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ON THE GRADIENT FLOW STRUCTURE OF
THE ISOTROPIC LANDAU EQUATION∗

JING AN† AND LEXING YING‡

Abstract. We prove that the isotropic Landau equation equipped with the Coulomb potential,
introduced by Krieger-Strain and Gualdani-Guillen, can be identified with the gradient flow of the
entropy in the probability space with respect to a Riemannian metric tensor with nonlocal mobility.
We give characterizations of the corresponding geodesics equations and present a convergence rate
result by estimating its Hessian operator.
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1. Introduction
Since Otto’s pioneering work on analyzing the porous medium equation [21], there

has been a lot of work on exploring gradient flow structures of different partial differential
equations in the space of probability measures. The gradient flow method has proven
to be important for both analytical and numerical simulation purposes, for example
[2, 5, 6, 14,20,22], just to name a few .

Although there has been a vast amount of literature on mathematical analysis of
Boltzmann and Landau equations, the investigation of their gradient flow structures
has only started quite recently: for example, see [1, 8] for recent analysis results on
the Boltzmann equation and [4] for a novel numerical method on approximating the
homogeneous Landau equation. Very recently, Carrillo et al. [3] carry out in-depth
gradient flow analysis of the homogeneous Landau equation and provide the theoretical
basis of the ϵ−approximated Landau equation that [4] aims to solve. As all these results
are based on the dissipation of the entropy functional, i.e., H-theorems, those kinetic
equations can be viewed as gradient flows of the entropy with respect to various specific
geometries.

The reason of limited progress on the gradient flow approach of the Boltzmann-like
kinetic equations is the following: unlike the classical L2 Wasserstein distance and gen-
eralized Wasserstein distance regarding concave, nonlinear, and local mobilities (see for
example [7, 9, 16–19]), the metrics associated with these Boltzmann-like kinetic equa-
tions involve nonlocal mobilities, which cause significant challenges when one tries to
analyze related displacement convexity, functional inequalities, contractions and so on.

The goal of this short note is to identify the gradient flow structure of a modified
version of classical Landau-Coulomb equations, the isotropic Landau equation, which
has drawn interests within the kinetic community recently [10–13, 15]. Because the
isotropic Landau equation ignores the projection matrix, some of its properties are
different from the original Landau equation. This also makes our note distinct from
other papers on the gradient flow structure of the classical Landau equation. Given this
gradient flow structure, we are able to characterize some basic geometric properties and
calculate a time-dependent convergence rate for the entropy dissipation.
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1.1. The isotropic Landau equation. Let us first recall the homogeneous
Landau equation with the Coulomb potential

∂tρ=∇·(A[ρ]∇ρ−ρ∇Lρ), with A[ρ]=
1

8π|x|

(
Id−

x⊗x

|x|2

)
∗ρ. (1.1)

The modified Landau equation, which shares structural similarities with Landau equa-
tion from plasma physics and was first considered by Krieger and Strain [15], has the
form

∂tρ=Lρ∆ρ+αρ2, with Lρ=(−∆)−1ρ. (1.2)

So far its global-in-time well-posedness with radial monotonic positive initial data has
been proven in [10] for α∈ (0,74/75). When α=1, the above can be rewritten as

∂tρ=∇·(Lρ∇ρ−ρ∇Lρ), (1.3)

which is called the isotropic Landau equation since A[ρ] is replaced by Lρ and has
been studied by Gualdani and her collaborators in papers [11–13]. We recall that the
inverse fractional Laplacian operator (−∆)−s is a Riesz potential of order 2s and can
be expressed as

(−∆)−sρ(x,t) := cd,s

∫
Rd

ρ(y,t)

|x−y|d−2s
dy, t>0, (1.4)

with cd,s=
4sΓ(d/2+s)
|Γ(−s)|πd/2 . Here, for the isotropic Landau Equation (1.3), we only consider

the case where d=3 and s=1, thus c3,1=
1
4π .

