . , y(1)d), . . . (y(N)
1 , . . . , y(N)

d) ∼ p�

drawn from some ground truth density p� : Rd → R, our goal is to estimate p� from the
empirical distribution

p̂(x1, . . . , xd) = 1
N

N∑

i=1
δ(y(i)1 ,...,y(i)d)(x1, . . . , xd), (1)

where δ(y1 ,...,yd) is the δ-measure supported on (y1, . . . , yd) ∈ R
d . It is hard to give a

comprehensive survey of the broad field of density estimation, for this we refer readers

123 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40687-023-00381-3&domain=pdf
http://orcid.org/0000-0002-8311-6126

 19 Page 2 of 54 X. Tang et al. Res Math Sci (2023) 10:19

to [26]. Here we review several popular generative models that are related to our work.
Energy-based models [14,18,27] such as graphical models represent a density by param-
eterizing it as the Gibbs measure of some energy function. Mixture models approximate
the distribution via a composition of simple distributions. On the other hand, deep learn-
ing methods based on generative adversarial networks [12], variational auto-encoders
[17] and normalizing flows [23,28] have gained tremendous popularity recently. Gener-
ally, obtaining the parameter of these parameterizations in a density estimation setting
involves solving optimization problems that are often non-convex. Therefore frequently
theoretical consistency guarantees of a density estimator cannot be achieved in practice.
Furthermore, generating new samples from an optimized model could be difficult (for
example in energy-based models) and requires running a Markov Chain Monte-Carlo.
Very recently, tensor-network methods, in particular matrix product state/tensor train,

have emerged as an alternativeparadigm for generativemodeling [2,10,13,15]. Suchmeth-
ods represent the exponential size d-dimensional tensor as a network of d small tensors,
achieving polynomial storage complexity in d. Moreover, for networks that can be con-
tracted easily (e.g. tensor train), there exists an efficient strategy based on the conditional
distribution method to generate independently and identically distributed samples [8].
The question is then whether one can determine the underlying tensor network efficiently
for the task of density estimation. In [2,10,13], non-convex optimization approaches are
applied to determine the tensor cores. Unlike these previous approaches, in [15], sketching
is used to set up a parallel system of core-determining equations to determine the tensor
cores of a tensor train without the use of optimization. We propose several extensions
that generalize this work in terms of its practicality and reach.
We emphasize that there is another line of works in tensor literature that constructs

low-rank tensor representations from sensing the entries of an order d-tensor. These
include matrix completion [4] and its generalizations to tensor completion problem (e.g.
[9,16,24]). Furthermore, cross-approximations [22] have been applied to the cases where
one gets to choose the sensing pattern. The input data considered in these works are
partial observation of the entries of the d-dimensional function, which is different from
the case of density estimation, where empirical samples of the underlying distribution are
given.
We now give a discussion that compares our method with other existing generative

modeling methods. In Sect. 1.1, we compare TTNS with other potential tensor network
architectures for generative modeling. In Sect. 1.2, we discuss the connection between
TTNSand tree-basedgraphicalmodels. In Sect. 1.3,wegive adiscussionon tensornetwork
generative models which are based on iterative training.

1.1 Extending tensor train to tree-based tensor networks

For the case where the underlying density p� has a tensor train (TT) format, an algo-
rithm termed Tensor Train via Recursive Sketching (TT-RS) [15] has been introduced.
In contrast to training-based modeling algorithms such as Born Machine [13], TT-RS
is a generative modeling method with a rigorous sample complexity guarantee of con-
vergence. One of the central motivations behind this paper is to obtain a convergent
generative modeling method under the most general tensor network structural assump-

X. Tang et al. Res Math Sci (2023) 10:19 Page 3 of 54 19

tion on p�. Our proposed Tree Tensor Network States (TTNS) format [21] generalizes
TT. See Fig. 1 for an illustration of a tree and its corresponding TTNS tensor diagram.
We will give a short introduction to TTNS and related concepts. TTNS is a special case

of Tree Tensor Network (TTN) [25]. In terms of representation power, there is a natural
hierarchy

TT ⊂ TTNS ⊂ TTN ⊂ TNS,

where TNS stands for Tensor Network States, which includes more general models
such as projected entangled-pair states (PEPS) [30]. The class of the TTN models is the
collection of tensor networks for which the internal bonds of the network do not form a
loop, hence the word “tree”. This absence of a loop means that the evaluation of a TTN
scales polynomially in the number of nodes in the network. A tensor network ansatz
belongs to the TTNS class if it is a TTN and each node in the network has exactly one
external bond (i.e. an edge that does not connect to any other node).
We give a discussion to justify the choice of the TTNS ansatz. It is natural to choose

the modeling assumption to be within the TTN class, as evaluation or sampling could
not otherwise be efficient. However, to the best of our knowledge, the methods in TT-RS
cannot generalize to an algorithm in theTTNansatz because a TTNansatz can have inter-
nal nodes, i.e. tensor components with no external bond. In contrast, a TTNS ansatz has
exactly one external bond per tensor component, which allows the machinery of TT-RS
to extend to TTNS ansatz. We remark that the work in [6] models the probability density
by a TTN but it contains a training component and does not guarantee convergence.

1.2 Extendingmodel inference of tree-based graphical models to tree-based tensor

networks

Model inference for distributions with a TTNS ansatz is deeply related to the model
inference problem of a tree-based graphical model, for which we will give an introduction
in Sect. 6. The Chow-Liu algorithm [7] efficiently compresses a target density to the best
tree-based graphical model in the sense of Maximum Likelihood Estimation (MLE). In
terms of representational power, if the underlying distribution p� is a tree-based graphical
model, then p� is guaranteed to have a tractable TTNS representation. On the other
hand, the extra representation power of TTNS over tree-based graphical models allows
the model to account for longer-range interactions between variables. To the best of our
knowledge, this paper is the first instance wheremodel inference of TTNS ansatz has been
implemented.
After the model inference step, in terms of downstream tasks such as likelihood com-

putation and sampling, both TTNS and tree-based graphical models scale linearly in the
dimension d. Importantly, the samples produced from the TTNS ansatz have no auto-
correlations and are i.i.d., which is a desirable property for generative modeling.
We call our main method Tree Tensor Network State via Sketching (TTNS-Sketch).

By the sketching technique [32], the tensor components of the ansatz can be computed
entirelywith conventional linear algebraic equations, which results in a sample complexity
that is quadratic in the dimension d. In terms of computational complexity scaling, the
cost is linear in the sample size N , and at most quadratic in d. The method is proven to
be a consistent estimator under reasonable technical assumptions.

 19 Page 4 of 54 X. Tang et al. Res Math Sci (2023) 10:19

1.3 Comparison between TTNS-Sketch and iterative algorithms

In contrast to a direct method such as TTNS-Sketch, iterative algorithm for tensor net-
workmethods (e.g. [6,10,13]) typically optimizes for the tensor components in the sense of
minimal negative log-likelihood, with the maximum likelihood estimation (MLE) estima-
tor as the optimizer. Despite the well-known Cramer-Rao bound for MLE estimators, the
training in such iterative methods is non-convex, which prevents one from establishing
theoretical guarantees, e.g. consistency and sample complexity. For example, [20] identi-
fies the issue of vanishing gradient in randomly initialized quantum circuits for large qubit
size. Due to the representational equivalence between tensor train and quantum circuits
(see [10] for a discussion), the same issue also faces randomly initialized tensor train. This
observation is also corroborated by the numerical experiments in Sect. 7, where we show
the training failure of iterative methods under a setting far more modest than discussed
in [20].

1.4 Main contribution

We list our main contributions as follows:

(1) Weprovide a simple notational system that canworkwell for arbitrary tree structures
for TTNS ansatz. This structural flexibility is helpful for samples with an underlying
tree structure but no practical path structure.

(2) We introduce perturbative sketching, motivated by randomized SVD [19]. We
show that TTNS-Sketch with perturbative sketching performs well for models with
short-range non-local interactions, thus exhibiting significant improvement over the
graphical model given by Chow-Liu, which is only suitable for tree-based graphical
models.

(3) We derive a general upper bound on the sample complexity of TTNS-Sketch. Based
on theWedin theorem andmatrix Bernstein inequality, we obtain a non-asymptotic
sample complexity upper bound for TTNS-Sketch under recursive sketching func-
tions. Up to log factors and condition numbers, the sample complexity of themethod
scales by N = O

(
�(T)2d2

)
, where d is the number of nodes in the tree structure

T , and �(T) stands for the maximal degree of T . This shows that TTNS-Sketch
converges reasonably fast to the true model.

(4) We also identify a failure mode for iterative generative modeling methods based on
the tensor train ansatz. For Born Machine (BM) [13] under a periodic spin system,
we show that the training will fail unless one significantly increases the internal bond
dimension. When the tensor train is of a correctly-sized internal bond dimension,
the model learned by BM closely resembles that of a non-periodic spin system. In
comparison, with a simple high-order Markov sketching function, TTNS-Sketch is
successful at converging to p� without over-parameterization. See Sect. 7 for detail.

1.5 Outline

The outline for the rest of this paper is as follows. Section 2 is an introduction to notations
and to the basics of TTNS ansatz. Section 3 derives the essential linear equation to be used
for TTNS-Sketch. Section 4 provides the main Algorithm and the condition for TTNS-
Sketch to be a consistent estimator. Section 5 gives examples of sketch functions. Section 6
introduces the Chow-Liu algorithm for finding a tree structure using samples. Section 7

X. Tang et al. Res Math Sci (2023) 10:19 Page 5 of 54 19

Fig. 1 A A tree structure T = (V, E) with V = {1, . . . , 10}. B Tensor Diagram representation of TTNS over T

gives the numerical result. Appendix E provides proof to the sample complexity upper
bound of TTNS-Sketch under recursive sketching.
We summarize the workflow of TTNS-Sketch for the reader’s convenience. When one

is given a collection of samples, TTNS-Sketch breaks into three steps. In the first step,
a tree structure T is determined by utilizing mutual information estimated from the
samples (Sect. 6). In the second step, a tensor network structure is fixed based on the tree
structure. (Sect. 2). In the third step, sketching techniques are used to solve for the tensor
components of the TTNS ansatz (Sect. 4)

2 Introduction to TTNS
The aim of this section is to introduce the notation to describe a function with a TTNS
ansatz. We first introduce some important notations frequently used. The letter d is
reserved for the dimension of the joint distribution of interest, N is reserved for sample
size, and T without a subscript is reserved for a tree graph. For any integer q ∈ N, set
[q] := {1, . . . , q}.
For the TTNS ansatz, we use specific letters to label its indices. The letter x is reserved

for the physical index (external bond) of the tensor core, and the lettersα,β , γ are reserved
for the internal bond of the tensor core.
Crucial equations are illustrated with a tensor diagram representation for convenience.

To provide a concrete example, all tensor diagrams are plotted based on the specific tree
structure set in Fig. 1a.

2.1 Notation for distribution

First, we introduce notations related to probabilistic distributions.

Definition 1 (Probability distribution notation) Fix a generic joint distribution p on d
variables. We use X := (X1, . . . , Xd), where X ∼ p, to denote a random vector in d
dimension. Each Xk is assumed to be a discrete random variable over {1, . . . , nk}. Set
n := maxk∈[d] nk .

Definition 2 (Probability distribution for TTNS-Sketch) Suppose the distribution of
interest is for the randomvectorX := (X1, . . . , Xd) ind dimension, andmoreover, suppose
one is given samples of X . The symbol p̂ denotes the empirical distribution over samples
of X . The symbol p� denotes the underlying distribution of X .

 19 Page 6 of 54 X. Tang et al. Res Math Sci (2023) 10:19

For this paper, we only consider discrete variables. Hence a distribution function such
as p� can be considered as a d-dimensional tensor.

2.2 Notation for tree structure

Next, we introduce notations for a tree graph. A tree graph T = (V, E) is a connected
undirectedgraphwithout cycles.Throughout this paper,V = [d].Moreover,T is specified
with a root node, and vertices will have a partial topological ordering generated by the
child-parent relationship. For an undirected edge {w, k} in T , we write it interchangeably
as (w, k) or (k, w). If k is the parent of w, we also write {w, k} as w → k with the aim of
signaling the child-parent hierarchy.
The following Definition 3 contains the notation for the graph-theoretic concept one

needs to define a TTNS. See Fig. 2 for an illustration.

Definition 3 (Tree topology notation) For a rooted tree structure T with nodes V = [d]
and any k ∈ [d], define C(k),P(k),N (k) respectively as the children, parent, and neighbors
of k . In particular, one has |P(k)| ≤ 1 and N (k) = C(k) ∪ P(k). Moreover, define E(k)
as the set of edges incident to k . Define L(k),R(k) respectively as the descendant, non-
descendant of node k in T . In particular,L(k) andR(k) are respectively called the left and
the right of node k .

Importantly, in Definition 4, we introduce several short-hands in order to write joint
variables compactly.

Definition 4 (Joint variable notation) For variables indexed by nodes on T , we write xS
to denote the joint variable (xi1 , . . . , xik), where S = {i1, . . . , ik} ⊂ V .
Likewise, for variables indexed by edges on T , we write αU to denote the joint index

(αei1 , . . . ,αeik), where U = {ei1 , . . . , eik } ⊂ E. In particular, U ⊂ E is typically all incident
to one node w, and we write α(w,S) to denote the joint variable (α(w,i1), . . . ,α(w,ik)), where
S = {i1, . . . , ik} ⊂ V . For compactness, we write xS∪k := xS∪{k}, where the element k is
used in place of the singleton set {k}.

Frequently used symbols include xL(k), xR(k), xC(k), which respectively denote the joint
variable corresponding to the left, the right, and the children of k .Moreover,weuse xL(k)∪k
to denote the joint variable corresponding to nodes that are not on the right side of k . For
edge-indexed variables, we use α(k,C(k)) to denote the joint variables corresponding to the
edges between k and its children.

2.3 Notation for TTNS ansatz

We introduce condition and notation for a generic tensor with TTNS ansatz. We will
prove that having a TTNS ansatz is equivalent to satisfying the TTNS condition, i.e.
having a low-rank factorization structure along a tree. See Fig. 3 for an illustration.

Condition 1 (TTNS condition) Let T = (V, E) be a rooted tree graph, and let {re}e∈E be
a collection of positive integers, where r(w,k) denotes internal bond rank at the edge (w, k).
A function p :

∏d
k=1[nk] → R is said to satisfy the TTNS ansatz condition if for every

edge (w, k) ∈ E, there exists a rank r(w,k) decomposition�w→k :
∏

i∈L(w)∪w[ni]×[r(w,k)] →
R and 	w→k : [r(w,k)] × ∏

i∈R(w)[ni] → R such that

X. Tang et al. Res Math Sci (2023) 10:19 Page 7 of 54 19

Fig. 2 Illustration of tree topology notation. For the tree in Fig. 1a, if 7 is the root, then C(4) = {2, 5},
P (4) = 6, L(4) = {1, 2, 3, 5}, andR(4) = {6, 7, 8, 9, 10}. In this graph, one also hasN (4) = {2, 5, 6} and
E (4) = {(4, 2), (4, 5), (4, 6)}

Fig. 3 Tensor diagram representation of the TTNS ansatz assumption in Condition 1. The illustration is over
the rooted tree in Fig. 2 with (w, k) = (4, 6). The symbol xL(4) = (x1 , x2 , x3 , x5) and xR(4) = (x6 , x7 , . . . , x10) is a
short-hand for joint variables as defined in Definition 4

p(x1, . . . , xd) =
r(w,k)∑

α(w,k)=1
�w→k (xL(w)∪w,α(w,k))	w→k (α(w,k), xR(w)). (2)

More explicitly, a TTNS ansatz can be defined in terms of tensor cores. Definition 5
shows the construction in terms of tensor cores. For illustration, see Fig. 1b.

Definition 5 (TTNS tensor core and TTNS ansatz notation) Given a tree structure T =
([d], E) and corresponding ranks {re : e ∈ E}. The TTNS tensor core at k is denoted byGk .
Let dk stand for the degree of k in T , and then Gk is defined as an (dk + 1)-tensor of the

 19 Page 8 of 54 X. Tang et al. Res Math Sci (2023) 10:19

following shape:

Gk : [nk] ×
∏

e∈E(k)
[re] → R.

We say that a function p admits a TTNS ansatz over tensor cores {Gi}di=1 over k =
1, . . . , d if

p(x1, . . . , xd) =
∑

αe∈[re]
e∈E

⎛

⎝
d∏

k=1
Gk

(
xk ,α(k,N (k))

)
⎞

⎠ . (3)

For example, when T = (V, E) is a chain with E = {(k, k + 1)}d−1
k=1 , a TTNS ansatz

is a tensor train ansatz. In Fig. 1a, we show a tree structure over 10 vertices, and the
corresponding tensor diagram for TTNS is given in Fig. 1b. For instance, G4 : [n4] ×
[r(4,2)] × [r(4,5)] × [r(4,6)] → R in Fig. 1b, and the tensor network defines a d-dimensional
function after the contraction of internal bonds.
Importantly, when working with high-dimensional functions, it is often convenient to

group the variables into two subsets and think of the resulting object as a matrix. The
notion is referred to as an unfolding matrix and is defined as follows:

Definition 6 (Unfolding matrix notation) For a generic D-dimensional tensor f : [n1] ×
· · · × [nD] → R and for two disjoint subsets U ,V with U ∪ V = [D], we define the
corresponding unfolding matrix by f (xU ; xV). Namely, group the variables indexed by U
and the ones indexed by V to form rows and columns, respectively. The matrix f (xU ; xV)
is of size

(∏
i∈U ni

) ×
(∏

j∈V nj
)
.

As an example, for a function p satisfying TTNS assumption in Condition 1, define
the unfolding matrix of p at the edge w → k ∈ E as p(xL(w)∪w ; xR(w)), which is of size(∏

i∈L(w)∪w ni
)

×
(∏

j∈R(w) nj
)
. Viewed in this context, Condition 1 exactly means that

the unfolding matrix of p at any edge (w, k) ∈ E is a matrix of rank r(w,k).

2.4 Equation for TTNS ansatz

We now show that Condition 1 implies the existence of a TTNS ansatz in the sense of
Definition 5.With the information for every�w→k inCondition 1, there exists an equation
for obtaining the TTNS tensor cores exactly. We summarize this result in Theorem 7,
which shows that one can obtain cores of a TTNS by solving a recursive system of linear
equations. See Fig. 6a for an illustration.