1.2. Previous work on the isotropic Landau equation. The global-in-time
existence of smooth solutions, given radially symmetric and monotonically decreasing
initial data that have finite mass, energy and entropy, was shown in [11]. Later, the ra-
dial symmetry requirement was relaxed to even functions in [13]. Although the isotropic
Landau Equation (1.3) is structurally similar to the classical Landau-Coulomb equation,
in analysis it is very different, in the sense that its second moment increases in time as
mentioned in [12,13]. Because of that, many techniques in the classical Landau equation
do not directly apply and the dissipation computation

− d

dt
E(ρ)= 1

8π

∫
R3

∫
R3

ρ(x)ρ(y)

|x−y|

∣∣∣∣∇ρ(x)

ρ(x)
−∇ρ(y)

ρ(y)

∣∣∣∣2dxdy≥0 (1.5)

does not imply a Maxwellian equilibrium. In fact, the only steady solution for the
isotropic Landau equation is the identically zero solution.

Let us summarize some conditional regularity results from [12, 13], which will be
used to analyze a distance based on the nonlocal mobility to be introduced below. By
assuming that the initial data ρ0 is even, |E(ρ0)|<+∞ and ||ρ0||L1 =1 by normalization,
the following time-dependent dissipation-Fisher information relation holds

dE(ρ)
dt

+κ(t)

∫
R3

|∇
√
ρ(x,t)|2

1+ |x|
dx≤0, t>0, (1.6)

with κ=
1

8π

1

E(t)1/2+1
and E(t)=

∫
R3

|x|2

2
ρ(x,t)dx.



JING AN AND LEXING YING 2321

In addition, the second moment of data is locally bounded in time

E(t)≤Cp,ϵ(1+ t2p/(2p−4+ϵ)), t>0,
9

5
<p<2, 4−2p<ϵ<

2

5
.

Integrating (1.6) in time gives rise to∫ T

0

∫
R3

|∇√
ρ|2

1+ |x|
dxdt≤CT . (1.7)

The conditional regularity estimates in [12, 13] are built on assuming the following
ε−Poincaré inequality∫

R3

ρϕ2dx≤ε

∫
R3

(−∆)−1ρ|∇ϕ|2dx+Cε

∫
R3

ϕ2dx, for ϕ∈L1
loc(R3), (1.8)

The above assumptions allow for a uniform bound in space and time for
(−∆)−1ρ(x,t) and we restate this result here.

Lemma 1.1 ( [12], Theorem 2). Suppose ρ is a solution to the isotropic Landau
Equation (1.3) with even non-negative initial data ρ0, and (1.8) holds. For any 0<t<T
and any s1>1,s2>1/3, and any ball BR⊂R3 with arbitrary radius R>0, there exist
constants C1(T,R,s1),C2(T,s2) such that

||ρ||L∞(t,T ;BR)≤C1(T,R,s1)

(
1

t
+1

)s1

, t∈ (0,T ), (1.9)

||(−∆)−1ρ||L∞(t,T ;R3)≤C2(T,s2)

(
1

t
+1

)s2

, t∈ (0,T ). (1.10)

1.3. Main results. The first main result of this note is the following gradient
flow characterization of the isotropic Landau equation.

Theorem 1.1. The isotropic Landau Equation (1.3) can be viewed as the gradient
flow for the Boltzmann Shannon entropy E(ρ)=

∫
ρ logρdx,

∂tρ=∇·
(∫

R3

K(x,y)∇δE
δρ

(y)dy

)
with K(x,y)= δ{x=y}ρ(x)Lρ(x)−

ρ(x)ρ(y)

4π|x−y|
.

Based on this structure, we can define a distance function WK (2.8) in the Benamou-
Brenier fashion, and have a lower bound with respect to the Wasserstein-1 distance
(see Section 2.1). The corresponding geodesic equations can also be computed from the
Hamiltonian (in Section 2.2).

In [3,4], the gradient flow structure for the classical Landau equation can be written
as

∂tρ=∇·
(∫

R3

ρ(x)ρ(y)|x−y|2+γΠ[x−y](∇logρ(x)−∇ logρ(y))dy

)
,

with the projection matrix Π[z]= I− z⊗z
|z|2 . It is easy to check that, when γ=−d=−3

and π[z] is set to be 1, the above two gradient flow structures are equivalent.
Let us denote ρt≡ρ and Kρt ≡K to emphasize the density path. The second

main result of this note provides a time-dependent convergence rate result for the en-
tropy functional by estimating its Hessian operator. The proof essentially follows the



2322 GRADIENT FLOW OF THE ISOTROPIC LANDAU EQUATION

Bakry-Emery strategy and assumes that ρt is of sufficient regularity throughout the
computations, which has been proven true for radially symmetric solutions.