Theorem 7 Suppose Condition 1 holds for a rooted tree structure T = ([d], E) and bond
information {re}e∈E. For non-leaf k, define

�C(k)→k =
⊗

w∈C(k)
�w→k ,

and in terms of entries one has �C(k)→k :
∏

w∈L(k)[nw] × ∏
w∈C(k)[r(w,k)] → R, and

�C(k)→k (xL(k),α(k,C(k))) =
∏

w∈C(k)
�w→k (xL(w),α(k,w)). (4)

X. Tang et al. Res Math Sci (2023) 10:19 Page 9 of 54 19

Then Gk : [nk] × ∏
w∈N (k)[r(w,k)] → R satisfies the following linear Core Determining

Equations (CDE) for k = 1, . . . , d:

Gk = �k→P(k) if k is a leaf,
∑

α(k,C(k))

�C(k)→k (xL(k),α(k,C(k)))Gk (xk ,α(k,N (k))) = p(x1, . . . , xd) if k is the root,

∑

α(k,C(k))

�C(k)→k (xL(k),α(k,C(k)))Gk (xk ,α(k,N (k))) = �k→P(k)(xL(k)∪k ,α(k,P(k))) otherwise.

(5)

Then, each equation of (5) has a unique solution, and p has a TTNS ansatz over the cores
{Gi}di=1 in the sense of Definition 5.

The proof is deferred to the Appendix, but we will give a rough idea of why p admits
a TTNS ansatz over {Gi}di=1. Equation (5) for when k is not root essentially shows that
each �w→k can be represented by tensor contractions of cores in {Gi}i∈L(w)∪w , and the
proof is based on simple mathematical induction. From this observation, one can work
with Eq. (5) for when k is the root, and replace all of the �w→k terms by {Gi}i �=root, and
the obtained equation will be exactly (3) in Definition 5.
In summary, Theorem7 shows howCondition 1 leads to the existence of a TTNS ansatz,

and our previous remark on the construction of �w→k from {Gi}i∈L(w)∪w also shows a
TTNS ansatz also leads to Condition 1. However, from a computational point of view,
the linear system (5) in Theorem 7 is intractable and we shall address this issue using
sketching in the next section.

3 Main idea of TTNS-Sketch
In the setting of this section, p� admits a TTNS ansatz over T and {re}e∈E in the sense
of Definition 5. We show the derivation of the linear equation which is used to solve
for the TTNS tensor cores in TTNS-Sketch. However, obtaining terms in the derived
linear system rely on access to p�, an assumption which we will later relax by sample
approximation. To emphasize this point, all of the intermediate terms from this algorithm
will be labeled with the upper-index � if it assumes access to or is derived from p�.

3.1 Gauge degree of freedom for a TTNS ansatz

By Theorem 7, a function p� having a TTNS ansatz is equivalent to the condition that its
unfolding matrix along each edge of a tree has a low-rank structure. Moreover, the ansatz
is non-unique. This notion is typically called the gauge degree of freedom, which we will
introduce here.
Let us view p� by the unfolding matrix p�(xL(w)∪w ; xR(w)). For any edge w → k , the

TTNS condition assumes that there exists ��
w→k :

∏
i∈L(w)∪w[ni] × [r(w,k)] → R and

	�
w→k : [r(w,k)] × ∏

i∈R(w)[ni] → R such that

p�(xL(w)∪w, xR(w)) =
∑

α(w,k)

��
w→k (xL(w)∪w,α(w,k))	�

w→k (α(w,k), xR(w)).

One can view p� as the unfoldingmatrix structure p�(xL(w)∪w ; xR(w)). Likewise,��
w→k as

��
w→k (xL(w)∪w ;α(w,k)) and 	�

w→k as 	�
w→k (α(w,k); xR(w)). Then, by using the usual matrix

product notation, the TTNS assumption along the edge w → k is p� = ��
w→k	

�
w→k .

 19 Page 10 of 54 X. Tang et al. Res Math Sci (2023) 10:19

Then, for any R being a nonsingular r(w,k) × r(w,k) matrix, one has

p� = ��
w→k	

�
w→k = (��

w→kR)(R
−1	�

w→k).

Given the information of {��
w→k}w→k∈E , solving for the tensor coreG�

k follows from (5)
in Theorem 7. Multiplying any ��

w→k by a matrix R will thus result in a different TTNS
ansatz for p�. In summary, a gauge degree of freedom in the low-rank decomposition of
p� leads to a gauge degree of freedom in the TTNS ansatz of p�.
The collection {��

w→k ,	
�
w→k}w→k∈E will later be chosen to have an explicit gauge, but

currently, it suffices to understand gauge as fixed. The desired TTNS ansatz {G�
i }di=1 as

solution to (5) is also fixed.

3.2 Sketching down core determining equation

Without loss of generality, we consider the equation for G�
k in Theorem 7 where k is

neither a root nor a leaf node. We can rewrite the corresponding equation for G�
k by

substituting ��
C(k)→k according to definition:

∑

α(w,k)
w∈C(k)

⎛

⎝
∏

w∈C(k)
��

w→k (xL(w)∪w,α(w,k))

⎞

⎠G�
k (xk ,α(k,C(k)),α(k,P(k)))

= ��
k→P(k)(xL(k)∪k ,α(k,P(k))), (6)

which is an over-determined linear system on G�
k , and the number of linear equations for

G�
k grows exponentially in d. Hence the above equation is not tractable.
The TTNS-Sketch algorithm applies the sketching operation to (6) and projects tensors

of the form �w→k in (6) to a tensor of tractable size, which makes the equation tractable.
In TTNS-Sketch, for each edge w → k , we define a series of linear projection operators
of the form

Sw→k : [l(w,k)] ×
∏

v∈L(w)∪w
[nv] → R,

and they globally form an function which we call the left-sketch function Sk of the form

Sk :
∏

w∈C(k)
[l(w,k)] ×

∏

i∈L(k)
[ni] → R.

The definition of Sk is by the simple formula Sk = ⊗
w∈C(k) Sw→k , or equivalently

Sk (β(k,C(k)), xL(k)) =
∏

w∈C(k)
Sw→k (β(w,k), xL(w)∪w). (7)

We remark that the factorization structure of Sk in (7) depends on a simple topological
fact on trees, which is that (L(w) ∪ {w})w∈C(k) are pairwise disjoint and their union forms
L(k).
Now, we can apply the usual projection to (6) using Sk , i.e. multiplying both sides

by Sk and summing over xL(k). For the RHS of (6) after projection, we define a tensor
B�
k (β(k,C(k)), xk ,α(k,P(k))) to represent this result, i.e.

B�
k (β(k,C(k)), xk ,α(k,P(k))) :=

∑

xL(k)

Sk (β(k,C(k)), xL(k))��
k→P(k)(xL(k)∪k ,α(k,P(k))). (8)

X. Tang et al. Res Math Sci (2023) 10:19 Page 11 of 54 19

For the LHS of of (6), we define a tensorA�
k (β(k,C(k)),α(k,C(k))) to represent the coefficient

term for G�
k under projection:

A�
k (β(k,C(k)),α(k,C(k))) :=

∑

xL(k)

Sk (β(k,C(k)), xL(k))
∏

w∈C(k)
��

w→k (xL(w)∪w,α(w,k)) (9)

The Eq. (6) then projects to the linear equation:
∑

α(k,C(k))
A�
k (β(k,C(k)),α(k,C(k)))G�

k (xk ,α(k,C(k)),α(k,P(k))) = B�
k (β(k,C(k)), xk ,α(k,P(k))), (10)

which is an equation of the simple form of A�
kG

�
k = B�

k when viewing each tensor by
appropriate unfolding matrix structures. This linear equation is illustrated in Fig. 6b.
In the sketched-down linear system, the number of linear equations for G�

k no longer
scales with d, and one can check that it is tractable. Moreover, due to the factorization
structure of Sk using Sw→k , it follows that A�

k simplifies to

A�
k (β(k,C(k)),α(k,C(k))) =

∏

w∈C(k)

∑

xL(w)∪w
Sw→k (β(w,k), xL(w)∪w)��

w→k (xL(w)∪w,α(w,k)),

(11)

which can be readily seen from the diagram in Fig. 6b.

3.3 Derivation of A�
k and B�

k in TTNS-Sketch

For the time being, A�
k and B�

k are defined from ��
w→k , and we now show how one can lift

this requirement. We define the right-sketch function Tk , which is a linear operator of the
form

Tk :
∏

i∈R(k)
[ni] × [m(k,P(k))] → R.

Using Tk and Sk , one can jointly form a linear projection of p�, with the result referred
to as Z�

k , as follows:

Z�
k (β(k,C(k)), xk , γ(k,P(k)))

=
∑

xL(k)∪R(k)

Sk (β(k,C(k)), xL(k))p�(xL(k), xk , xR(k))Tk (xR(k), γ(k,P(k))). (12)

One thenperforms singular value decomposition (SVD) toZ�
k according to theunfolding

Z�
k (β(k,C(k)), xk ; γ(k,P(k))). Due to the low rank structure of p� at k → P(k), the following

rank r(k,P(k)) decomposition is exact:

Z�
k (β(k,C(k)), xk ; γ(k,P(k))) = U�

k

�
k
(
V �
k
)	 . (13)

Set Q�
k = V �

k
(

�

k
)−1 and

(
Q�
k
)	 =
�

k
(
V �
k
)	. Note that

(
Q�
k
)	 is the pseudo-inverse of

Q�
k . In particular, one has

Z�
k (β(k,C(k)), xk ; γ(k,P(k))) = U�

k (β(k,C(k)), xk ;α(k,P(k)))
(
Q�
k
)	 (α(k,P(k)); γ(k,P(k))).

As a summary of Z�
k , U

�
k , Q

�
k , see illustration in Fig. 4.

One can naturally shape U�
k (β(k,C(k)), xk ;α(k,P(k))) as a tensor of the index U�

k
(β(k,C(k)), xk ,α(k,P(k))), i.e. U�

k :
∏

w∈C(k)[l(w,k)] × [nk] × [m(k,P(k))] → R. We now write
out our choice of gauge and its consequences in Condition 2:

 19 Page 12 of 54 X. Tang et al. Res Math Sci (2023) 10:19

Fig. 4 Tensor diagram of the sketching step in (12) and the SVD step in (13). The illustration is over the
rooted tree in Fig. 2

Condition 2 (TTNS-Sketch gauge choice) The gauge for ��
k→P(k) is chosen so that the

following holds:

U�
k (β(k,C(k)), xk ,α(k,P(k))) =

∑

xL(k)

Sk (β(k,C(k)), xL(k))��
k→P(k)(xL(k)∪k ,α(k,P(k))). (14)

As a consequence of (14) and (8), one has:

B�
k = U�

k . (15)

As a consequence of (13), the matrix
(
Q�
k
)	 is a projection of 	�

k→P(k) by Tk , i.e.

(
Q�
k
)	 (α(k,P(k)), γ(k,P(k))) =

∑

xR(k)

	�
k→P(k)(α(k,P(k)), xR(k))Tk (xR(k), γ(k,P(k))). (16)

Likewise, we now show how A�
k can be obtained. By the choice of gauge in Condition

2, one forms Corollary 8. In Fig. 5, we include an short proof using tensor diagram. As a
consequence of Corollary 8, one can form a linear system forG�

k completely in terms of the
sketches {Z�

w→k}w→k∈E, {Z�
i }di=1, which can be reasonably approximated by samples. As

an illustration, one can rewrite the tensor diagram in Fig. 6b as the new diagram illustrated
in Fig. 6c.

Corollary 8 Define the intermediate terms Z�
w→k and A�

w→k as follows:

Z�
w→k (β(w,k), γ(w,k)) =

∑

x[d]

Sw→k (β(w,k), xL(w)∪w)p�(xL(w)∪w, xR(w))Tw(xR(w), γ(w,k))

A�
w→k (β(w,k),α(w,k)) =

∑

γ(w,k)

Z�
w→k (β(w,k), γ(w,k))Q�

w(γ(w,k),α(w,k)),

(17)

X. Tang et al. Res Math Sci (2023) 10:19 Page 13 of 54 19

Fig. 5 Proof of Corollary 8 in terms of tensor diagram. Both equalities hold due to (17). Then, the tensors
enclosed in the red box coincide due to (16), and so the tensors enclosed in the blue box coincide, which is
what we need to show

Then A�
k satisfies the following equation

A�
k (β(k,C(k)),α(k,C(k))) =

∏

w∈C(k)
A�
w→k (β(w,k),α(w,k)). (18)

Proof By the factorization structure of A�
k , it suffices to show that

A�
w→k (β(w,k),α(w,k)) =

∑

xL(w)∪w
Sw→k (β(w,k), xL(w)∪w)��

w→k (xL(w)∪w,α(w,k)).

We use an unfolding matrix structure for Z�
w→k , Sw→k , Tw in the following rewrite of

(17):

Z�
w→k (β(w,k); γ(w,k)) = Sw→k (β(w,k); xL(w)∪w)p�(xL(w)∪w ; xR(w))Tw(xR(w); γ(w,k))

Likewise, we use the unfolding matrix structure of p�,��
w→k ,	

�
w→k in

p�(xL(w)∪w ; xR(w)) = ��
w→k (xL(w)∪w ;α(w,k))	�

w→k (α(w,k); xR(w)).

Using the unfolding matrix structure as just suggested, it suffices to prove

A�
w→k = Sw→k�

�
w→k .

The definition for the intermediate term Z�
w→k simplifies to Z�

w→k = Sw→kp�Tw and
more importantly,

A�
w→k = Z�

w→kQ
�
w = Sw→kp�TwQ�

w.

Note that one can expand according to p� = ��
w→k	

�
w→k and get

A�
w→k = Sw→k�

�
w→k	

�
w→kTwQ�

w = Sw→k�
�
w→k

(
Q�
w
)	 Q�

w = Sw→k�
�
w→k ,

where the second equality uses (16) and last equality uses that
(
Q�
w
)	 Q�

w is an identity
matrix.
�

 19 Page 14 of 54 X. Tang et al. Res Math Sci (2023) 10:19

3.4 Sample estimation of A�
k and B�

k in TTNS-Sketch

Practically, oneonlyhas access to the empirical distribution p̂ via samples {(y(i)1 , . . . , y(i)d)}Ni=1.
A finite sample approximation of Z�

k is tractable and can be obtained by function evalua-
tions of Tk and Sk . One has

Ẑk (β(k,C(k)), xk , γ(k,P(k))) =
N∑

i=1
Sk (β(k,C(k)), y

(i)
L(k))1(y

(i)
k = xk)Tk (y

(i)
R(k), γ(k,P(k))). (19)

Similarly, Z�
w→k can be approximated by

Ẑw→k (β(w,k), γ(w,k)) =
N∑

i=1
Sw→k (β(w,k), y

(i)
L(w)∪w)Tw(y(i)R(w), γ(w,k)). (20)

One can then form Ûk , Q̂k by replacing Z�
k with Ẑk in (13), noting that in this case the

rank r(k,P(k)) SVDdecomposition is not exact due to the presence of noise.Wenow explain
why this algorithm is practical in the sample case. It suffices to see the linear equation in
Fig. 6c. If one replaces every tensor block by a finite sample approximation in the sense
discussed above (e.g. replace Z�

w→k by Ẑw→k), then one can indeed form a linear equation,
with accuracy increasing with sample size. The full algorithm for empirical distributions
will be described in Sect. 4.

4 TTNS-Sketch for empirical distributions
We now give the main Algorithm 1-3 for the TTNS ansatz with empirical distribution as
input, which is themain use case.We include it separately from Sect. 3 due to corner cases
such as when k is a leaf or root node. To emphasize the sample estimation procedure,
all of the intermediate terms will be labeled withˆif it assumes access to p̂. Importantly,
Algorithm 3 only takes in the sketches {Zw→k}w→k∈E, {Zi}di=1 as input, which can be either
noiseless or estimated, and so we do not label terms inside this subroutine.

Algorithm 1 TTNS-Sketch for empirical distribution p̂.
Require: Empirical distribution p̂ formed by samples {(y(i)1 , . . . , y(i)d)}Ni=1.
Require: A rooted tree structure T = ([d], E), and C,P ,L,R as in Definition 3.
Require: Target ranks {re : e ∈ E} ⊂ N.
Require: Tk :

∏
i∈R(k)[ni] × [m(k,P(k))] → R for all non-root k ∈ [d] and Tk = 1 if k is the

root.
Require: S1, . . . , Sd formed by Sw→k ’s as in (7).
1: {Ẑw→k}w→k∈E, {Ẑi}di=1 ← Sketching(p̂, T1, . . . , Td, S1, . . . , Sd).
2: {Âi, B̂i}di=1 ← SystemForming({Ẑw→k}w→k∈E, {Ẑi}di=1).
3: Solve the following d equations via least-squares for the variables Ĝ1, . . . , Ĝd :

Ĝk = B̂k if k is a leaf,
∑

α(k,C(k))
Âk (β(k,C(k)),α(k,C(k)))Ĝk (xk ,α(k,N (k))) = B̂k otherwise,

(21)

where Ĝk : [nk] × ∏
w∈N (k)[r(w,k)] → R.

4: return Ĝ1, . . . , Ĝd

X. Tang et al. Res Math Sci (2023) 10:19 Page 15 of 54 19

Fig. 6 Tensor diagram representation of equations for TTNS tensor cores in TTNS-Sketch. The illustration is
over the rooted tree in Fig. 2. The equation in Fig. 6a implies the rest. The diagram in Fig. 6c is derived from
the diagram in Fig. 6b with a specific choice of gauge according to Condition 2. Importantly, the equation in
Fig. 6c allows for finite sample approximation

Fig. 7 Schematic of Algorithm 1

 19 Page 16 of 54 X. Tang et al. Res Math Sci (2023) 10:19

Algorithm 2 Sketching.
Require: p̂, T1, . . . , Td , and S1, . . . , Sd as given in Algorithm 1.
Require: T = ([d], E) as given in Algorithm 1.
for k = 1 to d do
if k is root then
Define Ẑk :

∏
w∈C(k)[l(w,k)] × [nk] → R as

Ẑk (β(k,C(k)), xk) =
N∑

i=1
Sk (β(k,C(k)), y

(i)
L(k))1(y

(i)
k = xk).

else if k is leaf then
Define Ẑk : [nk] × [m(k,P(k))] → R as

Ẑk (xk , γ(k,P(k))) =
N∑

i=1
1(y(i)k = xk)T (y(i)R(k), γ(k,P(k))).

Define Ẑk→P(k) according to (20)
else
Define Ẑk :

∏
w∈C(k)[l(w,k)] × [nk] × [m(k,P(k))] → R according to (19).

Define Ẑk→P(k) : [l(k,P(k))] × [m(k,P(k))] → R according to (20).
end if

end for
return {Ẑw→k}w→k∈E, {Ẑi}di=1.