Theorem 1.2. Along the gradient flow (1.3), equipped with Φt=−logρt, we can
compute the Riemannian Hessian operator of the entropy as

d2

dt2
E(ρt)=− 3

2

∫
ρ2t (−∆)−1ρt|∇Φt|2dx+

∫
ρ2t∇Φt(−∆)−1(ρt∇Φt)dx

− 1

4

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx+
∫

ρt((−∆)−1ρt)
2||∇2Φt||2dx. (1.11)

With an additional assumption that if there exists γ∈ (0,1/7) such that∫ (
2γρt−

|∇ρt|2(−∆)−1ρt
ρ2t

)(
ρt∇Φt(−∆)−1(ρt∇Φt)+3ρ2t

)
dx≥0, (1.12)

we then have the convergence rate for the entropy

d

dt
E(ρt)≤−α

∫ ∞

t

∫
ρ3tdxdt,

where α∈ (0,1) is a constant depending on γ.

This result provides another view comparing to the dissipation-Fisher information
relation (1.6). The detailed computations, which heavily use the geodesic equations, the
relation Φt=−logρt along the gradient flow, and the Bochner’s formula, will be given in
Section 3. We would like to point out that it is possible to carry out similar computations
for the original Landau equation. However, due to the existence of the projection
matrix Π[z] and the different steady solution, the computations can be significantly
more complicated and the convergence result might also change.

Organization. The rest of the note is organized as follows. Section 2 details the
gradient flow structure and Section 3 gives the proof of Theorem 1.2.

2. The gradient flow structure
Consider the density space (or sometimes called the statistical manifold)

M={non-negative functions ρ∈R3 and

∫
R3

ρ=1}. (2.1)

The tangent space of M at ρ∈M is given by

TρM={functions σ∈R3 and

∫
R3

σ=0}. (2.2)

The key object of this note is the nonlocal metric tensor defined as follows.

Definition 2.1 (Nonlocal metric tensor). Given ρ∈M, for σ1,2∈TρM, the nonlocal
metric tensor gK is given by

gK(σ1,σ2) := ⟨σ1,(−K)−1σ2)⟩= ⟨Φ1,−KΦ2⟩, (2.3)

where

Ku(x)=∇·
(∫

R3

K(x,y)∇u(y)dy

)
with K(x,y)= δ{x=y}ρ(x)Lρ(x)−

ρ(x)ρ(y)

4π|x−y|
,

(2.4)
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and Φi is a weak solution to the equation

σi(x)=−∇·
(∫

R3

K(x,y)∇Φi(y)dy

)
=−KΦi(x), i=1,2. (2.5)

To show that the metric tensor gK is well-defined, one needs to verify that it is
bilinear, symmetric, and positive semi-definite. The first two conditions can be checked
directly while the last condition requires that for any u in some Banach space∫∫

ρ(x)ρ(y)u2(x)

|x−y|
− ρ(x)ρ(y)u(x)u(y)

|x−y|
dxdy≥0. (2.6)

This inequality holds by simply using the symmetry and Young’s inequality,∫∫
ρ(x)ρ(y)u2(x)

|x−y|
dxdy=

∫∫
ρ(x)ρ(y)(u2(x)/2+u2(y)/2)

|x−y|
dxdy

≥
∫∫

ρ(x)ρ(y)u(x)u(y)

|x−y|
dxdy.

The following theorem states that the isotropic Landau equation is the gradient
flow of the entropy with respect to the Riemannian structure introduced above.

Theorem 2.1. Given the Boltzmann Shannon entropy E :M→R where

E(ρ)=
∫
R3

ρ logρdx, (2.7)

under the nonlocal metric tensor defined in (2.3), the gradient flow dynamics of (2.7)
is exactly (1.3).

Proof. Note that

gK(gradE|ρ,σ)=
∫
R3

δE
δρ

(x)σ(x)dx.

By the definition (2.3),

gK(gradE|ρ,σ)=
∫
R3

gradE|ρ(x)(−K)−1σdx=

∫
R3

gradE|ρ(x)Φ(x)dx.

Plugging in the Equation (2.5) and using ∇ δE
δρ =

∇ρ
ρ leads to∫

R3

δE
δρ

(x)σ(x)dx=−
∫
R3

δE
δρ

(x)∇·
(∫

R3

(
δ{x=y}ρ(x)Lρ(x)−

ρ(x)ρ(y)

4π|x−y|

)
∇Φ(y)dy

)
dx

=

∫
R3

(∫
R3

(
δ{x=y}ρ(x)Lρ(x)−

ρ(x)ρ(y)

4π|x−y|

)
∇δE

δρ
(x)dx

)
∇Φ(y)dy

=

∫
R3

(
∇ρ(y)Lρ(y)−ρ(y)L∇ρ(y)

)
∇Φ(y)dy

=−
∫
R3

∇·
(
Lρ(x)∇ρ(x)−ρ(x)∇Lρ(x)

)
Φ(x)dx.

Therefore,

gradE|ρ(x)=−∇·
(
Lρ(x)∇ρ(x)−ρ(x)∇Lρ(x)

)
.
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Since ∂tρ=−gradE|ρ, the Riemannian gradient flow in (M,gK) gives the isotropic Lan-
dau equation as desired.

Based on the above characterization, it is natural to define a Benamou-Brenier like
formalism [2] of the distance similar to the classical Wasserstein distance, but instead
with a nonlocal mobility defined in (2.4).

Definition 2.2. If the kernel K(x,y) is well-defined, the distance function WK :
M×M→R+ between two functions ρ0(x)=ρ(x,0) and ρ1(x)=ρ(x,1) is

WK(ρ0,ρ1) := inf
v,ρ

(∫ 1

0

∫
R3

∫
R3

v(x,t)K(x,y)v(y,t)dxdydt

)1/2

, (2.8)

and the infimum is taken over all smooth paths ρ :R3× [0,1]→R+ and vector field v :
R3× [0,1]→T R3 satisfying the continuity equation

∂tρ(x,t)+∇·
(∫

R3

K(x,y)v(y,t)dy

)
=0. (2.9)

2.1. Comparison to L1−Wasserstein distance. Based on the conditional
regularity results provided in [12, 13], we can obtain a lower bound for the distance
introduced in (2.8) in terms of the L1−Wasserstein distance. Let us first recall that the
L1−Wasserstein distance between ρ0,ρ1∈M is defined as

W1(ρ0,ρ1) := inf
π∈Γ(ρ0,ρ1)

∫
|x−y|π(dx,dy), (2.10)

where Γ(ρ0,ρ1) is the set of all couplings of ρ0 and ρ1.

Theorem 2.2. If ρ0 is even, ρ0 logρ0∈L1(R3) and satisfies the ε−Poincaré inequality
(1.8), then we have the bound

W1(ρ0,ρ1)≤CWK(ρ0,ρ1). (2.11)

Proof. Let φ :R3→R be a bounded 1−Lipschitz function. Clearly φ∈W 1,∞(R3).
Using the continuity Equation (2.9) and integration by parts gives rise to∣∣∣∣∫ φρ1dx−

∫
φρ0dx

∣∣∣∣= ∣∣∣∣∫ 1

0

∫
φ∂tρ dxdt

∣∣∣∣= ∣∣∣∣∫ 1

0

∫
R3×R3

∇φ(x)K(x,y)v(y,t) dxdydt

∣∣∣∣
≤
(∫ 1

0

∫
R3×R3

∇φ(x)K(x,y)∇φ(y) dxdydt

) 1
2
(∫ 1

0

∫
R3×R3

v(x,t)K(x,y)v(y,t) dxdydt

) 1
2

.