4.1 Condition for consistency of TTNS-Sketch

We introduceCondition 3 on the choice of sketch functions. Essentially, Theorem7 shows
that (5) is an over-determined linear system with a unique exact solution, and one needs
the “sketched-down”version of (5) to still have a unique solution:

Condition 3 Let p� be a function that satisfies Condition 1. Moreover, let
{��

(w,k),	
�
(w,k)}(w,k)∈E be an arbitrary collection of tensors forming the low-rank decompo-

sition of p� in the sense of Condition 1, with gauge chosen arbitrarily. Let {Ti, Si}di=1 be the
sketch functions in Algorithm 1. Define two intermediate terms A�

k :
∏

w∈C(k)[lw→k] ×∏
w∈C(k)[rw→k] → R and B�

k :
∏

w∈C(k)[lw→k] × [nk] × [γk→P(k)] → R by

A�
k (β(k,C(k)),α(k,C(k))) :=

∏

w∈C(k)

∑

xL(w)∪w
Sw→k (β(w,k), xL(w)∪w)��

w→k (xL(w)∪w,α(w,k)),

B�
k (β(k,C(k)), xk ,α(k,P(k))) :=

∑

xL(k)

Sk (β(k,C(k)), xL(k))��
k→P(k)(xL(k)∪k ,α(k,P(k))).

(22)

Moreover, define an intermediate term �̄�
k :

∏
i∈L(k)∪k [ni] × [m(k,P(k))] → R by

�̄�
k (xL(k)∪k , γ(k,P(k))) =

∑

xR(k)

p�(x1, . . . , xd)Tk (xR(k), γ(k,P(k))).

Then, {Ti, Si}di=1 in Algorithm 1 is chosen to be such that the following conditions hold:

X. Tang et al. Res Math Sci (2023) 10:19 Page 17 of 54 19

Algorithm 3 SystemForming.
Require: Sketches {Zw→k}w→k∈E, {Zi}di=1.
Require: Tree structure T = ([d], E) as given in Algorithm 1.
Require: Target rank r as given in Algorithm 1.
for k = 1 to d do

βk ← β(k,C(k)).
γk ← γP(k).
rk ← r(P(k),k).
lk ← ∏

w∈C(k) l(w,k).
mk ← m(k,P(k)).
if k is a leaf then
Let Uk
kV	

k , where Uk ∈ R
nk×rk , Vk ∈ R

mk×rk ,
k ∈ R
rk×rk , be the best rank-rk

approximation to the matrix Zk (xk ; γk) via SVD. Define Bk : [nk] × [rk] → R where
Bk (xk ,αk) = Uk (xk ;αk). Set Ak = 1.

else if k is root then
Let Bk = Zk . Set Qk = 1.

else
Let Uk
kV	

k , where Uk ∈ R
lknk×rk , Vk ∈ R

mk×rk ,
k ∈ R
rk×rk , be the best rank-rk

approximation to the matrix Zk (βk , xk ; γk) via SVD. Define Bk :
∏

w∈C(k)[l(w,k)] × [nk] ×
[rk] → R where Bk (βk , xk ,αk) = Uk (βk , xk ;αk).

end if
if k is non-root then
Let Qk = Vk

−1
k .

end if
end for
for k = 1 to d do
if k is non-leaf then
Compute Ak :

∏
w∈C(k)[l(w,k)] × ∏

w∈C(k)[r(w,k)] → R:

Ak (β(k,C(k)),α(k,C(k))) =
∏

w∈C(k)

∑

γ(w,k)

Zw→k (β(w,k), γ(w,k))Qw(γ(w,k),α(w,k)).

end if
end for
return {Ai, Bi}di=1.

(i) �̄�
k (xL(k)∪k ; γ(k,P(k))) and��

k→P(k)(xL(k)∪k ;α(k,P(k))) have the same r(k,P(k))-dimensional
column space for every non-root k .

(ii) Z�
k (β(k,C(k)), xk ; γ(k,P(k))) defined in (12) is of rank r(k,P(k)) for every non-leaf and non-

root k .
(iii) A�

k (β(k,C(k));α(k,C(k))) has full column rank for every non-leaf k .

If one has oracle access access to p�, and moreover suppose that computing Z�
w→k and

Z�
k are tractable, then one can directly start with the SystemForming step in Algorithm 1

with the noiseless terms Z�
w→k and Z�

k as input. Similar to Theorem 7, under a technical
condition for the given sketch functions, one can solve for the tensor cores exactly. We
give out the condition in Theorem 9.

Theorem 9 (Exact recovery of TTNS-Sketch) For an underlying distribution p� satisfying
Condition 1, suppose its tree structure T and internal bond r coincides with the input for

 19 Page 18 of 54 X. Tang et al. Res Math Sci (2023) 10:19

Algorithm 1. Let {Ti, Si}di=1 satisfy Condition 3. Then, in Algorithm 1, assume one has oracle
access to {Z�

w→k}w→k∈E, {Z�
i }di=1. Then, let

{A�
i , B

�
i }di=1 ← SystemForming({Z�

w→k}w→k∈E, {Z�
i }di=1),

and let the {G�
i }di=1 be the least-squares solution the following linear system for the variables

G1, . . . , Gd:

Gk = B�
k if k is a leaf,

∑
α(k,C(k)) A

�
k (β(k,C(k)),α(k,C(k)))Gk (xk ,α(k,N (k))) = B�

k otherwise,
(23)

Then linear system (23) has a unique exact solution {G�
i }di=1, which forms the cores of the

TTNS ansatz of p� given T = ([d], E) and {re : e ∈ E}. As a consequence, the output of
Algorithm 1 given an empirical distribution p̂ as input satisfies limN→∞ Ĝk = G�

k , i.e. Ĝk
is a consistent estimator of G�

k .

4.2 Sample complexity of TTNS-Sketch

In addition to the consistency result in Theorem 9, one can bound the rate of conver-
gence of TTNS-Sketch in terms of the l∞ deviation between the output ansatz and the
ground truth. The main strategy underlying the proof is that one can bound the conver-
gence of TTNS-Sketch to ground truth by bounding errors in the sample estimation of
{Z�

w→k}w→k∈E, {Z�
i }di=1.Within the general class of recursive sketch functions (see Sect. 5.2

for a definition), we have derived a sample complexity bound for TTNS-Sketch. The proof
is deferred to Appendix E. The informal version is as follows:

Theorem 10 (Informal statement of Theorem 34)
Let p� : [n1] × · · · × [nd] → R satisfy the TTNS assumption in Condition 1. Let sketch

function {Ti, Si}di=1 which satisfies Condition 3 and the recursive sketching in Condition 4
in Sect. 5.2. Let {Ĝi}di=1 be the output of Algorithm 1, and let p̂TS denote the TTNS ansatz
formed by {Ĝi}di=1. There exists problem-dependent constant ζ , L such that, for η ∈ (0, 1)
and ε ∈ (0, 1), if

N ≥ 18L2d2 + 4Lεζd
ζ 2ε2

log
(
(ln + m)d

η

)
,

and the constants are defined as follows:

• l = maxk∈[d] lk , where lk = ∏
w∈C(k) l(w,k)

• m = maxk∈[d]mk, where mk = m(k,P(k)).
• n = maxk∈[d] nk .

Then with probability at least 1 − η one has

‖p̂TS − p�‖∞
~G�

1~ · · ·~G�
d~

≤ ε,

where the notation ~G�
i ~ is to be defined in Sect. 8. Moreover, the sample complexity upper

bound for N does not explicitly depend on {nk}k∈[d], {me, ne}e∈E except in the log factor.

X. Tang et al. Res Math Sci (2023) 10:19 Page 19 of 54 19

In the lower bound in Theorem 10, the N ∝ ε−2 rate is the Monte Carlo rate, and
the sample dependency on the dimension d is only quadratic. We remark that our proof
strategy readily extends to general sketch functions, where the same scaling ofN in ε and
d will hold.

4.3 Estimation of target rank r

If one has access to a tree T but not a target rank r, then one can define a noise threshold
δ, and determine r(k,P(k)) from the SVD result in Algorithm 3 directly. Namely, one checks
the singular values in
k and sets r(k,P(k)) to be the number of singular values above the
level set by δ.
Hence, for samples from a distribution p� with no known structure, one can set T by

the method described in Sect. 6, and set the internal bond rank by thresholding with δ in
the sense described above. The result should be reasonable if p� satisfies Condition 1 with
tractable bond dimension, or if p� can be well approximated by a TTNS ansatz. Analysis
with approximated target rank is beyond the scope of this paper.

5 Choice of sketch function
We begin with Sect. 5.1, which explains that the differences in sketch functions concep-
tually lead to matching different statistical moments. Section 5.2 defines the concept of
recursive sketch function, which is a class of sketch functions for which the sketching
operation is efficient. The rest of the subsections give concrete examples of sketch func-
tions.

5.1 Connection of sketching to moment matching

In this subsection, we give the sketched-down linear equation another interpretation as
enforcing amatch between the statisticalmoment of the output TTNS ansatz to that of the
empirical distribution. Essentially, different sketch functions lead to different statistical
moments to match, which conceptually leads to different optimization objectives.
First, any algorithm for solving for tensor components of a TTNSboils down to attempt-

ing to fit the following equation over {Gi}di=1 to the sample, with the end goal of approxi-
mating p�. In terms of an equation, one can write

∑

αe
e∈E

d∏

i=1
Gi(xi,α(i,N (i))) ≈ p̂(x1, . . . , xd) ≈ p�(x1, . . . , xd), ∀(x1, . . . , xd). (24)

In practical settings, p̂ ≈ p� only weakly. Moreover, the above equation relates to the
equivalence of two tensors of nd entries, but the number of unknown parameters involved
is only O(d). To apply sketching, one defines a sketch function f (μ, x1, . . . , xd). One then
multiplies (24) by f and then sumsover the joint x[d] variable.The sketched-downequation
becomes

∑

x[d]

f (μ, x1, . . . , xd)

⎛

⎜⎝
∑

αe
e∈E

d∏

i=1
Gi(xi,α(i,N (i)))

⎞

⎟⎠

=
N∑

i=1
f
(
μ, y(i)1 , . . . , y(i)d

)
≈ EX∼p�

[
f (μ, X)

]
, ∀μ. (25)

 19 Page 20 of 54 X. Tang et al. Res Math Sci (2023) 10:19

where the first approximation sign in (24) is swapped with an equality sign, which is
meant to signal that one then solves for the tensor cores using this equation. As for the
approximate sign in (25), the design of f will be typically such that the variance f (μ, X) is
O(1) or grows slowly with d, which is why the approximation will be reasonable according
to the law of large numbers.
Moreover, one can let θ stand for the TTNS tensor cores {Gi}di=1, and let pθ stand for

the probability distribution obtained from the TTNS ansatz under such cores. The Eq.
(25) is equivalent to

EX∼pθ

[
f (μ, X)

] = EX∼p̂
[
f (μ, X)

] ≈ EX∼p�

[
f (μ, X)

]
, ∀μ. (26)

In summary, the solution is such that pθ is close to p̂ in terms of statistical moments
EX

[
f (μ, X)

]
. For the connection to TTNS-Sketch, we consider a simple case where one

has already solved for {Gi}i �=k . Consider a sketch function fk by first defining its corre-
sponding joint variable μ by μ = (β(k,C(k)), γ(k,P(k)), ι). Then, let

fk (β(k,C(k)), γ(k,P(k)), ι, x[d]) = Sk (β(k,C(k)), xL(k))1 [ι = xk]Tk (xR(k), γ(k,P(k))).

As a result, one has

EX∼p̂
[
fk (μ, X)

] = Ẑk (β(k,C(k)), ι, γ(k,P(k))),

and so the sketched-down Eq. (26) tries to enforce a match between EX∼pθ

[
fk (μ, X)

]
and

Z�
k . Different sketch functions thus lead to different sketches Z�

k to match.

5.2 Recursive sketch functions

Storing a generic sketch function is not possible as its number of possible inputs is expo-
nential in d. As only evaluations of the sketch functions are needed in the TTNS-Sketch
algorithm, one can use sketch functions {Si, Ti}di=1 which have an explicit formula. Alter-
natively, one can use sketch functionswhich are themselves derived by aTTNS ansatz.We
introduce a special case called recursive sketch functions, which allows for sketch functions
more general than those with an analytic formula, but is still tractable for computation.
In the recursive sketching regime, each sketch function Tk and Sk has a TTNS structure

and is recursively defined by the collection of sketch cores {(ti, si)}di=1. We first define a
natural notion of subgraph TTNS function in Definition 11. We then fully specify what is
a recursive sketching function in Condition 4.

Definition 11 (Subgraph TTNS function) Suppose that f is a function satisfying Con-
dition 1 with tree T , and moreover suppose f admits tensor cores {si}di=1 for its TTNS
ansatz. Let S ⊂ V and let TS = (S , ES) be the subgraph of T with vertex set S . Then
{si}di=1 andTS jointly defines the subgraph TTNS function fS :

∏
i∈S [ni]×

∏
e∈∂S [re] → R

by

fS (xS ,α∂S) =
∑

αe
e∈ES

∏

k∈S
Gk

(
xk ,α(k,N (k))

)
.

where ∂S := {(v, w) ∈ E | v ∈ S , w /∈ S}.

Condition 4 (Recursive sketching condition) Let T = (V, E) be a tree. Assume f (resp.
g) are two functions with a TTNS ansatz over T in the sense of Condition 1, with internal

X. Tang et al. Res Math Sci (2023) 10:19 Page 21 of 54 19

bond l (resp. m) and sketch cores {si}di=1 (resp. {ti}di=1). Then Sk , Tk are subgraph TTNS
function in the sense of Definition 11. Moreover, Sk = fL(k) and Tk = gR(k).
In particular, Sk satisfies a recursive relation

Sk (β(k,C(k)), xL(k)) =
∏

w∈L(k)

∑

β(w,C(w))

sw(xw,β(w,k),β(w,C(w)))Sw(β(w,C(w)), xL(w)), (27)

and so Sk satisfies the factorization structure (7) with its Sw→k defined by

Sw→k (β(w,k), xL(w)) =
∑

β(w,C(w))

sw(xw,β(w,k),β(w,C(w)))Sw(β(w,C(w)), xL(w)).

Moreover, the recursive definition over the left sketch functions leads to a simplified
equation for Âk , which we show in the following proposition

Proposition 12 Let p̂ be an arbitrary distribution. Fix a sketch function {Ti, Si}di=1 which
satisfies the recursive sketching assumption in Condition 4. Let {Âi, B̂i, Ĝi, Ẑi}di=1 be as in
Algorithm 1 with p̂ as input. Then,

Âk (β(k,C(k)),α(k,C(k))) =
∏

w∈C(k)

∑

(β(w,C(w)),xw)
sw(β(w,k);β(w,C(w)), xw)B̂w(β(w,C(w)), xw ;α(w,k)).

(28)

Proof As a consequence of (27), the terms Ẑw→k and Ẑw are connected under Condition
4:

Ẑw→k (β(w,k), γ(w,k)) =
∑

xw

∑

γ(w,k)

sw(β(w,k);β(w,C(w)), xw)Ẑw(β(w,C(w)), xw ; γ(w,k)). (29)

Define a term Âw→k similar to (17). As a consequence of (29),

Âw→k (β(w,k),α(w,k)) =
∑

β(w,C(w))

∑

xw

∑

γ(w,k)

sw(β(w,k);β(w,C(w)), xw)Ẑw(β(w,C(w)), xw ; γ(w,k))Q̂w(γ(w,k),α(w,k))

=
∑

xw

∑

β(w,C(w))

sw(β(w,k);β(w,C(w)), xw)B̂w(β(w,C(w)), xw ;α(w,k)),

where the second equality is a consequence of Algorithm 3.
As a consequence, we conclude that for recursive sketching one can compute the left-

hand side by

Âk (β(k,C(k)),α(k,C(k))) =
∏

w∈C(k)

∑

(β(w,C(w)),xw)
sw(β(w,k);β(w,C(w)), xw)B̂w(β(w,C(w)), xw ;α(w,k)).

�

Note that the above result is solely due to the property of the left sketch function.
Hence, (28) holds true if one replaces Âk , B̂k with A�

k , B
�
k . Proposition 12 will simplify the

subsequent error analysis for the recursive sketch function, as one only needs to account
for the error in Ẑk .

 19 Page 22 of 54 X. Tang et al. Res Math Sci (2023) 10:19

5.3 Markov sketch function

A Markov sketch function allows the TTNS procedure to essentially solve for marginal
distribution information for each node k around its neighbors, which we will show with
the definition of its sketch function.
For the Markov sketch function, one has lk := nP(k), and the right-sketch function Tk

is defined by

Tk (xR(k), γ(k,P(k))) = 1
[
xP(k) = γ(k,P(k))

]
. (30)

As for the left-sketch function, the form is similar, but it is complicated by the fact that
a tree node can have multiple child nodes. Likewise,m(w,k) := nw , and

Sk (β(k,C(k)), xL(k)) =
∏

w∈C(k)
1
[
xw = β(w,k)

]
. (31)

By applying left-sketch and right sketch, one has

Z�
k (β(k,C(k)), xk , γ(k,P(k))) = PX∼p�

[
Xw = β(w,k)∀w ∈ C(k), Xk = xk , XP(k) = γk

]
,

(32)

which is then the marginal distribution on the subset of nodes N (k) ∪ {k} = {v ∈ V |
dist(v, k) ≤ 1}.
We also use

(MSp)(xS) := PX∼p [Xv = xv,∀v ∈ S] (33)

to denote the marginalization of p to the variables given by the index set S , which is a
|S|-dimensional function.
Due to the construction, the joint variables (β(k,C(k)), γ(k,P(k))) each has a natural corre-

spondence to a node neighboring k . By identifying β(w,k) = xw and γ(k,P(k)) = xP(k), one
has the following entry-wise equality

Z�
k (β(k,C(k)), xk , γ(k,P(k))) = MSk p

�(xC(k), xk , xP(k)),

where Sk = N (k) ∪ {k}.
By the description in Sect. 5.1, with Markov sketch function, TTNS-Sketch essentially

tries to fitMN (k)∪k p̂ over all k ∈ V . One can show that theMarkov sketch function allows
exact recovery for tree-based graphical models. We summarize the result in Lemma 13.

Lemma 13 Assume that p� is a graphical model over the tree structure T = ([d], E). Then
p� satisfies Condition 1 with the tree structure T and re = n for any e ∈ E. Moreover,
sketches in (30) and (31) satisfies the condition in Theorem 9.

X. Tang et al. Res Math Sci (2023) 10:19 Page 23 of 54 19

5.4 Higher order Markov sketch function

One can use high-order Markov sketch functions to solve for marginal probability infor-
mation over more nodes than in the previous cases. Let Sk ⊂ V be a choice of nodes of
interest to k . By a suitable change of the sketch functions Tk and Sk in Sect. 5.3, one can
make it so that one has the following entry-wise equality

Z�
k = MSk p

�; Z�
w→k = M(Sk∪L(k))∪(Sw∩R(w))p�

If one wishes to ensure the high-order Markov sketching function satisfies recursive
sketching, one needs the following constraint:

{k} ⊂ Sk ⊂ ∪w∈C(k)Sw. (34)

For an example, for any integer L ≥ 1, one sets L as a distance cutoff and let

Sk = {v ∈ V | dist(v, k) ≤ L}. (35)

By the triangle inequality, the construction in (35) satisfies (34), and one obtains the
Markov sketching function when L = 1. For the choice of the neighborhood in (35), we
refer to the corresponding sketch function as L-Markov sketch function. In particular,
2-Markov sketch function will play an important role in numerical experiments.