The last inequality uses Cauchy-Schwarz since (2.6) holds. Now as ||∇φ||L∞ =1, using
the uniform bound (1.10) we have that∣∣∣∣∫ 1

0

∫
R3×R3

∇φ(x)K(x,y)∇φ(y) dxdydt

∣∣∣∣≤2

∫ 1

0

∫
R3

ρ(x,t)||(−∆)−1ρ(x,t)||L∞(t,1;R3)dxdt

≤2C(n)

∫ 1

0

(
1

t
+1

)s

dt≤C.

Taking the supremum over all bounded 1−Lipschitz functions φ on the left-hand side
accompanied with Kantorovich-Rubinstein duality, and taking the infimum over v,ρ on
the right-hand side, we then obtain the inequality (2.11).
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2.2. The geodesic equations. Let us consider the geometric action functional
in the density space

L(ρt,∂tρt)=
1

2

∫ 1

0

∫
∂tρt(−Kρt)

−1∂tρtdxdt, (2.12)

where ρt=ρ(x,t) is the density path connecting ρ0 and ρ1, Kρt
is the Onsager operator

defined in (2.4) with its dependency on ρt explicitly written.

Lemma 2.1. With the relation Φt=(−Kρt
)−1∂tρt, the geodesic equations are{

∂tρt+Kρt
Φt=0

∂tΦt+
1
2

(
|∇Φt|2(−∆)−1ρt+(−∆)−1(|∇Φt|2ρt)

)
−∇Φt(−∆)−1(ρt∇Φt)=0.

(2.13)

Proof. The derivation follows directly from the Hamiltonian formulation, which
by Legendre transform is

H(ρt,Φt)= sup
Φt∈C∞(M)

∫
Φt∂tρtdx−L(ρt,∂tρt). (2.14)

The supremum is obtained when Φt=(−Kρt
)−1∂tρt, and the Hamiltonian is

H(ρt,Φt)=
1

2

∫
ρt(−Kρt

)−1ρtdx=
1

2

∫∫
∇Φt(x)Kρt

(x,y)∇Φt(y)dxdy. (2.15)

The co-geodesic flow satisfies

∂tρt=
δH(ρt,Φt)

δΦt
, ∂tΦt=−δH(ρt,Φt)

δρt
. (2.16)

The first equation of (2.13) can be easily obtained from the first relation in (2.16). To
obtain the second equation of (2.13) from the second relation in (2.16) here, we write
(2.15) as

H(ρt,Φt)=
1

2

∫∫
∇Φt(x)

(
δ{x=y}ρt(x)(−∆)−1ρt(x)−

ρt(x)ρt(y)

4π|x−y|

)
∇Φt(y)dxdy

=
1

2

∫
|∇Φt(x)|2ρt(x)(−∆)−1ρt(x)dx−

1

2

∫∫
∇Φt(x)

ρt(x)ρt(y)

4π|x−y|
∇Φt(y)dxdy.

Thus for any v∈M,∫
δH
δρt

vdx=
d

dϵ
H(ρt+ϵv,Φt)|ϵ=0

=
1

2

∫
|∇Φt(x)|2(v(x)(−∆)−1ρt(x)+ρt(x)(−∆)−1v(x))dx

− 1

2

∫∫
∇Φt(x)

ρt(x)v(y)+v(x)ρt(y)

4π|x−y|
∇Φt(y)dxdy

=
1

2

∫ (
|∇Φt|2(−∆)−1ρt+(−∆)−1(|∇Φt|2ρt)

)
vdx−

∫
∇Φt(x)(−∆)−1(ρt∇Φt)vdx,

which gives the second equation that we stated.
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3. Estimate of the Hessian operator
This section is devoted to the proof of Theorem 1.2. The Hessian operator of the

entropy can be computed by taking the second time derivative of E along the geodesic
equations as in Lemma 2.1. Let us use δE to denote δE

δρ for convenience. Note that

d

dt
E(ρt)= ⟨gradE|ρt

,Φt⟩=
∫

δE∂tρtdx

=

∫∫
∇δE(ρt(x))Kρt(x,y)∇Φt(y)dxdy.

The second variation of E is

d2

dt2
E(ρt)= ⟨HessE|ρt

Φt,Φt⟩=
∫

∇ d

dt
δE(ρt(x))Kρt

(x,y)∇Φt(y)dxdy

+

∫
∇δE(ρt(x))∂tKρt

(x,y)∇Φt(y)dxdy

+

∫
∇δE(ρt(x))Kρt

(x,y)∇∂tΦt(y)dxdy

=I+II+III.

We begin the proof of Theorem 1.2. The following rather long computations will
involve the quantity

∂tρt=−∇·
(
ρt(−∆)−1ρt∇Φt−ρt(−∆)−1(ρt∇Φt)

)
=−∇ρt(−∆)−1ρt∇Φt−ρt(−∆)−1∇ρt∇Φt−ρt(−∆)−1ρt∆Φt

+∇ρt(−∆)−1(ρt∇Φt)+ρ2t . (3.1)

The last term above uses the relation Φt=−logρt since we follow the Hessian operator
along the gradient flow. Thus

∇·(−∆)−1(ρt∇Φt)=ρt. (3.2)

However, unless we are to analyze some difficult terms, the notation Φt will be kept for
the majority of the computation in order to explore the associated Hessian structure.

For the first term I, let us use (3.1) and study its quadratic expansion,

I=

∫
δ2E(ρt(x))

(
∇·

(∫
Kρt(x,y)∇Φt(y)dy

))2

dx

=

∫
1

ρt(x)

(
∇·(ρt(x)(−∆)−1ρt(x)∇Φt(x)−ρt(x)(−∆)−1(ρt(x)∇Φt(x)))

)2

dx

=

∫
|∇ρt|2

ρt
((−∆)−1ρt)

2|∇Φt|2dx+
∫

ρt((−∆)−1∇ρt)
2|∇Φt|2dx

+

∫
ρt((−∆)−1ρt)

2(∆Φt)
2dx+

∫
|∇ρt|2

ρt
|(−∆)−1(ρt∇Φt)|2dx

+

∫
ρ3tdx+

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx

+2

∫
∇ρt((−∆)−1ρt)

2∇Φt∆Φtdx−2

∫
|∇ρt|2

ρt
(−∆)−1ρt∇Φt(−∆)−1(ρt∇Φt)dx
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+2

∫
|∇ρt|2(−∆)−1ρtdx+

∫
ρt∇((−∆)−1ρt)

2∇Φt∆Φtdx

−2

∫
∇ρt(−∆)−1∇ρt∇Φt(−∆)−1(ρt∇Φt)dx−2

∫
ρ2t (−∆)−1ρt∆Φtdx

−2

∫
∇ρt(−∆)−1ρt∆Φt(−∆)−1(ρt∇Φt)dx.

For the second term II,

II=

∫
∇ρt
ρt

(
δ{x=y}∂tρt(−∆)−1ρt+δ{x=y}ρt(−∆)−1∂tρt−

∂tρt(x)ρt(y)+ρt(x)∂tρt(y)

4π|x−y|

)
×∇Φt(y)dxdy

=

∫
∇ρt
ρt

∂tρt(−∆)−1ρt∇Φtdx+

∫
∇ρt(−∆)−1∂tρt∇Φtdx

−
∫

∇ρt
ρt

∂tρt(−∆)−1(ρt∇Φt)dx−
∫

∇ρt(−∆)−1(∂tρt∇Φt)dx

:=II1+II2+II3+II4.

Plugging in (3.1), we have

II1=−
∫

|∇ρt|2

ρt
((−∆)−1ρt)

2|∇Φt|2dx−
1

2

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx

−
∫

∇ρt((−∆)−1ρt)
2∇Φt∆Φtdx+

∫
|∇ρt|2

ρt
(−∆)−1ρt∇Φt(−∆)−1(ρt∇Φt)dx

−
∫

|∇ρt|2(−∆)−1ρtdx,

and

II3=

∫
|∇ρt|2

ρt
(−∆)−1ρt∇Φt(−∆)−1(ρt∇Φt)dx

+

∫
∇ρt(−∆)−1∇ρt∇Φt(−∆)−1(ρt∇Φt)dx+

∫
∇ρt(−∆)−1ρt∆Φt(−∆)−1(ρt∇Φt)dx

−
∫

|∇ρt|2

ρt
|(−∆)−1(ρt∇Φt)|2dx+

1

2

∫
ρ3tdx.