5.5 Perturbative sketching

The idea of perturbative sketching is to use recursive random projection to form the
sketch functions. In Condition 5- 6, we define the structural assumption of perturbative
sketching. In Theorem 14, we give a structural theorem for perturbative sketching, which
shows that the sketch Z�

k is a power series of tensors. Moreover, each term in the power
series corresponds to a random projection of a marginal distribution of p�, i.e. tensor of
the formMSp� for a subset S ⊂ [d].
In Condition 5, we make a significant simplification to recursive sketching by unifying

left and right sketching to an equal footing, which allows for a cleaner structural analysis.
In Condition 6, we make the assumption that each sketch core is made up of an all-one
tensor plus a perturbation term.

Condition 5 (Directional symmetry for perturbative sketching) Assume the sketch func-
tions {Ti, Si} satisfies Condition 4. Furthermore, one lets le = me for any e ∈ E and ti = si
for any i ∈ [d].

Condition 6 (perturbative structure for sketch cores)
Fix a constant ε > 0 as the perturbative scale. The tensor core sk is defined by tensors

Ok and �k of the form:

sk (xk ,β(k,N (k))) = Ok (xk ,β(k,N (k))) + ε�k (xk ,β(k,N (k))), (36)

and moreover Ok is the all one tensor satisfying

Ok (xk ,β(k,N (k))) = 1.

 19 Page 24 of 54 X. Tang et al. Res Math Sci (2023) 10:19

For a concrete example, if theperturbation is formedby entry-wise i.i.d. randomvariable,
one can use the following line in MATLAB to define a perturbative sketch core:

s_k = ones(size(s_k)) + epsilon*rand(size(s_k)).

Due toCondition5, it follows thatZ�
k onlydependson the sketchcores {si}i �=k . Therefore,

one can identify γ(k,P(k)) with β(k,P(k)). By simple algebra, one can derive the following
result:

Theorem 14 (Structure theorem of perturbative sketching) Assume that Condition 5- 6
are satisfied for the chosen sketch function. For k ∈ [d] and S ⊂ [d]−{k}, let TS = (S , ES)
be the subgraph of T with vertex set S . As in Definition 11, define �S by

�S (xS ,β∂S) :=
∑

βe
e∈ES

∏

i∈S
�i(xi,β(i,N (i))). (37)

Then the following equation holds for Z�
k :

Z�
k (xk ,β(k,N (k))) =

d−1∑

l=0
εl

∑

S⊂[d]−{k},|S|=l
Z�
k ;S (xk ,β(k,N (k))), (38)

where

Z�
k ;S (xk ,β(k,N (k))) =

∑

βe,k /∈e

(
∑

xS
MS∪{k}p�(xk , xS)�S (xS ,β∂S)

)
. (39)

The proof is simple and left in the Appendix. There are a few consequences of Theorem
14. First, each Z�

k ;S is a projection of the marginal distribution tensorMS∪{k}p�. Second,
in (38), terms corresponding to S is scaled by ε|S|, which itself means that contribution of
S with large cardinality is insignificant. By the description in Sect. 5.1, with perturbative
sketching function, TTNS-Sketch essentially tries to fit over all MSp�, and a ε|S| factor
is placed to ensure Ẑk stabilizes quickly.
Moreover, if S ∪ {k} is not a connected component of T , then according to (39), Z�

k ;S
does not vary with xs or β(k,N (k)). SuchZ�

k ;S has no contribution toZ�
k except for on a linear

subspace spanned by an all-one tensor. Hence, the subsets S with nontrivial contribution
have a one-to-one correspondence with connected components of T which contains k .
Importantly, the number of connected components of T both containing k and having

a small cardinality only depends on the local topology of T around k . In the numerical
examples, one can see that perturbative sketching performs quite well if the interaction is
local, and it is more adaptable thanMarkov sketch functions or high-orderMarkov sketch
functions.
In our numerical experiments, we keep a fixed design on the perturbative scale ε, but

there is a slight numerical benefit in tuning ε. Generally, the parameter ε should decrease
with sample size. The decay rate in N depends on howmuch marginal distribution infor-
mation is needed to determine G�

k . In practice, one can choose a decay rate of ε := cN−f ,
with the parameter c, f determined by cross-validation.
As a remark, theoretically by applying Section E, one would be able to derive the depen-

dence of sample complexity on ε, and tune ε accordingly. To capture the dependence on ε

X. Tang et al. Res Math Sci (2023) 10:19 Page 25 of 54 19

accurately, the reader is advised to use the tighter original version of theMatrix Bernstein
inequality (cf. Theorem 6.1.1 in [29]). The rigorous account of the choice of ε will be left
for future works.

6 Topology finding
The aim of this section is to provide an algorithm for tree topology selection. In other
words, with input being an empirical distribution p̂, we define a procedure that outputs a
tree structure T . Section 6.1 introduces the Chow-Liu algorithm and gives the theoretical
rationale behind using it for tree selection. Section 6.2 discusses the sample complexity of
the Chow-Liu algorithm.

6.1 The Chow-Liu algorithm for topology finding

For an arbitrary distribution p�, we discuss the tree topology specification problem. In
practice, it could happen that one has no access to a pre-selected candidate tree topology,
but one wishes to find a tree structure to reasonably capture the structure of p�. To find
a tree structure of p�, the approach of this paper is to solve the problem of fitting p�

against the best tree graphical model. Then, one outputs the underlying tree structure of
the optimal model as the proposed tree topology. For easy reference, we give a definition
of the tree graphical model in Definition 15, and Proposition 16 is the main structural
property of the construction.

Definition 15 For any tree graph T = (V, E) such that V = [d], a tree graphical model
over T is a density p which admits the following representation for some {fi,j}(i,j)∈E :

p(x1, . . . , xd) ∝ exp

⎛

⎝
∑

(i,j)∈E
fi,j(xi, xj)

⎞

⎠. (40)

Proposition 16 Let X = (X1, . . . , Xd) ∼ p, where p is a tree graphical model over T =
(V, E). Then Xi and Xj are independent conditioning on Xk if k is on the unique path
connecting i and j.

Proof Suppose that the subgraph of T obtained by removing k has L connected com-
ponents (S1, . . . ,SL). One can check from (40) that there exists (f1, . . . , fL) for which
p(x[d]−k | xk) = ∏L

l=1 fl(xSl , xk). Thus, for any l �= l′, we have shown that XSl is inde-
pendent to XSl′ given k . The fact that Xi and Xj are conditionally independent follow as a
corollary, as i and j are on different connected components.
�

Now, let Y denote the collection of all tree graphical models over d variables in the
sense of Definition 15. Given an empirical distribution p̂ from samples of p�, the proposed
topology finding algorithm solves the optimization problem

pCL = argminp∈Y DKL (p̂ ‖ p) , (41)

and one outputs a tree structure TCL by reading out the tree structure underlying pCL.
The optimization problem (41) can be efficiently computed thanks to the special structure
of the tree graphical model. The algorithm for solving (41) is named Chow-Liu algorithm
[7], for which we now describe the procedure.

 19 Page 26 of 54 X. Tang et al. Res Math Sci (2023) 10:19

In thefirst step, one computes thepairwisemutual information I(Xi, Xj) over anydistinct
pair of (i, j) ∈ [d]× [d]. In the second step, one forms a graphG, which is a complete graph
on V := [d] with edge weight given by I(Xi, Xj). In the third step, Kruskal’s algorithm is
used to obtain the maximal spanning tree on G, i.e. a spanning tree over d nodes that
maximizes the sum of mutual information over all of its edges. This maximal mutual
information spanning tree is theChow-Liu treeTCL.After specifyingmarginal distribution
over single nodes and edges to match that of p̂, one uniquely determines the Chow-
Liu model pCL, which solves (40). Since pCL is not needed, our proposed tree finding
subroutine only needs to calculate the pairwise mutual information and then take the
maximal spanning tree.
In addition to the motivation that TCL is connected to the optimization program (41),

we further discuss the rationale for using TCL for our TTNS algorithm in three cases.
In the first case, if p� is indeed a graphical model over a tree T �, then the Chow-Liu

tree TCL will be T � with high probability (see below). Moreover, it is well-known that pCL
is the tree graphical model with minimum KL divergence to the input distribution. With
mild constraint on the bond dimension, the class of functions representable by a TTNS
format strictly covers density representable by a graphical model, and the performance of
TTNS-Sketch with TCL has a performance which is on par with pCL.
In the second case, if p� has a TTNS ansatz over a tree T �, then it is typically true that

farther-away nodes in T � are less correlated. By the maximal spanning tree procedure in
Chow-Liu, variables that are far away in TCL are also typically less correlated. If TCL and
T � differ locally, then the TTNS-sketching algorithm still performs well empirically. As
an important example in this category, suppose p� is given by a graphical model over a
graph with loops. In this case, TCL will converge to a spanning tree of the graph, and one
can form a TTNS ansatz with TCL by choosing an appropriately large bond dimension.
In the third case, it may happen that p� cannot be represented by a TTNS ansatz. In

this case, one can quickly reject the TTNS model assumption by looking at the mutual
information I(Xi, Xj) used in the Chow-Liu algorithm. For any node k ∈ [d], removing k
will separate TCL into two connected components. If one sees several pairs with a strong
correlation between nodes separated by k , then the density p� most likely fails the TTNS
model assumption, and more general tensor networks might be more applicable.

6.2 Sample complexity for successful tree topology recovery

We discuss the number of samples required for Chow-Liu to pick the “correct”tree topol-
ogy. By a correct tree topology, we will mean that the Chow-Liu Tree TCL equals the
tree one would have obtained if one forms the maximal spanning tree based on the exact
mutual information. If p� is a graphical model over T �, then this notion of correctness
coincides with the intuitive notion of TCL = T �.
There has been considerable recent work in the past few years on the sample complexity

of the Chow-Liu algorithm to infer the correct tree topology in the sample case. [1] shows
that the sample complexity is bounded by O(n3d

ε
log 1/δ) to ensure a 1 − δ success rate,

where ε is the gap in the sum of mutual information between the two best tree models.
For the tree-based Ising model with no external field, [3] proves an upper bound that is
O(log (d/δ)).

X. Tang et al. Res Math Sci (2023) 10:19 Page 27 of 54 19

7 Numerical result
In this section, we perform a comparison of different modeling methods. There are four
models of interest. The symbol p̂TS stands for the model obtained from the TTNS-Sketch
method. The symbol p̂GM stands for themodel one obtains fromdirect graphicalmodeling
over a given tree structure T . Specifically, the p̂GM model with tree structure T refers to
the graphical model over T where the parameters are chosen by maximum likelihood
estimation. The symbol p̂CL stands for the Chow-Liu model, which is obtained by direct
graphical modeling with the Chow-Liu tree TCL. The symbol p̂BM stands for the model
one obtains from modeling with Born Machine (BM). The training of BM is done by
optimizing Negative Log Likelihood (NLL), with details of the training following from
that of [13].
In what follows, the error of a model p refers to the relative l2 error:

Error(p) := ‖p − p�‖
‖p‖ .

For BM training, we will use the negative log-likelihood level of the model as a perfor-
mance metric:

NLL(p) :=
N∑

i=1
p(y(i)1 , . . . , y(i)d).

7.1 Numerical case study: tree graphical model with different input tree topology

In this numerical experiment, we aim to exhibit the importance of using a correct tree
topology. We will focus on testing the TTNS-Sketch algorithm on a tree-based graph-
ical model under input tree topology misspecification. Specifically, given any fixed tree
structure T = (V, E), we consider the following graphical model over T :

p�(x1, . . . , xd) = exp

⎛

⎝−β
∑

(i,j)∈E
fi,j(xi, xj)

⎞

⎠, (42)

where β > 0 is the temperature parameter.We test a simple binary model where β = 1/2
and fi,j(xi, xj) = −xixj with each xi ∈ {−1, 1}, which is the setting of standard ferromag-
netic Ising model.
First, consider the case where T is a 10-node trident, see illustration in Fig. 8a. Even in

such a simple example, one can see that there is no good way to choose a path to fit the
tree model. Suggested by our deliberate choice in ordering the variables, one reasonable
candidate is a path graphTpath that traverses fromnode 1 to 10 in numerical order. Indeed,
with only one exception of the edge (4, 8), the treeTpath is almostmade up of edges fromT .
Likewise, we include the 10-node dendrimer graph in Fig. 8b and a bipartite graph in

Fig. 8c,wherewe also use the numerical order to indicate the chosenTpath structure.While
the dendrimer case also uses a reasonable path structure, one can see that the bipartite
graph case uses a Tpath structure very different from T . In Fig. 8, the natural layout draws
T and Tpath in a layout natural to T , where one can see how often Tpath uses edge from T .
For the three tree structures, we will compare three methods (i)-(iii): (i) TTNS-Sketch

over Tpath, (ii) Graphical modeling over Tpath, (iii) TTNS-Sketch over T . In (i) and (iii),
we choose the Markov sketch function. The results are listed in Fig. 8. One can see that
the error for (iii) always converges to zero with large N , which is consistent with Lemma

 19 Page 28 of 54 X. Tang et al. Res Math Sci (2023) 10:19

Fig. 8 The black solid line stands for edges on T and the dashed brown line stands for edges on Tpath. The
graph is plotted in a layout that is respectively natural for T and for Tpath. Error plots for each case of T are also
included. One can see that convergence to the true model only occurs with true tree specification

13. However, both (i) and (ii) do not converge to p�, with the performance being worst in
the bipartite graph case.
In the path layout, one canmorenaturally “count”the internal bonddimensionnecessary

to let p� admit a TTNS ansatz under Tpath. Let Epath stand for the edge set for Tpath, which
is essentially Epath = {(i, i + 1)}d−1

i=1 . In this case, for any edge e = (i, i + 1), one can
calculate the internal bond re by counting the number of edges one would “cut”if one

X. Tang et al. Res Math Sci (2023) 10:19 Page 29 of 54 19

Fig. 9 Illustration of the graphical model in Sect. 7.2. The solid black line indicates edges for true graphical
model GT . The dashed brown line indicates edges for T , the tree model to be used for TTNS-Sketch

places a vertical line in between node i and i + 1. If one counts qi edges, then one has
the upper bound re ≤ 2qi for the Ising model. More generally, suppose X ∼ p�, and let
each entry of X be a discrete variable over {1, . . . , n}, then re is upper bounded by nqi .
The description of qi exactly coincides with the number of edges across the partition
[d] = {1, . . . , i} ∪ {i + 1, . . . , d}, i.e. the cardinality of the cut from the partition.
Thus, one can easily extend Fig. 8 to cases with more nodes, and then the three models

will have quite different behavior. The cut number qi for the trident case is upper bounded
by qi ≤ 2, but largest qi for the bipartite graph is d − 1 when d is even. Hence, in the
bipartite case, the TTNS ansatz of p� under Tpath is not practical to compute, while the
TTNS ansatz of p� under T is simple. Importantly, the bipartite graph T is itself a path
graph, and so the p� is not complicated.
Thus, while modest tree structure misspecification can be treated with a higher bond

dimension, a large structural deviationmay lead to an intractable bond dimension penalty.
We also note that in all of these cases, one has TCL = T with overwhelmingly high
probability. Due to the O(d) sample complexity to recover T , we will henceforth assume
that one has access to the true tree model T .

7.2 Numerical case study: 1D spin systemwith non-local interactions

In this example, we consider a more complicated Markov random field model. Given a
fixed tree structure T = (V, E), we denote the shortest-path distance on T as distT . For
any fixed positive integer l, we propose the following model

p�(x1, . . . , xd) = exp

⎛

⎝−β
∑

distT (i,j)≤l
fi,j(xi, xj)

⎞

⎠. (43)

This is also a graphical model over GT = (V, E′) by letting E′ = {(i, j) | distT (i, j) ≤ l}.
In particular, we set l := 2. Moreover, we consider the case where T is a path graph with
d = 32. See the illustration in Fig. 9.
Moreover, todemonstrate our algorithmundermore general situations thanbinarydata,

we consider the 4-state clock model with fi,j(xi, xj) = − cos (xi − xj) and xi ∈ {0, 23π , 43π}.
In this case,we setβ = 1/2 to ensure the spin-spin correlation strength is at an appropriate
level.
If one applies the Chow-Liu algorithm to the model in (43), one could obtain any one

of the spanning trees of GT . Hence, for the sake of fair comparison, we fix the path graph
T as the input tree graph to TTNS-Sketch. We test TTNS-Sketch under the following
sketch function (i) perturbative sketching function, (ii) Markov sketch function, and (iii)
2-Markov sketch function (defined in Sect. 5.4). For the perturbative sketch function, we

 19 Page 30 of 54 X. Tang et al. Res Math Sci (2023) 10:19

102 103 104 105
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 10 Error comparison for the graphical model in Fig. 9. The model p̂CL stands for the result of direct
graphical modeling with the tree structure T in Fig. 9. TTNS-Sketch with perturbative sketch function and
2-Markov sketch function converges to the true model. One can see that the two sketch functions enjoy a
similar performance, while the perturbative sketch function is much more stable at a small sample size

pick ε = 1 and a sketch core size of le = 20 for any e ∈ E. We apply singular value
thresholding to ensure numerical stability.
We observe convergence for TTNS-Sketch under the perturbative sketching function

and the 2-Markov sketch function. The result is shown in Fig. 10.

7.3 Numerical case study: tree graphical model with large variable dimension

In this example, we test the performance of TTNS-Sketch in the setting of large d. We
consider tree-based graphical models of the form (42) with β = 1/2, fi,j(xi, xj) = −xixj ,
and xi ∈ {−1, 1}, which is the case of Ising model. As a remark, the cases under more
general {fi,j}(i,j)∈E lead to the same conclusion, and so they are excluded for the sake of
brevity. For the candidate graph T , we consider a path graph with d = 100 nodes and the
3-fractal dendrimer graph with d = 94 nodes, see Fig. 11.
For samples generated from the underlying model, direct graphical modeling with the

underlying treemodelT provides the best tree-based graphicalmodel in the sense ofMLE,
andhenceweput it as the benchmark.We choose the perturbative sketching functionwith
ε = 0.05. The result can be seen in Fig. 12. One can see that TTNS-Sketch performs well
under the large variable regime, and has the same convergence behavior as the benchmark.
Due to the N = O(d2) scaling in Theorem 34 and the O(d) computational scaling, one
can likewise perform the same procedure up to very large d.

7.4 Numerical case study: spin systemwith long range interactions

Quite importantly, in this numerical experiment, we introduce another important bench-
mark called Born Machine (BM). As BM is a method over the tensor train format, we
restrict TTNS-Sketch to the path graph Tpath to ensure a fair comparison.
There are two important differences between BM and TTNS-Sketch. First, BM assures

the positivity of the trainedmodel. Second, BM is based onNegative Log Likelihood (NLL)
training, which is amore conventional errormetric for statistical modeling.While TTNS-

X. Tang et al. Res Math Sci (2023) 10:19 Page 31 of 54 19

Fig. 11 Plot of graphs considered in Sect. 7.3

102 103 104 105
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(A)

102 103 104 105
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(B)

Fig. 12 Error comparison for path graph with d = 100 and dendrimer graph with d = 94. The model p̂CL
stands for the result of direct graphical modeling with the true Tree structure T . One can see that both
methods converge to the true model

Sketch does not ensure the trainedmodel is positive, the ‖·‖∞ norm error bound obtained
in Section E ensures that positivity is not a major issue if the correct tree structure and
sketch function are provided.
During the numerical experiment with BM, we discovered a significant failure mode

of BM, which is that it fails to converge to the true model for periodic spin systems. A
similar observation has been independently made in [11]. To show the failure mode in
the simplest possible setting, we discuss the case of a Markov random field with a ring
graph G with d = 16 nodes, and its graphical model representation of (44) is illustrated
in Fig. 13a:

p�(x1, . . . , xd) = exp

⎛

⎝−
∑

i−j=0 mod d
fi,j(xi, xj)

⎞

⎠ (44)

 19 Page 32 of 54 X. Tang et al. Res Math Sci (2023) 10:19

Fig. 13 Graph representations of the true model in Sect. 7.4 and the path model learned by path-based
graphical modeling

0 20 40 60 80

5.75

6.08

6.5

7

7.5

8

8.5

9

Fig. 14 Negative Log Likelihood (NLL) level comparison for the ring graph with d = 16 in Fig. 13a. Here,
N = 215 = 32, 768. The model p̂CL stands for the result of direct graphical modeling with the path structure in
Fig. 13b. The model p̂BM stands for the result of Born Machine with rmax=4. The model p̂TS stands for the result
of TTNS-Sketch with the special high-order Markov sketch function in (45). One can see that the output of
TTNS-Sketch is close to the NLL level of the true model, while the output of BM is close to the NLL level of the
path-based graphical model p̂CL

For TTNS-Sketch, we pick a special high-order Markov sketch function, with the fol-
lowing neighborhood of interest:

Sk = {k − 1, k, k + 1} ∪ {1, d}, (45)

which is chosen to ensure convergence in the limit of sample size. Importantly, we include
direct graphical modeling over the path graph Tpath as a benchmark.
We now discuss the numerical specification for the BM modeling. We pick the sample

size N = 215 = 32, 768, which is sufficiently large so that the generalization error should
be small. For the BM method, there is a parameter rmax, which is the largest allowed

X. Tang et al. Res Math Sci (2023) 10:19 Page 33 of 54 19

0 20 40 60 80

10-5
10-4
10-3
10-2
10-1
100

Fig. 15 Mutual Information (MI) level comparison for the ring graph with d = 16 in Fig. 13a, with experiment
setting described in the caption of Fig. 14. The MI level of a distribution p refers to I(X1 , Xd) where X ∼ p. In
other words, the MI level is the mutual information between the last and first entry of the multivariate
distribution according to p. One can see that the mutual information level of BM is close to zero throughout
training, which is further evidence that BM effectively learns a path graphical model

internal bond dimension, i.e. maxe∈E re ≤ rmax. Importantly, p� admits a tensor train
ansatz with maxe∈E re ≤ 4, and so we pick rmax = 4 to ensure that the BM method in
this instance has no approximation error. The only training parameter is the learning rate
which is picked according to cross-validation.
In Fig. 14, we plot the result of the comparison between BM, TTNS-Sketch, and direct

graphical modeling. Quite surprisingly, TTNS-Sketch can converge, while the NLL level
of BM stays at a sub-optimal level. Interestingly, the NLL level of the BM model p̂BM
converges to that of the graphical model p̂CL. Moreover, one can also show that the KL-
divergence between p̂BM and p̂CL is quite small. In the converged model plotted in Fig. 14,
one has DKL (p̂BM ‖ p�) ≈ 0.4357, while DKL (p̂BM ‖ p̂CL) ≈ 0.0266.
Numerically, we can then conclude that the BM training implicitly leads to a sub-

optimalmodel, and the gap to the truemodel can be explained by the sub-optimalmodel’s
closeness to the path-based graphical model p̂CL, see Fig. 13 for illustration. As additional
evidence, during the training dynamics, the learned model fails to capture the correlation
between node 1 and node d. In Fig. 15, the mutual information level between node 1 and
node d is plotted throughout training, and one can see the level is consistently close to
zero, despite the strong correlation in p�.
In practice, when d = 16, this phenomenon of BM training failure persists up to rmax =

7, and is resolved by setting rmax ≥ 8. However, if d is increased, we have observed that
the smallest rmax for successful BM training also increases. This coupling of maximal
bond dimension with d is problematic, as one could no longer expect a linear dependency
between parameter size and the dimension d.
On the other hand, for TTNS-Sketch under (45), one is theoretically guaranteed con-

vergence to true model with re ≤ 4, the proof of which can be obtained by adapting the
proof for Lemma 13. Moreover, for TTNS-Sketch with sketch function in 45, increasing
d does not affect performance beyond the sample complexity scaling in d as discussed in
Section E.

 19 Page 34 of 54 X. Tang et al. Res Math Sci (2023) 10:19

8 Conclusion
We describe an algorithm TTNS-Sketch, which obtains a Tree Tensor Network States
representation of a probability density from a collection of its samples. This is done by
formulating a sequence of equations, one for each core, which can be solved indepen-
dently. This is a general framework that allows for arbitrary tree structures to be used.We
have also compared this algorithm with similar training-based regimes in the tensor train
format, in which we have shown much better performance from TTNS-Sketch even in a
simple case of periodic spin systems. For models which have interaction beyond imme-
diate neighbors, we have shown that TTNS-Sketch with perturbative sketching greatly
outperforms Chow-Liu. Theoretically, we have provided conditions for TTNS-Sketch to
be a consistent estimator, as well as a reasonable sample complexity upper bound.
While TTNS-Sketch might not necessarily be superior at approximating an arbitrary

density, the numerical and theoretical evidence gathered point to the conclusion that it
is good at the inverse problem of solving for the tensor component of a density with a
TTNS ansatz. In other words, a deterministic linear algebraic subroutine is sufficient to
approximate a p� with a low-rank TTNS format. While this point has been made for
tensor completion problems, it is quite remarkable that statistical inference of models
with a TTNS ansatz can be shown to reduce to a linear algebraic problem.

Acknowledgements
The datasets generated during and/or analyzed during the current study are available from the corresponding author
upon reasonable request. The authors certify that they have no affiliations with or involvement in any organization or
entity with any financial interest or non-financial interest in the subject matter or materials discussed in this paper.

Author details
1Institute for Computational and Mathematical Engineering, Stanford CA 94305, USA, 2Department of Statistics, Chicago
IL 60637, USA, 3Computational and Applied Mathematics Initiative, Department of Statistics, University of Chicago,
Chicago IL 60637, USA, 4Department of Mathematics and Institute for Computational and Mathematical Engineering,
Stanford CA 94305, USA.

Appendix A Proof of Theorem 7
Proof (Of Theorem 7) For simplicity, for the remainder of the proof, we fix a
structure for all of the high-order tensors we use. For �w→k , one reshapes it
to the unfolding matrix �w→k (xL(w)∪w ;α(w,k)). For 	w→k , one reshapes it to the
unfolding matrix 	w→k (α(w,k); xR(w)). For �C(k)→k , one reshapes it to the unfold-
ing matrix �C(k)→k (xL(k);α(k,C(k))). For Gk , one reshapes it to the unfolding matrix
Gk (α(k,C(k)); xk ,α(k,P(k))). For p, we will explicitly write out the unfolding matrix struc-
ture to avoid ambiguity.
According to Condition 1, for any edge w → k , one has

p(xL(w)∪w ; xR(w)) = �w→k	w→k . (46)

Then, define �†
w→k : [r(w,k)] ×

[∏
i∈L(w)∪w ni

]
→ R and 	†

w→k :
[∏

i∈R(w) ni
]

×
[r(w,k)] → R so that �†

w→k (α(w,k); xL(w)∪w) denotes the pseudoinverse of �w→k , and
	†

w→k (xR(w);α(w,k)) denotes the pseudoinverse of 	w→k (α(w,k); xR(w)). Then,

�†
w→k�w→k = 	w→k	

†
w→k = Ir(w,k)

X. Tang et al. Res Math Sci (2023) 10:19 Page 35 of 54 19

First, we prove the uniqueness of each equation of (5) in the sense of least squares. Note
that an exact solution is guaranteed when k is a leaf, and so one only needs to consider
when k is non-leaf. By assumption,�w→k has a full column rank of rw→k . In particular, the
Kronecker product structure ensures that�C(k)→k has full column rank of

∏
w∈C(k) rw→k .

Therefore, a unique solution to (5) exists in the sense of least squares.
Moreover, when k is non-leaf and non-root, the pseudoinverse �†

C(k)→k (α(k,C(k)); xL(k))
leads to the following explicit construction of Gk :

Gk = �†
C(k)→k�k→P(k), (47)

and likewise when k is root, one has

Gk = �†
C(k)→kp(xL(k); xk). (48)

To verify that (5) holds exactly for the construction of Gk in (47), one can argue it
suffices to check that

�C(k)→k�
†
C(k)→kp(xL(k); xk∪R(k)) = p(xL(k); xk∪R(k)), (49)

for which we give a brief explanation. When k is the root, (48) implies that (49) coincides
with (5) for when k is root. When k is non-root and non-leaf, one can multiply both sides
of (49) by	†

k→P(k) and sumover xR(k). According to (47), the obtained equation coincides
with (5) for when k is non-root and non-leaf.
It remains to show that (49) holds. For an edge w → k ∈ E, define a term Qw→k as

follows

Qw→k (xL(w)∪w ; yL(w)∪w) :=
∑

α(w,k)

�w→k (xL(w)∪w ;α(w,k))�†
w→k (α(w,k); yL(w)∪w).

Then, for a generic tensor f : [n1]× . . . × [nd] → R, one can define a projection operator
Pw→k as follows

(Pw→k f)(x1, . . . , xd) =
∑

yL(w)∪w
Qw→k (xL(w)∪w, yL(w)∪w)f (yL(w)∪w, xR(w)).

By commutativity of the sum operations involved, one has

�C(k)→k�
†
C(k)→k f =

∑

yL(k)

⎛

⎝
∏

w∈C(k)
Qw→k (xL(w)∪w ; yL(w)∪w)

⎞

⎠ f (x1, . . . , xd)

=
∑

yL(w)∪w
w∈C(k)

⎛

⎝
∏

w∈C(k)
Qw→k (xL(w)∪w ; yL(w)∪w)

⎞

⎠ f (x1, . . . , xd)

=
⎛

⎝
∏

w∈C(k)
Pw→k

⎞

⎠ f

Thus, (49) holds if one can show that Pw→kp = p for any w ∈ C(k), but this fact is
straightforward:

Pw→kp = �w→k�
†
w→kp(xL(w)∪w ; xR(w))

 19 Page 36 of 54 X. Tang et al. Res Math Sci (2023) 10:19

= �w→k�
†
w→k�w→k	w→k = �w→k	w→k = p,

and thus (5) exactly holds for the constructed {Gi}di=1.
Lastly, we prove that the solution {Gi}di=1 forms a TTNS tensor core of p. To show this

result, it will be much more convenient to use the notion of subgraph TTNS function in
Definition 11.We remark that the construction in Definition 11 is only arithmetic and has
no dependency on this theorem. For every node k ∈ [d], define a subset Sk := L(k)∪ {k}.
Then, for non-root k , we prove that�k→P(k) is the subgraph TTNS function over {Gi}di=1
and TSk , i.e. one wishes to show

�k→P(k)(xL(k)∪k ,αk→P(k)) =
∑

αe
e �=(k,P(k))

∏

i∈L(k)∪k
Gi

(
xi,α(i,N (i))

)
. (50)

We prove (50) by induction. Notice that (5) proves (50) when k is a leaf node. Then,
suppose that k is non-leaf and suppose by induction that �w→k satisfies (50) for all
w ∈ C(k). Then, one can rewrite (5) by plugging in �C(k)→k the form of each �w→k
according to (50). The resulting equation is exactly (50) for �k→P(k). By induction over
nodes by topological order, (50) holds for every non-root k .
By the same logic, now consider (5) when k is the root. One plugs in �C(k)→k the form

of each �w→k according to (50). The resulting equation is exactly (3) in Definition 5, and
thus {Gi}di=1 does form a TTNS tensor core of p.
�

Appendix B Proof of Theorem 9
Proof (of Theorem 9) For any non-root k , note that Z�

k is assumed to be of rank r(k,P(k))
by (ii) in Condition 3. LetQ�

k be as in (16). In other words,Q�
k (γ(k,P(k));α(k,P(k))) is formed

by the rank-r(k,P(k)) SVD decomposition of Z�
k in the SystemForming step of Algorithm

1. Thus Q�
k (γ(k,P(k));α(k,P(k))) is of rank r(k,P(k)), which means it has full column rank. We

define

��
k→P(k)(xL(k)∪k ,α(k,P(k))) :=

∑

γ(k,P(k))

�̄�
k (xL(k)∪k , γ(k,P(k)))Q�

k (γ(k,P(k)),α(k,P(k))). (51)

Due to (i) in Condition 4 and Qk having full rank, one can conclude that ��
k→P(k)

(xL(k)∪k ;α(k,P(k))) and��
k→P(k)(xL(k)∪k ;α(k,P(k))) have the same column space. Thus, there

exists	�
(w,k)’s such that {��

(w,k),	
�
(w,k)}(w,k)∈E forms a collection of the low-rank decompo-

sition of p� in the sense of Condition 1. We make the following claim, which also justifies
� upper-index in (51):
Claim: {��

(w,k)}(w,k)∈E as defined in (51) satisfies Condition 2
The proof of the claim is somewhat technical and we will defer the proof after stating

how it proves this theorem.
Assume the claim is correct and {��

(w,k)}(w,k)∈E satisfies Condition 2. As a consequence,
if one defines {A�

i , B
�
i } by

{A�
i , B

�
i }di=1 ← SystemForming({Z�

w→k}w→k∈E, {Z�
i }di=1),

then one can alternatively define {A�
i , B

�
i }di=1 by (22) with

{��
(w,k)}(w,k)∈E ← {��

(w,k)}(w,k)∈E.

X. Tang et al. Res Math Sci (2023) 10:19 Page 37 of 54 19

Thus, with the alternative definition in (22), it follows that (23) is a (possibly over-
determined) linear system formed by a linear projection of the linear system in (5), where
chosen gauge is {��

(w,k)}(w,k)∈E .
Due to Theorem 7, (5) is an over-determined linear system with a unique and exact

solution. Theorem 7 guarantees an exact solution {G�
i }di=1 to (5), which is then necessarily

an exact solution to (23). If (23) satisfies the uniqueness of the solution, then the solution
to (23) is a solution to (5), which by Theorem 7 forms a TTNS tensor core of p�. Therefore,
it suffices to check uniqueness. The uniqueness of solution to (23) when k is a leaf is trivial.
When k is non-leaf, note that one can apply (iii) in Condition 3 with {��

(w,k)}(w,k)∈E as the
chosen gauge, which guarantees that A�

k (β(k,C(k)),α(k,C(k))) has the full column rank for
every non-leaf k . In other words, one is guaranteed the uniqueness of the solution to (23),
as desired. For the assertion on the consistency of Ĝk , note that limN→∞ Ĝk = G�

k follows
from the fact that limN→∞ Âk = A�

k and limN→∞ B̂k = B�
k .

We now prove that {��
(w,k)}(w,k)∈E satisfies Condition 2. For a clear exposition, we adopt

the unfolding 3-tensor structure developed in Sect. 8- 8. We remark that the 3-tensor
construction is only arithmetic and does not depend on the validity of this theorem.
For Z�

k , we reshape it as Z�
k (β(k,C(k)); xk ; γ(k,P(k))). For U�

k , we reshape it as
U�
k (β(k,C(k)); xk ;α(k,P(k))). For Q�

k , we reshape it as Q�
k (γ(w,k); 1;α(w,k)). For Sk , Tk , we

reshape as Sk (β(k,C(k)); 1; xL(k)) and Tk (xR(k); 1; γ(k,P(k))). For ��
k→P(k), we reshape it as

��
k→P(k)(xL(k); xk ;α(k,P(k))). For �̄�

k (xL(k)∪k , γ(k,P(k))),we reshape it as �̄�
k (xL(k); xk ; γ(k,P(k))).

For p�, we reshape it as p�(xL(k); xk ; xR(k)).
Then, by the construction of Q�

k in the SystemForming step of Algorithm 1, one has
U�
k = Z�

k ◦ Q�
k . By (51), it follows ��

k→P(k) := �̄�
k ◦ Q�

k . Condition 2 is satisfied if U�
k =

Sk ◦ ��
k→P(k). With such a choice of unfolding 3-tensor, one obtains a simple proof as

follows

U�
k = Z�

k ◦ Q�
k = Sk ◦ p� ◦ Tk ◦ Q�

k = Sk ◦ �̄�
k ◦ Q�

k = Sk ◦ ��
k→P(k),

where the first equality comes from Z�
k = Sk ◦ p� ◦ Tk , the second equality comes from

�̄�
k = p� ◦ Tk , and the third equality comes from ��

k→P(k) = �̄�
k ◦ Q�

k . Thus the claim
holds and we are done.

�

Appendix C Proof of Lemma 13
Lemma 17 Suppose p satisfies the Markov property given a rooted tree ([d], E). For any
subsets S1 ⊂ L(k) ∪ k and S2 ⊂ R(k),

(i) MS1∪S2p(xS1 ; xS2) andMS1∪P(k)p(xS1 ; xP(k)) have the same column space ifP(k) ∈
S2,

(ii) MS1∪S2p(xS1 ; xS2) andMk∪S2p(xk ; xS2) have the same row space if k ∈ S1.

Proof Define a conditional probability tensor as follows:

MS1|S2p(xS1 , xS2) := PX∼p
[
XS1 = xS1 |XS2 = xS2

]
.

Due to the conditional independence property for graphical models, one can write

MS1∪S2p(xS1 , xS2) = MS1|P(k)p(xS1 , xP(k))MP(k)p(xP(k))MS2|P(k)p(xS2\P(k), xP(k))

 19 Page 38 of 54 X. Tang et al. Res Math Sci (2023) 10:19

= MS1∪P(k)p(xS1 , xP(k))MS2|P(k)p(xS2\P(k), xP(k))

Thus, the column space ofMS1∪S2p(xS1 ; xS2) depends solely onMS1∪P(k)(xS1 ; xP(k)).
Therefore, (i) holds.
Similarly,

MS1∪S2p(xS1 , xS2) = MS1|kp(xS1\k , xk)Mk∪S2p(xk , xS2),

which shows that the row space ofMS1∪S2p(xS1 ; xS2) depends solely onMk∪S2p(xk ; xS2).
Therefore, (ii) holds.
�
Proof (of Lemma13)Wewill verify thatCondition 3holds. TheMarkov sketch function is
quite special, andweoften refer to a concept of natural identification.Tomake this concept
rigorous, if two matrices A(x; y) and A′(z;w) are said to have a natural identification, it
thenmeans thatA(x; y) = A′(z;w) entry-wise asmatrices. In particular, if one has a natural
identification A(x; y) = A′(z;w), then A and A′ share column space, row space, and rank.
By the property of the right sketch function in the Markov sketch function, one

has the natural identification �̄�
k (xL(k)∪k ; γ(k,P(k))) = ML(k)∪k∪P(k)p�(xL(k)∪k ; xP(k)).

Lemma 17 then shows that the column space of �̄�
k (xL(k)∪k ; γ(k,P(k))) equals to that of

p�(xL(k)∪k ; xR(k)). By Condition 1, the column space of p�(xL(k)∪k ; xR(k)) equals to that of
any ��

(w,k)(xL(k)∪k ;α(k,P(k))), and so (i) holds.
Similarly, due to the Markov sketch function, one has the natural identification

Z�
k (β(k,C(k)), xk ; γ(k,P(k))) = MC(k)∪k∪P(k)p(xC(k)∪k ; xP(k)).

By Lemma 17 and the natural identification of Z�
k , for any every non-leaf and non-root

k , it follows that Z�
k has the same row space as that of

�̄�
k (xL(k)∪k ; γ(k,P(k))) = ML(k)∪k∪P(k)p�(xL(k)∪k ; xP(k)).

Hence, the rank of Z�
k equals to the rank of �̄�

k . By Lemma 17, the column space of �̄�
k

equals to the column space of p�(xL(k)∪k ; xR(k)). Thus, the rank of Z�
k equals to r(k,P(k))

and (ii) holds.
Because (i) and (ii) hold, the proof of Theorem 9 actually shows that there exists a

gauge {��
(w,k)}(w,k)∈E which satisfies Condition 2. To verify (iii), it suffices to check (iii) for

the gauge {��
(w,k)}(w,k)∈E because A�

k having full column rank leads to any A�
k having full

column rank.
Moreover, it suffices to show that each A�

w→k (β(w,k);α(w,k)) has full column rank of
rw→k . If this holds, then it follows that A�

k = ⊗
w∈C(k) A�

w→k has full column rank
of

∏
w∈C(k) rw→k . By the SVD step in SystemForming, recall that the column space of

Q�
w(γ(w,k);α(w,k)) is the same as the column space of

(
Z�
w
)	 (γ(w,k);β(w,C(w)), xw). By the

natural identification of
(
Z�
w
)	 (γ(w,k); xw,β(w,C(w))) = Mk∪w∪C(w)p(xk ; xw∪C(w)),

we know that the column space of Q�
w(γ(w,k);α(w,k)) is the same as that of

Mk∪w∪C(w)p(xk ; xw∪C(w)). By Lemma 17, it then follows that the column space of
Q�
w(γ(w,k);α(w,k)) coincides with that ofMk∪wp(xk ; xw).
Moreover, Z�

w→k has the natural identification Z�
w→k (β(w,k); γ(w,k)) = Mw∪kp(xw ; xk),

and so the column space of Z�
w→k (β(w,k); γ(w,k)) coincides with that ofMw∪kp(xw ; xk).

X. Tang et al. Res Math Sci (2023) 10:19 Page 39 of 54 19

By (17), one has

A�
w→k (β(w,k);α(w,k)) = Z�

w→k (β(w,k); γ(w,k))Q�
w(γ(w,k);α(w,k)),

and so the column space of A�
w→k coincides with that of

Mw∪kp(xw ; xk)Mk∪wp(xk ; xw) = Mw∪kp(xw ; xk) (Mw∪kp(xw ; xk))	 .

Thus, the rank ofA�
w→k coincides with that ofMw∪kp(xw ; xk) (Mw∪kp(xw ; xk))	, which

in turn coincides with the rank of Mw∪kp(xw ; xk). By applying Lemma 17, the rank of
Mw∪kp(xw ; xk) equals to r(w,k), and so (iii) holds.

�

Appendix D Proof of Theorem 14
After applying the left and right sketching, one has the following form on Z�

k :

Z�
k (xk ,β(k,N (k))) =

∑

βe
k /∈e

∑

xi
i �=k

p�(x1, . . . , xd)
∏

i �=k
si(xi,β(i,N (i))). (52)

Let Sk := [d] − {k}, and let TSk be the subgraph of T with vertex set being Sk . Using
the definition of subgraph TTNS function in Definition 11, define a tensor

Hk :
∏

i∈[d],i �=k
[ni] ×

∏

w∈N (k)
[β(w,k)] → R

as the subgraph TTNS function over {si}i �=k and TSk , i.e.

Hk (x[d]−{k},β(k,N (k))) =
∑

αe
k /∈e

∏

i �=k
si
(
xi,β(i,N (i))

)
. (53)

Then (52) is equivalent to the following equation:

Z�
k (xk ,β(k,N (k))) =

∑

xw
w �=k

p�(x1, . . . , xd)Hk (x[d]−{k},β(k,N (k))). (54)

From (53), one sees that Hk is multi-linear in {si}i �=k . We thus can apply the binomial
theorem to derive a structural form onHk as a sum of secondary terms. To do so, let S be
an arbitrary subset of Sk , and define a tensor

Hk ;S :
∏

i∈[d],i �=k
[ni] ×

∏

w∈N (k)
[β(w,k)] → R

as the subgraph TTNS function over TSk and {�i}i∈Sk ∪ {Oj}j∈Sk−S , i.e.

Hk ;S (x[d]−{k},β(k,N (k))) =
∑

αe
k /∈e

∏

i∈S
�i

(
xi,β(i,N (i))

) ∏

j∈Sk−S
Oj

(
xj,β(j,N (j))

)
.

We now use the fact that Oj
(
xj,β(j,N (j))

) = 1 in Condition 6, and so

Hk ;S (x[d]−{k},β(k,N (k))) =
∑

αe
k /∈e

∏

i∈S
�i

(
xi,β(i,N (i))

) =
∑

βe,k /∈e
�S (xS ,β∂S), (55)

 19 Page 40 of 54 X. Tang et al. Res Math Sci (2023) 10:19

where the second equality follows from the Definition of �S in (37).
By applying the binomial theorem over the fact that si = ε�i + Oi, one sees that Hk is

a sum of 2d−1 terms, each of which formed by corresponding to one Hk ;S , i.e.

Hk (x[d]−{k},β(k,N (k))) =
d−1∑

l=0
εl

∑

S⊂[d]−{k},|S|=l
Hk ;S (x[d]−{k},β(k,N (k))). (56)

Define Z�
k ;S as the following tensor:

Z�
k (xk ,β(k,N (k))) :=

∑

xw
w �=k

p�(x1, . . . , xd)Hk ;S (x[d]−{k},β(k,N (k))). (57)

The proof that Z�
k ;S satisfies (39) is a simple result of exchanging summation order:

∑

xw
w �=k

p�(x1, . . . , xd)Hk ;S (x[d]−{k},β(k,N (k)))

=
∑

xw
w∈S

⎛

⎜⎝
∑

xw
w∈Sk−S

p�(x1, . . . , xd)

⎞

⎟⎠

⎛

⎝
∑

βe,k /∈e
�S (xS ,β∂S)

⎞

⎠

=
∑

βe,k /∈e

(
∑

xS
MS∪{k}p�(xk , xS)�S (xS ,β∂S)

)
.

Due to the linear relationship between Hk and Z�
k in (54), it follows that the structural

form of Hk in (56) leads to the structural form for Z�
k in (38), as desired.

Appendix E Sample complexity bound of TTNS-Sketch
This section gives an upper bound for the sample complexity of TTNS-Sketch when the
sketch functions satisfies recursive sketching in the sense of Condition 4. This setting is
considered because one can use the alternative definition of Ak in Proposition 28, which
simplifies the analysis. As an application, we obtain a sample complexity bound to the
simple case where p� is a graphical model over a tree T , and the sketching function is the
Markov sketch function.
We give a summary of organization of this section. In Sect. 8, we introduce notations

and conventions which are important for sample complexity analysis. In Sect. 8, we prove
small perturbations of the cores lead to small perturbations of the obtained TTNS ansatz.
In Sect. 8, we prove that small error in the estimator Ẑk leads to small perturbation of the
cores, leading to an upper bound for the sample complexity of TTNS-Sketch in Theorem
34. In Sect. 8, we give a proof of all the lemmas and corollaries. In Sect. 8, we remark how
our derived results can be extended sample complexity bounds for total variation distance.

E.1 Preliminaries

In what follows, for a given vector v, let ‖v‖ and ‖v‖∞ denote its Euclidean norm and
its supremum norm, respectively. For any matrixM, denote its spectral norm, Frobenius
norm, and the r-th singular value by ‖M‖, ‖M‖F , and σr(M), respectively. Also, for a
generic tensor p, let ‖p‖∞ denote the largest absolute value of the entries of p. Lastly, the
orthogonal group in dimension r is denoted by O(r).

X. Tang et al. Res Math Sci (2023) 10:19 Page 41 of 54 19

A mathematical structure important in this section is 3-tensors. Similar to unfolding
matrix inDefinition 6, the 3-tensors we typically use come from viewing high-dimensional
tensors in terms of 3-tensors by grouping joint variables:

Definition 18 (Unfolding 3-tensor Notation) For a generic d-dimensional tensor
p : [n1]×· · ·× [nd] → R and for three disjoint subsets U ,V ,W with U ∪V ∪W = [d], we
define the corresponding unfolding 3-tensor by p(xU ; xV ; xW). The 3-tensor p(xU ; xV ; xW)
is of size

[∏
i∈U ni

] ×
[∏

j∈V nj
]

× [∏
k∈W nk

] → R.

It is helpful to introduce a slice of the 3-tensor. In our convention, we only need to
consider taking slice at the second component:

Definition 19 (Middle index slice of 3-tensor) For any 3-tensorG : [r1]×[n1]×[r2] → R,
we useG(·, x, ·) : [r1]× [r2] → R to denote an r1 × r2 matrix obtained by fixing the second
slot of G to be x.

In Definition 20- 22, we introduce a new norm and two operations for 3-tensors.

Definition 20 (~·~ norm for 3-tensors) Define the norm ~G~ by

~G~ := max
x∈[n1]

‖G(·, x, ·)‖. (58)

Definition 21 (contraction operator for 3-tensors) Let G : [r1] × [n1] × [r2] →
R, G′ : [r3]× [n2]× [r4] → R be two 3-tensors. Under the assumption r2 = r3, define the
3-tensor G ◦ G′ : [r1] × [n1 × n2] × [r4] → R by

G ◦ G′(α; (x, y); γ) =
∑

β∈[r2]
G(α, x,β)G′(β , y, γ). (59)

Definition 22 (tensor product operator for 3-tensors) Let G : [r1] × [n1] × [r2] →
R, G′ : [r3] × [n2] × [r4] → R be two 3-tensors. Define the 3-tensor G ⊗ G′ : [r1 × r3] ×
[n1 × n2] × [r2 × r4] → R by

G ⊗ G′((α,β); (x, y); (γ , θ)) = G(α, x,β)G′(γ , y, θ). (60)

We summarize the simple properties of the defined operation in Lemma 23, which will
be useful for our derivations:

Lemma 23 The following results hold:

(i) Associativity of ◦ holds:

(G ◦ G′) ◦ G′′ = G ◦ (G′ ◦ G′′). (61)

(ii) Associativity of ⊗ holds:

(G ⊗ G′) ⊗ G′′ = G ⊗ (G′ ⊗ G′′). (62)

(iii) Inequality of ◦ under ~·~ norm:

~G ◦ G′~ ≤ ~G~ · ~G′~ (63)

 19 Page 42 of 54 X. Tang et al. Res Math Sci (2023) 10:19

(iv) Equality of ⊗ under ~·~ norm:

~G ⊗ G′~ = ~G~ · ~G′~ (64)

(v) For a three tensorG(α, x,β) : [r1]×[n]×[r2] → R, denoteG(α, x;β) : [r1n]×[r2] → R

as the unfolding matrix by grouping the first and second index of G. One has

~G~ ≤ ‖G(α, x;β)‖ ≤ n~G~ (65)

As a consequence of associativity, given any collection of 3-tensors {Gi}di=1, one can
define G1 ⊗ G2 ⊗ . . . ⊗ Gd . Moreover, if the collection is such that the size of the third
index ofGi coincideswith the first index ofGi+1, then one cannaturally define the 3-tensor
G1 ◦ G2 ◦ . . . ◦ Gd .

E.2 3-tensor structure for TTNS

For cleaner analysis, one often gives unfolding matrices a 3-tensor structure:

Definition 24 (3-tensor structure forunfoldingmatrix)Consider a genericD-dimensional
tensor f : [n1]×· · ·×[nD] → R.Moreover, suppose one picks a disjoint unionU∪V = [D]
and forms an unfolding matrix f (xU ; xV) in the sense of Definition 6. Define f (xU ; 1; xV)
as the 3-tensor of size

[∏
i∈U ni

] × {1} ×
[∏

j∈V nj
]

→ R. One likewise defines 3-tensor
structure of f (1; xU ; xV), whose first index is of size 1, and f (xU ; xV ; 1), whose third index
is of size 1.

A tensor core from a TTNS ansatz has a default 3-tensor view, whereby the indices are
grouped according to tree topology:

Definition 25 (3-tensor structure for TTNS tensor cores) Suppose a tensor p is defined
by a collection of tensor cores {Gi}di=1 in the sense of Definition 5.
If k is neither a root node nor a leaf node, thenGk is viewed with the 3-tensor unfolding

structure

Gk (α(k,C(k)); xk ;α(k,P(k))) :

⎡

⎣
∏

w∈C(k)
r(w,k)

⎤

⎦ × [nk] × [r(k,P(k))] → R.

If k is a leaf node, then Gk is viewed with the 3-tensor unfolding structure

Gk (1; xk ;α(k,P(k))) : {1} × [nk] × [r(k,P(k))] → R.

If k is the root node, then Gk is viewed with the 3-tensor unfolding structure

Gk (α(k,C(k)); xk ; 1) :

⎡

⎣
∏

w∈C(k)
r(w,k)

⎤

⎦ × [nk] × {1} → R.

With this design of norms, one can prove the following result by simple algebra:

Lemma 26 Suppose a generic tensor p : [n1] × · · · × [nd] → R is defined by a collection
of tensor cores {Gi}di=1 in the sense of Definition 5. Moreover, suppose the tensor cores are
viewed by 3-tensor structures as in Definition 25. Then

‖p‖∞ ≤
d∏

i=1
~Gi~.

X. Tang et al. Res Math Sci (2023) 10:19 Page 43 of 54 19

Using Lemma 26, one can bound global errors by errors in tensor cores:

Lemma 27 In Lemma 26, let�Gk be a perturbation of Gk . Define a tensor p′ : [n1]×· · ·×
[nd] → R by tensor cores {Gk +�Gk}dk=1 in the sense of Definition 5, with the tree topology
T and the internal rank {re}e∈E the same as that of p. Suppose ~�Gk~ ≤ δk~Gk~ for all
k ∈ [d], and set �p := p′ − p. Then,

‖�p‖∞ ≤ ~G1~ · · ·~Gd~
⎛

⎝
d∑

i=1
δi

⎞

⎠ exp

⎛

⎝
d∑

i=1
δi

⎞

⎠ .

Ifmaxk∈[d] δk ≤ ε/(3d) for some fixed ε ∈ (0, 1),

‖�p‖∞
~G1~ · · ·~Gd~ ≤ ε. (66)

E.3 Derivation for sample complexity of TTNS-Sketch

We first give a lemma which bounds the perturbation of solutions of a linear equation
AX = B, where in particular X, B are two 3-tensors viewed under an unfolding matrix.
This result will be the main building block to form our subsequent error analysis:

Lemma 28 Consider a matrix A�(β ,α) ∈ R
l×r with rank(A�) = r ≤ l and a 3-

tensor B�(β , x, γ) ∈ R
l×n×m with unfolding matrix structure B�(β ; (x, γ)) ∈ R

l×(nm). Let
X�(α, x, γ) ∈ R

r×n×m be the 3-tensorwith anunfoldingmatrix viewX�(α; (x, γ)) ∈ R
r×(nm)

which uniquely solves the linear equation A�X = B� in the sense of least squares:
∑

α

A�(β ,α)X(α, (x, γ)) = B�(β , (x, γ)).

Moreover, let �B� ∈ R
l×n×m be a perturbation of B�, and let �A� ∈ R

l×n×m be a
perturbation of A� with ‖ (A�)† ‖‖�A�‖ < 1 so that rank(A� + �A�) = n. Then, let �X�

be a 3-tensor so that X� + �X� which uniquely solves the linear equation (A� + �A�)X =
(B� + �B�) in the sense of least squares:

∑

α

(A� + �A�)(β ,α)X(α, (x, γ)) = (B� + �B�)(β , (x, γ))

Under the unfolding matrix structure, suppose the column space of B� is contained in
that of A�, i.e. X� solves A�X = B� exactly, one has

~�X�~ ≤ ‖ (A�)† ‖
1 − ‖ (A�)† ‖‖�A�‖

(‖�A�‖~X�~ + ~�B�~) . (67)

In particular, if~X�~ ≥ χ > 0 for some constant χ , and�A� satisfies ‖ (A�)† ‖‖�A�‖ ≤
1/2, then

~�X�~
~X�~ ≤ 2‖ (A�

)† ‖ (‖�A�‖ + χ−1~�B�~) . (68)

For our use case of Lemma 28, the coefficient matrix is viewed as a Kronecker product
of some smaller matrices, e.g. A�

k is formed by {A�
w→k}w∈C(k). One can bound the ‖�A�‖

in this case, as the following lemma shows:

 19 Page 44 of 54 X. Tang et al. Res Math Sci (2023) 10:19

Lemma 29 Consider a collection of matrices {Ei, Ci}i∈[n] such that Ei, Ci are of the same
shape. Moreover, let ‖Ci‖ ≤ 1, ‖Ei‖ ≤ δi. Then

∥∥∥∥∥

n⊗

i=1
(Ci + Ei) −

n⊗

i=1
Ci

∥∥∥∥∥ ≤
(n∑

i=1
δi

)
exp

(n∑

i=1
δi

)
.

Lemma 28 and 29 leads to the proof strategy for obtaining sample complexity. With
the particular perturbation �p� := p̂ − p�, the terms Âk and B̂k from the Algorithm 1
satisfies B�

k + �B�
k = B̂k and A�

k + �A�
k = Âk . The least-squares solution G�

k + �G�
k to

the perturbed equation is thus the actual output Ĝk from Algorithm 1.
However, due to the SVD step that is involved in obtaining Âk and B̂k , one can only

bound the sample estimation error in terms of the following alternative metric:

Definition 30 (dist(·, ·) operator for matrices) For any matrices B, B� ∈ R
n×m, define

dist(B, B�) := min
R∈O(m)

‖B − B�R‖.

In other words, the finite sample estimate of Âk , B̂k could be closer to a rotation of
A�
k , B

�
k , which we will denote as A◦

k , B
◦
k . An error bound for of the type dist(B, B�) exists

throughWedin theorem, and thus themagnitude of B◦
k − B̂k can be bounded, andA◦

k − Âk
is bounded via (28). In Corollary 31- 32, we write out relaxed version of Wedin theorem
and the Matrix Bernstein inequality, which we will use to analyze error terms of the type
‖�Z�

k‖, ‖�B◦
k‖, respectively. As a summary of all previous result, in Theorem 33, we form

a quite technical proof bounding the error on the rotated cores by the sample estimation
error in sketching. In Theorem 34, we form the sample complexity of TTNS-Sketch.

Corollary 31 (Corollary to Wedin theorem, cf. Theorem 2.9 in [5]) Let Z� ∈ R
n×m be a

matrix of rank r and �Z� ∈ R
n×m be its perturbation with Z := Z� + �Z�. Moreover,

let B�, B ∈ R
n×r respectively be the first r left singular vectors of Z�, Z. If ‖�Z�‖ ≤ (1 −

1/
√
2)σr(Z�), then

dist(B, B�) ≤ 2‖�Z�‖
σr(Z�)

Corollary 32 (Corollary to Matrix Bernstein inequality, cf. Corollary 6.2.1 in [29]) Let
Z� ∈ R

n×m be a matrix, and let {Z(i) ∈ R
n×m}Ni=1 be a sequence of i.i.d. matrices with

E

[
Z(i)

]
= Z�. Denote Ẑ = 1

N
∑N

i=1 Z(i) and �Z� = Ẑ − Z�. Let the distribution of Z(i) be
such that there exists a constant L with ||Z(i)|| ≤ L.

Let γ := max
(∥∥∥∥E

[
Z(i)

(
Z(i)

)]∥∥∥∥ ,
∥∥∥∥E

[(
Z(i)

)	
Z(i)

]∥∥∥∥

)
, and then

P
[‖�Z�‖ ≥ t

] ≤ (m + n) exp
(−Nt2/2

γ + 2Lt/3

)
.

Using Jensen’s inequality, one has γ ≤ L2, and

P
[‖�Z�‖ ≥ t

] ≤ (m + n) exp
(−Nt2/2
L2 + 2Lt/3

)
. (69)

X. Tang et al. Res Math Sci (2023) 10:19 Page 45 of 54 19

Theorem 33 (Error bound over TTNS tensor cores) Let p� : [n1]×· · ·×[nd] → R be a den-
sity function satisfy the TTNS assumption in Condition 1. Fix a sketch function {Ti, Si}di=1
which satisfies the recursive sketching assumption in Condition 4. Let {A�

i , B
�
i , G

�
i , Z

�
i }di=1

be as in Theorem 9. Moreover, let {Âi, B̂i, Ĝi, Ẑi}di=1 be as in Algorithm 1 with p̂ as input.
Suppose further that for some fixed δ ∈ (0, 1), one has

‖Z�
k − Ẑk‖ ≤ ζkδ, (70)

where ζk is defined by a series of constants as follows:

ζk :=
(
6
cC
ck ;Z

)−1
ξ , ξ := 1 ∧ min

i∈[d]
(2ci;A (ci;S + ci;G))−1 , (71)

and the constants are defined as follows:

• cC = maxi∈[d] |C(i)|,
• ck ;Z = 1 when k = root, and ck ;Z = σr(k,P(k)) (Z�

k (β(k,C(k)), xk ; γ(k,P(k)))) otherwise.
• ck ;G = 1/~G�

k~,
• ck ;A = 1 when k = leaf, and ck ;A = ‖ (A�

k
)† ‖ otherwise,

• ck ;S = 1 when k = leaf, and ck ;S = ∏
w∈C(k) ||sw(β(w,P(w));β(w,C(w)), xw)|| otherwise.

Then, there exists a TTNS tensor core {G◦
i }di=1 for p

� in the sense of Definition 5, such that
~G◦

i ~ = ~G�
i ~, and the following holds:

~Ĝk − G◦
k~

~G◦
k~

≤ δ. (72)

We defer the proof of Theorem 33 to the end of this subsection. As a direct application,
one obtain the sample complexity of TTNS-Sketch:

Theorem 34 (Sample Complexity of TTNS-Sketch) Assume the setting and notation of
Theorem 33. Let p̂TS denote the TTNS tensor formed by the TTNS tensor core {Ĝi}di=1. In
particular, {Ĝi}di=1 is the output of Algorithm 1 with the empirical distribution p̂ formed
by N i.i.d. samples (y(i)1 , . . . , y(i)d)Ni=1. Let Z

(i)
k be the i-th sample estimate of Z�

k , i.e.

Z(i)
k (β(k,C(k)), xk , γ(k,P(k))) := Sk (β(k,C(k)), y

(i)
L(k))1(y

(i)
k = xk)Tk (y

(i)
R(k), γ(k,P(k))),

and set Lk as an upper bound of ‖Z(i)
k (β(k,C(k)), xk ; γ(k,P(k)))‖. Define L = maxk∈[d] Lk .

For η ∈ (0, 1) and ε ∈ (0, 1), suppose

N ≥ 18L2d2 + 4Lεζd
ζ 2ε2

log
(
(ln + m)d

η

)
,

and the constants are defined as follows:

• ζ = maxk∈[d] ζk , with ζk as in Theorem 33.
• l = maxk∈[d] lk , where lk = ∏

w∈C(k) l(w,k)
• m = maxk∈[d]mk, where mk = m(k,P(k)).
• n = maxk∈[d] nk .

 19 Page 46 of 54 X. Tang et al. Res Math Sci (2023) 10:19

Then with probability at least 1 − η one has

‖p̂TS − p�‖∞
~G�

1~ · · ·~G�
d~

≤ ε. (73)

Proof (of Theorem 34)
Suppose that the inequality (70) holds with δ = ε

3d . In the setting of Theorem 33, note
that p� is formed by {G◦

i }di=1, and p̂TS is formed by {G◦
i +�G◦

i }di=1 with~�G◦
i ~ ≤ ε

3d~G◦
i ~.

Moreover, one has ~G�
i ~ = ~G◦

i ~. Applying (66) in Lemma 27, one thus has

‖p̂TS − p�‖∞
~G�

1~ · · ·~G�
d~

= ‖p̂TS − p�‖∞
~G◦

1~ · · ·~G◦
d~

≤ ε.

By a simple union bound argument, it suffices to find a sample size that (70) is guaranteed
for each individual k ∈ [d] with δ = ε

3d and with probability 1 − η
d . We apply (69) in

Corollary 32, where Z�
k is a matrix of size Rlknk×mk . With the choice of (l, n,m, L) as set in

the theorem statement, one has

P
[‖�Z�

k‖ ≥ t
] ≤ (ln + m) exp

(−Nt2/2
L2 + 2Lt/3

)
.

It then suffices for one to find a lower bound for N so that for t = ζ ε
3d one has

(ln + m) exp
(−Nt2/2
L2 + 2Lt/3

)
≤ η/d.

By simple algebra, it suffices to lower bound N by the following quantity:

N ≥ 2L2 + 4Lt/3
t2

log
(
(ln + m)d

η

)
= 18L2d2 + 4Lεζd

ζ 2ε2
log

(
(ln + m)d

η

)
.

�
As a corollary, for aMarkov sketch function, note that eachZ(i)

k is a tensorwith one entry
being of value one, the rest being zero. Under this setting, note that ‖Z(i)

k ‖ ≤ ‖Z(i)
k ‖F = 1,

and hence one can set L = 1. Let �(T) denote the maximal degree of a tree T . One has
l ≤ n�(T)−1 and m = n ≤ ln. Thus one obtains a sample complexity for TTNS-Sketch
under Markov sketching:

Corollary 35 (Sample Complexity of TTNS-Sketch for Markov Sketch function) Suppose
that p� is a graphical model over a tree T , with the sketching function being the Markov
sketch function specified in Lemma 13. Suppose

N ≥ 18d2 + 4εζd
ζ 2ε2

log
(
2n�(T)d

η

)
.

Then, with probability at least 1 − η, one has

‖p̂TS − p�‖∞
~G�

1~ · · ·~G�
d~

≤ ε. (74)

In the remainder of this subsection, we give the proof of Theorem 33, which is a cul-
mination of all previous statements, the proof of which are of secondary interest and are
included in Sect. 8. For some intuition of Theorem 33, the factors in ζk is set such that ξ

can bound the sample estimation error of the sketched down core determining equation

X. Tang et al. Res Math Sci (2023) 10:19 Page 47 of 54 19

in Algorithm 1. One then uses Lemma 28 to derive (72). As a sanity check of the defined
constants, note that ξi := (2ci;A (ci;S + ci;G))−1 can be thought of as a homogeneous con-
stant. That is, for any non-zero scaling constant {qi}di=1, changing the sketch cores from
{si}di=1 to {qisi}di=1 won’t affect ξi, which is because the resultant multiplicative change to
{ci;A, ci;S, ci;G} will be cancelled out in ξi. One can think of ξ = 1 ∧ mini ξi in Theorem 33
as serving the role of condition number.Moreover, because (Z�

k −Ẑk) ∝ ck ;Z by definition,
it follows the condition in (70) will not be affected if a scaling constant is applied to sketch
cores.

Proof (of Theorem 33) Following the short-hand in Algorithm 3, for the joint variables
we write βk ← β(k,C(k)), γk ← γP(k),αk ← α(k,P(k)), and for the bond dimensions we
write rk ← r(P(k),k), lk ← ∏

w∈C(k) l(w,k), mk ← m(k,P(k)). Moreover, if k is leaf, then we
understand βk as a joint variable taking value in {1}, and lk = 1. Likewise, if k is root, then
we understand αk , γk respectively as a joint variable taking value in {1}, and rk = mk = 1.
In this notation, when k is leaf or root, the joint variables sketchZk is conveniently written
as Zk (βk , xk ; γk).
For this proof, we will fix a canonical unfolding matrix structure for the tensors

used. For Zk (βk , xk , γk) being one of {Z�
k , Ẑk ,�Z�

k }, we reshape it as Zk (βk , xk ; γk). For
Bk (βk , xk ,αk) being one of {B�

k , B
◦
k , B̂k ,�B�

k ,�B◦
k}, we reshape it as Bk (βk , xk ;αk). For

Ak (βk ,α(k,C(k))) being one of {A�
k , A

◦
k , Âk ,�A�

k ,�A◦
k}, we reshape it as Ak (βk ;α(k,C(k))). For

sk (β(k,P(k)),βk , xk), we reshape it as sk (β(k,P(k));βk , xk). ForGk (α(k,C(k)), xk ,αk) being one of
{G�

k , G
◦
k , Ĝk ,�G�

k ,�G◦
k }, we reshape it as Gk (α(k,C(k)); xk ,αk).

Fix a non-root k , recall that B�
k and B̂k are the first rk left singular vectors of Z�

k and Ẑk ,
respectively. One applies Corollary 31: if ‖�Z�

k‖ ≤ (1 − 1/
√
2)σrk (Z�

k), then one can find
Rk ∈ O(rk) such that one can define B◦

k := B�
kRk so that

B̂k = B◦
k + �B◦

k , ‖�B◦
k‖ ≤ 2‖�Z�

k‖
σrk (Z�

k)

and by (v) in Lemma 23, one has

~�B◦
k~ ≤ 2‖�Z�

k‖
σrk (Z�

k)
. (75)

Meanwhile, if k is the root, there is no SVD step. In this case, the perturbation �B�
k is

simply �Z�
k . For consistency, when k is the root, we set B◦

k = B�
k , and the corresponding

perturbation �B◦
k is just �Z�

k .
In summary, B◦

k is a rotation of B�
k , and B̂k differs from B◦

k by a perturbation �B◦
k , for

which one has an error bound. For a “rotated” version of A�
k , define

A◦
k (β(k,C(k)),α(k,C(k))) :=

∏

w∈C(k)

∑

(βw,xw)
sw(β(w,k),βw, xw)B◦

w(βw, xw,α(w,k)) (76)

Viewed in the unfolding matrix structure fixed in the beginning of proof, one can write
A◦
k = ⊗

w∈C(k) swB◦
w . Likewise, one has Âk = ⊗

w∈C(k) swB̂w = ⊗
w∈C(k)

(
swB◦

w + sw�B◦
w
)
.

Now, with the chosen unfolding matrix structure, consider the following “rotated” ver-
sions of (21):

G◦
k = B◦

k (βk ; xk ,αk) if k is a leaf,

A◦
kG

◦
k = B◦

k (βk ; xk ,αk) otherwise.
(77)

 19 Page 48 of 54 X. Tang et al. Res Math Sci (2023) 10:19

We will first prove that {G◦
i }di=1 forms a TTNS tensor core for p� in the sense of Def-

inition 5. Suppose one has {��
k→P(k)}k �= root defined according to Condition 2. Then,

Theorem 9 proves that {G�
i }di=1 solves the CDE (5) in Theorem 7 for the choice of

gauge as {��
k→P(k)}k �= root. Now consider (5) for a rotated choice of gauge {�◦

k→P(k) :=
��

k→P(k)Rk}k �= root. One can directly check that the sketched down equation coincides
with (77), and Theorem 9 ensures that the solution {G◦

i }di=1 is unique and forms a TTNS
tensor core for p�.
Next, we prove that ~G◦

k~ = ~G�
k~, with the 3-tensor view for G◦

k , G
�
k as in Definition

25. As the coefficients A◦
k ’s and right-hand sides B◦

k ’s are simply the rotations of A�
k ’s and

B�
k ’s of (21), one can verify thatG◦

k is a rotation ofG�
k . If k is not leaf nor root, the equation

for G◦
k can be rewritten as

⎛

⎝
⊗

w∈C(k)
swB�

wRw

⎞

⎠G◦
k = B�

kRk , (78)

whereas the equation for G�
k is

⎛

⎝
⊗

w∈C(k)
swB�

w

⎞

⎠G�
k = B�

k .

For the rotationmatrix Rk (α;β) ∈ O(rk), one gives it a 3-tensor view as Rk (α; 1;β) in the
sense of Definition 24. One can directly verify that the following equation for G◦

k solves (
78):

G◦
k =

⎛

⎝
⊗

w∈C(k)
R	
w

⎞

⎠ ◦ G�
k ◦ Rk . (79)

Likewise, G◦
k = G�

k ◦ Rk if k is leaf, and G◦
k =

(⊗
w∈C(k) R	

w

)
◦ G�

k if k is root. Then
~G◦

k~ = ~G�
k~ as a consequence. The constructive form in (79) also gives amore intuitive

sense of why {G◦
i }di=1 forms a TTNS tensor core in the same way as {G�

i }di=1. The reason
is that each Rk and R	

k comes in pairs, which does not change the formed TTNS tensor
itself.
Next, we prove that, for �B◦

k := B̂k − B◦
k and �A◦

k := Âk − A◦
k , the assumption (70)

leads to the the following bound:

‖�B◦
k‖ ≤ ξδ, ‖�A◦

k‖ ≤ ck ;Sξδ. (80)

First, for �B◦
k ’s, we will derive a tighter bound

‖�B◦
k‖ ≤ ξδ

3cC
, (81)

which implies ‖�B◦
k‖ ≤ ξδ as 3cC ≥ 1. To see this, using (75), one has for any non-root k ,

‖�B◦
k‖ ≤ 2‖�Z�

k‖
σrk (Z�

k)
≤ 2ζkδ

ck ;Z
= 2

ck ;Z
ck ;Z
6cC

ξδ ≤ ξδ

3cC
.

X. Tang et al. Res Math Sci (2023) 10:19 Page 49 of 54 19

If k is the root, recall that �B◦
k = �Z�

k , hence using ck ;Z = 1,

‖�B◦
k‖ = ‖�Z�

k‖ ≤ ζkδ = ck ;Z
6cC

ξδ ≤ ξδ

3cC
.

Therefore, (81) holds.
Next, for a non-leaf k , recall that

�A◦
k =

⊗

w∈C(k)
(swB◦

w + sw�B◦
w) −

⊗

w∈C(k)
swB◦

w

=
⎛

⎝
⊗

w∈C(k)
sw

⎞

⎠

⎛

⎝
⊗

w∈C(k)
(B◦

w + �B◦
w) −

⊗

w∈C(k)
B◦
w

⎞

⎠

By definition, one has ‖⊗w∈C(k) sw‖ = ck ;S . Note that ‖B◦
w‖ = 1 and ‖�B◦

w‖ ≤ ξ
3cC δ.

Hence, one can apply Lemma 29, which shows

‖�A◦
k‖ ≤ ck ;S

⎛

⎝
∑

w∈C(k)
‖�B◦

w‖
⎞

⎠ exp

⎛

⎝
∑

w∈C(k)
‖�B◦

w‖
⎞

⎠ ,

Using (81),

∑

w∈C(k)
‖�B◦

w‖ ≤ cC · max
w∈[d]

‖�B◦
w‖ ≤ cC

ξδ

3cC
≤ ξδ

3
.

Hence,

‖�A◦
k‖ ≤ ck ;S

⎛

⎝
∑

w∈C(k)
‖�B◦

w‖
⎞

⎠ exp

⎛

⎝
∑

w∈C(k)
‖�B◦

w‖
⎞

⎠

≤ ck ;S
ξδ

3
exp(1)

≤ ck ;Sξδ,

where the last two steps hold because ξδ
3 < 1 and exp(1) < 3.

It remains to show how (80) lead to (72).
If k is a leaf,

~�G◦
k~

~G◦
k~

= ~�B◦
k~

~G◦
k~

≤ ‖�B◦
k‖

~G◦
k~

≤ ck ;Gξδ ≤ δ,

where the first equation follows from �G◦
k = �B◦

k in (79), the first inequality comes
from (V) in Lemma 23, and the last inequality uses ck ;A = ck ;S = 1 and ξ ≤(
2ck ;A

(
ck ;S + ck ;G

))−1 = 1
2
(
1 + ck ;G

)−1.
Importantly, note that

A◦
k =

⎛

⎝
⊗

w∈C(k)
swB�

w

⎞

⎠

⎛

⎝
⊗

w∈C(k)
Rw

⎞

⎠ ,

 19 Page 50 of 54 X. Tang et al. Res Math Sci (2023) 10:19

and so the fact that each Rw is orthogonal implies ‖ (A◦
k
)† ‖ = ‖ (A�

k
)† ‖ = ck ;A. For any

non-leaf k , note that ξ , δ ≤ 1 leads to ‖ (A◦
k
)† ‖‖�A◦

k‖ ≤ ck ;Ack ;Sξδ ≤ 1/2. From Lemma
28 and (V) in Lemma 23, it follows that

~�G◦
k~

~G◦
k~

≤ 2‖ (A◦
k
)† ‖ (‖�A◦

k‖ + ‖�B◦
k‖ck ;G

)

≤ 2ck ;A
(
ck ;S + ck ;G

)
ξδ

≤ δ,

and so we are done.

�

E.4 Remarks on sample complexity bound for total variation distance

Using the proof technique as outline before, one can derive a sample complexity upper
bound on the total variation norm via the l1 distance between p� and p̂TS. Note that one
can define a new norm ~·~1 by

~G(α; x;β)~1 :=
∑

x
‖G(·, x, ·)‖,

which is a similar definition to ~·~.
The proofs in Sect. 8 are also written such that the adaptation to~·~1 is straightforward.

First, all of the results in Lemma 23 will hold in this new norm, with only a change in the
constant in (v). Second, from the~·~1 version of Lemma 23, one can bound the global ‖·‖1
error by the core-wise ~·~1 error by an adaptation of Lemma 27. Finally, for local ~·~1
error on cores, the proof of Lemma 28 also proves that Lemma 28 holds if one replaces
~·~ by the new ~·~1 norm. Importantly, the N = O(d2) scaling will still hold under the
l1-norm.

E.5 Proof of results

Proof (of Lemma 23)
In the notation of Definition 19, one can write the definition of ◦ by

G ◦ G′(·, (x, y), ·) = G(·, x, ·)G′(·, y, ·).

Associativity of ◦ thus follows from associativity of matrix product, and likewise the
inequality for ◦ comes from submultiplicativity of matrix product under spectral norm:

max
(x,y)

‖G ◦ G′(·, (x, y), ·)‖ = max
(x,y)

‖G(·, x, ·)G′(·, y, ·)‖

≤
(
max
x

‖G(·, x, ·)‖
)(

max
y

‖G′(·, y, ·)‖
)

Likewise, by abuse of notation, also use ⊗ as the Kronecker product operation over
matrices. Then one can simplify and write the definition of ⊗ by

G ⊗ G′(·, (x, y), ·) = G(·, x, ·) ⊗ G′(·, y, ·).

Associativity of ⊗ likewise follows from associativity of Kronecker product over matri-
ces. Likewise, the equality for ⊗ comes from multiplicativity of matrix product under

X. Tang et al. Res Math Sci (2023) 10:19 Page 51 of 54 19

spectral norm:

‖G ⊗ G′(·, (x, y), ·)‖ = ‖G(·, x, ·)‖ · ‖G′(·, y, ·)‖

We now prove (V). For a vector v ∈ R
r2 , one can view the vector G(α, x;β)v as the

concatenation of n smaller vectors of the form G(·, x; ·)v. For the upper bound, one has

‖G(α, x;β)v‖ =
∑

x∈[n]
‖G(·, x; ·)v‖ ≤ nmax

x∈[n]
‖G(·, x; ·)‖‖v‖ = n~G~‖v‖,

where is done after taking supremum over v with ‖v‖ = 1.
For the lower bound, one has

‖G(α, x;β)v‖ =
∑

x∈[n]
‖G(·, x; ·)v‖ ≥ max

x∈[n]
‖G(·, x; ·)‖‖v‖ = ~G~‖v‖,

and likewise one is done after taking supremum over v with ‖v‖ = 1.

�

Proof (of Lemma 26) Suppose that in T , the maximum distance from the root node is L.
At a level l ∈ {1, . . . , L}, suppose there are dl nodes inT which are of distance l to the root,
denoted by the set {vli}dli=1. Then, if one views p as a 3-tensor of size {1}×

[∏d
i=1 ni

]
×{1} →

R, then one has

p = Groot(T) ◦
⊗

i∈[d1]
Gv1i

◦
⊗

k∈[d2]
Gv2j

◦ . . . ◦
⊗

k∈[dL]
GvLk

, (82)

which is only a consequence of the structure of theTTNSansatz and the 3-tensor structure
of TTNS tensor core in Definition 25. Then, by the chosen 3-tensor structure of p, one
has ‖p‖∞ = ~p~. By Lemma 23, one has

‖p‖∞ = ~p~ ≤ ~Groot(T)~
L∏

l=1
~⊗
i∈[dl]

Gvli
~ = ~Groot(T)~

L∏

l=1

∏

i∈[dl]
~Gvli

~ =
∏

i∈[d]
~Gi~,

(83)

where the first inequality and the second equality follows from (63) and (64) in Lemma
23.

�

Proof (of Lemma 27) Let p0, . . . , pd be a sequence of tensors such that p0 = p, and pk is
the tensor formed by the TTNS tensor core {Gi + �Gi}ki=1 ∪ {Gj}j /∈[k]. One is interested
in the error ‖pd − p0‖∞, and one can bound by

‖pd − p0‖∞ ≤
d∑

k=1
‖pk − pk−1‖∞.

 19 Page 52 of 54 X. Tang et al. Res Math Sci (2023) 10:19

One can then bound the magnitude of each term in this telescoping sum. Note that
pk − pk−1 is a TTNS ansatz formed by cores {Gi + �Gi}k−1

i=1 ∪ {�Gk} ∪ {Gj}dj=k+1, and
thus by Lemma 26

‖pk − pk−1‖∞ ≤
k−1∏

i=1
~Gi + �Gi~~�Gk~

d∏

j=k+1
~Gj~ ≤ δk

d∏

i=1
(1 + δi)

d∏

i=1
~�Gi~.

Therefore, using 1 + x ≤ exp(x), one has

‖pd − p0‖∞ ≤
⎛

⎝
d∑

i=1
δi

⎞

⎠
d∏

i=1
(1 + δi)

d∏

i=1
~�Gi~ ≤

⎛

⎝
d∑

i=1
δi

⎞

⎠ exp

⎛

⎝
d∑

i=1
δi

⎞

⎠
d∏

i=1
~�Gi~

�

Proof (of Lemma 28) Note that (68) is only a corollary of (67). To prove (67), it suffices
to prove that for any i ∈ [n], one has

‖�X�(·, i, ·)‖ ≤ ‖ (A�)† ‖
1 − ‖ (A�)† ‖‖�A�‖

(‖�A�‖‖X�(·, i, ·)‖ + ‖�B�(·, i, ·)‖) , (84)

whereby (67) is obtained by taking maximum over i ∈ [n] on both sides.
Based on the above observation, one can simplify notation and reduce argument over

~·~ to regular spectral norm over matrices. For a fixed i ∈ [n], define C� := B�(·, i, ·).
Let Y � be the matrix which is the unique exact solution the linear equation A�Y = C�.
Naturally, one has Y � = X�(·, i, ·).
Likewise, define �C� = �B�(·, i, ·) as the corresponding perturbation to C�, and let

Y � + �Y � be the matrix which is the unique solution the linear equation (A� + �A�)Y =
(C� + �C�) in the sense of least squares. As before, one has Y � + �Y � = X�(·, i, ·) +
�X�(·, i, ·). Then, (84) is equivalent to the following inequality:

‖�Y �‖ ≤ ‖ (A�)† ‖
1 − ‖ (A�)† ‖‖�A�‖

(‖�A�‖‖X�‖ + ‖�C�‖) . (85)

To reduce further, for an arbitrary v ∈ R
m, note that it suffices to prove the following

result

‖�Y �v‖ ≤ ‖ (A�)† ‖
1 − ‖ (A�)† ‖‖�A�‖

(‖�A�‖‖Y �v‖ + ‖�C�v‖) , (86)

and (85) follows by taking supremum over v with ‖v‖ = 1.
To simplify further, define b� := C�v ∈ R

l , and let x� := Y �v ∈ R
r be the unique exact

solution toA�x = b�.Moreover, let�b� := �C�v and let�x� := �Y �v, and then x�+�x�

solves the linear equation (A� + �A�)x = (b� + �b�) in the sense of least squares. This
is exactly the setting of Theorem 3.48 in [31], because of which (86) holds as a corollary.
Thus we are done.
�

X. Tang et al. Res Math Sci (2023) 10:19 Page 53 of 54 19

Proof (of Lemma 29)
Let C ′

i = Ci + Ei, then

n⊗

i=1
(Ci + Ei) −

n⊗

i=1
Ci = (C ′

1 ⊗ · · · ⊗ C ′
n) − (C1 ⊗ C ′

2 ⊗ · · · ⊗ C ′
n)

+ (C1 ⊗ C ′
2 ⊗ · · · ⊗ C ′

n) − (C1 ⊗ C2 ⊗ C ′
3 ⊗ · · · ⊗ C ′

n)

+ · · ·
+ (C1 ⊗ · · · ⊗ Cn−1 ⊗ C ′

n) − (C1 ⊗ · · · ⊗ Cn).
(87)

The first line on the right-hand side of (87) reduces to E1 ⊗ C ′
2 ⊗ · · · ⊗ C ′

n. Since
‖C ′

i‖ ≤ ‖Ci‖ + ‖Ei‖ ≤ 1 + δi,

‖E1 ⊗C ′
2 ⊗· · ·⊗C ′

n‖ = ‖E1‖‖C ′
2‖ · · · ‖C ′

n‖ ≤ δ1(1+ δ2) · · · (1+ δn) ≤ δ1 ·
n∏

i=1
(1+ δi).

The norm of the j-th line on the right-hand side of (87) is upper bounded by δj ·∏n
i=1(1+

δi). Therefore, using 1 + x ≤ exp(x), one has
∥∥∥∥∥

n⊗

i=1
(Ci + Ei) −

n⊗

i=1
Ci

∥∥∥∥∥ ≤
(n∑

i=1
δi

)
·

n∏

i=1
(1 + δi) ≤

(n∑

i=1
δi

)
exp

(n∑

i=1
δi

)
.

�
Proof (of Corollary 31 and Corollary 32)
For Corollary 31, we apply Theorem 2.9, (2.26a) in [5]: if ‖�Z�‖ ≤ (1 − 1/

√
2)σr(Z�),

then

dist(B, B�) ≤ 2‖ (B�)	 �Z�‖
σr(Z�) − σr+1(Z�)

≤ 2‖ (B�)	 ‖‖�Z�‖
σr(Z�) − σr+1(Z�)

,

and we are done by applying σr+1(Z�) = 0 and ‖B�‖ = 1.
For Corollary 32, only (69) is new, and one only needs to justify γ ≤ L2. By Jensen’s

theorem and sub-multiplicativity of spectral norm, one has
∥∥∥∥E

[
Z(i)

(
Z(i)

)]∥∥∥∥ ≤ E

[∥∥∥∥Z
(i)
(
Z(i)

)	∥∥∥∥
]

≤ E

[∥∥∥Z(i)
∥∥∥
2
]

≤ L2.

�
.
Received: 17 October 2022 Accepted: 19 March 2023

References
1. Bhattacharyya, Arnab, Gayen, Sutanu, Price, Eric, Vinodchandran, NV: Near-Optimal Learning of Tree-Structured Dis-

tributions by Chow-Liu. In: 2021 Proceedings of the 53rd annual acm SIGACT symposium on theory of computing,
pp 147- 160

2. Bradley, Tai-Danae., Stoudenmire, E Miles, Terilla, John: Modeling sequences with quantum states: a look under the
hood. Mach. Learn. Sci. Technol. 1(3), 035008 (2020)

3. Bresler, Guy, Karzand, Mina: Learning a tree-structured ising model in order to make predictions. Ann. Statist. 48(2),
713–737 (2020)

4. Candes, Emmanuel J., Plan, Yaniv: Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2010)

 19 Page 54 of 54 X. Tang et al. Res Math Sci (2023) 10:19

5. Chen, Yuxin, Chi, Yuejie, Fan, Jianqing, Ma, Cong: Spectral methods for data science: a statistical perspective:
ISSN=1935-8237 Foundations and Trends in Machine. Learning 14(5), 566–806 (2021). https://doi.org/10.1561/
2200000079

6. Cheng, Song, Wang, Lei, Xiang, Tao, Zhang, Pan: Tree tensor networks for generative modeling. Phys. Rev. B 99(15),
155131 (2019)

7. Chow, C.K.C.N., Liu, Cong: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inform.
Theory 14(3), 462–467 (1968)

8. Dolgov, Sergey, Anaya-Izquierdo, Karim, Fox, Colin, Scheichl, Robert: Approximation and sampling of multivariate
probability distributions in the tensor train decomposition. Statist. Comput. 303, 603–625 (2020)

9. Gandy, Silvia, Recht, Benjamin, Yamada, Isao: Tensor completion and low-n-rank tensor recovery via convex optimiza-
tion. Inverse Probl. 27(2), 025010 (2011)

10. Glasser, Ivan, Sweke, Ryan, Pancotti, Nicola, Eisert, Jens, Cirac, Ignacio: Expressive power of tensor-network factoriza-
tions for probabilistic modeling. Adv. Neural Inform. Process. Syst. 32 (2019)

11. Gomez, Abigail McClain, Yelin, Susanne F, Najafi, Khadijeh: Born machines for periodic and open XY quantum spin
chains, (2021), arXiv preprint arXiv:2112.05326,

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative
adversarial nets. Adv. Neural Inform. Process. Syst. 27, 139 (2014)

13. Han, Zhao-Yu., Wang, Jun, Fan, Heng,Wang, Lei, Zhang, Pan: Unsupervised generativemodeling usingmatrix product
states. Phys. Rev. X 8(3), 031012 (2018)

14. Hinton, Geoffrey E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–
1800 (2002)

15. Hur, Yoonhaeng, Hoskins, Jeremy G, Lindsey, Michael, Stoudenmire, E Miles, Khoo, Yuehaw: Generative modeling via
tensor train sketching, (2022). arXiv preprint arXiv:2202.11788,

16. Khoo, Yuehaw, Lu, Jianfeng, Ying, Lexing: Efficient construction of tensor ring representations from sampling, (2017),
arXiv preprint arXiv:1711.00954,

17. Kingma, Diederik P, Welling, Max: Auto-encoding variational bayes, (2013), arXiv preprint arXiv:1312.6114,
18. LeCun, Yann, Chopra, Sumit, Hadsell, Raia, Ranzato, M., Huang, F.: A tutorial on energy-based learning. Predict Struct.

data. 1, 10 (2006)
19. Lin, Lin, Lu, Jianfeng, Ying, Lexing: Fast construction of hierarchical matrix representation frommatrix-vector multipli-

cation. J. Comput. Phys. 230(10), 4071–4087 (2011)
20. McClean, Jarrod R., Boixo, Sergio, Smelyanskiy, Vadim N., Babbush, Ryan, Neven, Hartmut: Barren plateaus in quantum

neural network training landscapes. Nat. Commun. 9(1), 1–6 (2018)
21. Nakatani, Naoki, Chan, Garnet Kin-Lic.: Efficient tree tensor network states (TTNS) for quantum chemistry: generaliza-

tions of the density matrix renormalization group algorithm. J. Chem. Phys. 138(13), 134113 (2013)
22. Oseledets, Ivan V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
23. Rezende, Danilo, Mohamed, Shakir: Variational inference with normalizing flows. In: PMLR, 2015 International confer-

ence on machine learning. pp 1530- 1538 (2015)
24. Richard, Emile, Montanari, Andrea: A statistical model for tensor pca. Adv. Neural Inform. Process. Syst. 27 (2014)
25. Shi, Y.-Y., Duan, L.-M., Vidal, Guifre: Classical simulation of quantum many-body systems with a tree tensor network.

Phys. Rev. A 74(2), 022320 (2006)
26. Silverman, Bernard W: Density Estimation for Statistics and Data Analysis, Routledge, (2018)
27. Song, Yang, Ermon, Stefano: Generativemodeling by estimating gradients of the data distribution. Adv. Neural Inform.

Process. Syst. 32 (2019)
28. Tabak, Esteban G., Vanden-Eijnden, Eric: Density estimation by dual ascent of the log-likelihood. Commun. Math. Sci.

8(1), 217–233 (2010)
29. Tropp, Joel A., et al.: An introduction to matrix concentration inequalities. Foundat. Trends. Mach. Learning 8(1–2),

1–230 (2015)
30. Verstraete, Frank, Wolf, Michael M., Perez-Garcia, David, Cirac, J Ignacio: Criticality: the area law, and the computational

power of projected entangled pair states. Phys. Rev. Lett. 96(22), 220601 (2006)
31. Wendland, Holger: Numerical Linear Algebra: An Introduction, Cambridge Texts in Applied Mathematics. Cambridge

University Press, Cambridge (2017)
32. Woodruff, David P., et al.: Sketching as a tool for numerical linear algebra. Found. Trends. Theoret. Comput. Sci.

10(1–2), 1–157 (2014)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this
article is solely governed by the terms of such publishing agreement and applicable law.

https://doi.org/10.1561/2200000079
https://doi.org/10.1561/2200000079
http://arxiv.org/abs/2112.05326
http://arxiv.org/abs/2202.11788
http://arxiv.org/abs/1711.00954
http://arxiv.org/abs/1312.6114

	Generative modeling via tree tensor network states
	Abstract
	1 Introduction
	1.1 Extending tensor train to tree-based tensor networks
	1.2 Extending model inference of tree-based graphical models to tree-based tensor networks
	1.3 Comparison between TTNS-Sketch and iterative algorithms
	1.4 Main contribution
	1.5 Outline

	2 Introduction to TTNS
	2.1 Notation for distribution
	2.2 Notation for tree structure
	2.3 Notation for TTNS ansatz
	2.4 Equation for TTNS ansatz

	3 Main idea of TTNS-Sketch
	3.1 Gauge degree of freedom for a TTNS ansatz
	3.2 Sketching down core determining equation
	3.3 Derivation of Ak and Bk in TTNS-Sketch
	3.4 Sample estimation of Ak and Bk in TTNS-Sketch

	4 TTNS-Sketch for empirical distributions
	4.1 Condition for consistency of TTNS-Sketch
	4.2 Sample complexity of TTNS-Sketch
	4.3 Estimation of target rank r

	5 Choice of sketch function
	5.1 Connection of sketching to moment matching
	5.2 Recursive sketch functions
	5.3 Markov sketch function
	5.4 Higher order Markov sketch function
	5.5 Perturbative sketching

	6 Topology finding
	6.1 The Chow-Liu algorithm for topology finding
	6.2 Sample complexity for successful tree topology recovery

	7 Numerical result
	7.1 Numerical case study: tree graphical model with different input tree topology
	7.2 Numerical case study: 1D spin system with non-local interactions
	7.3 Numerical case study: tree graphical model with large variable dimension
	7.4 Numerical case study: spin system with long range interactions

	8 Conclusion
	Appendix A Proof of Theorem 7
	Appendix B Proof of Theorem 9
	Appendix C Proof of Lemma 13
	Appendix D Proof of Theorem 14
	Appendix E Sample complexity bound of TTNS-Sketch
	E.1 Preliminaries
	E.2 3-tensor structure for TTNS
	E.3 Derivation for sample complexity of TTNS-Sketch
	E.4 Remarks on sample complexity bound for total variation distance
	E.5 Proof of results

	References