Moreover,

II4=−
∫
(−∆)−1∇ρt∇Φt∂tρtdx

=
1

2

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx+
∫

ρt((−∆)−1∇ρt)
2|∇Φt|2dx

+
1

2

∫
ρt∇((−∆)−1ρt)

2∇Φt∆Φtdx

−
∫

∇ρt(−∆)−1∇ρt∇Φt(−∆)−1(ρt∇Φt)dx+
1

2

∫
ρ3tdx.

For the third term, we use the geodesic equation in (2.1) and note that (1.3) also
can be written as ∂tρt=(−∆)−1ρt∆ρt+ρ2t . Therefore,

III=

∫
∇·

(∫ (
δ{x=y}ρt(−∆)−1ρt−

ρt(x)ρt(y)

4π|x−y|
)∇ρt(y)

ρt(y)
dy

)
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×
(
1

2

(
|∇Φt|2(−∆)−1ρt+(−∆)−1(|∇Φt|2ρt)

)
−∇Φt(−∆)−1(ρt∇Φt)

)
dx

=

∫
((−∆)−1ρt∆ρt+ρ2t )

×
(
1

2

(
|∇Φt|2(−∆)−1ρt+(−∆)−1(|∇Φt|2ρt)

)
−∇Φt(−∆)−1(ρt∇Φt)

)
dx

=
1

2

∫
((−∆)−1ρt)

2∆ρt|∇Φt|2dx+
1

2

∫
(−∆)−1((−∆)−1ρt∆ρt+ρ2t )ρt|∇Φt|2dx

−
∫
(−∆)−1ρt∆ρt∇Φt(−∆)−1(ρt∇Φt)dx+

1

2

∫
ρ2t (−∆)−1ρt|∇Φt|2dx

−
∫

ρ2t∇Φt(−∆)−1(ρt∇Φt)dx := III1+III2+III3+III4+III5.

Combining I,II1,II3 and II4 results in

I+II1+II3+II4

=2

∫
ρt((−∆)−1∇ρt)

2|∇Φt|2dx+
∫

ρt((−∆)−1ρt)
2(∆Φt)

2dx+2

∫
ρ3tdx

+

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx+
∫

∇ρt((−∆)−1ρt)
2∇Φt∆Φtdx

+

∫
|∇ρt|2(−∆)−1ρtdx+

3

2

∫
ρt∇((−∆)−1ρt)

2∇Φt∆Φtdx

−2

∫
∇ρt(−∆)−1∇ρt∇Φt(−∆)−1(ρt∇Φt)dx−2

∫
ρ2t (−∆)−1ρt∆Φtdx

−
∫

∇ρt(−∆)−1ρt∆Φt(−∆)−1(ρt∇Φt)dx := IV.

We can now rearrange the first three lines in IV in a nicer way by doing integration by
parts, ∫

∇ρt((−∆)−1ρt)
2∇Φt∆Φtdx

=−
∫

ρt∇((−∆)−1ρt)
2∇Φt∆Φtdx

−
∫

ρt((−∆)−1ρt)
2(∆Φt)

2dx−
∫

ρt((−∆)−1ρt)
2(∇Φt,∇∆Φt)dx,

and as a result

IV =2

∫
ρt((−∆)−1∇ρt)

2|∇Φt|2dx+2

∫
ρ3tdx+

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx

−
∫

ρt((−∆)−1ρt)
2(∇Φt,∇∆Φt)dx+

1

2

∫
ρt∇((−∆)−1ρt)

2∇Φt∆Φtdx

−2

∫
∇ρt(−∆)−1∇ρt∇Φt(−∆)−1(ρt∇Φt)dx−2

∫
ρ2t (−∆)−1ρt∆Φtdx

−
∫

∇ρt(−∆)−1ρt∆Φt(−∆)−1(ρt∇Φt)dx+

∫
|∇ρt|2(−∆)−1ρtdx.

Note that

III1=
1

2

∫
ρt((−∆)−1ρt)

2∆(∇Φt,∇Φt)dx+
1

2

∫
ρt∆((−∆)−1ρt)

2|∇Φt|2dx
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+

∫
ρt∇((−∆)−1ρt)

2∇|∇Φt|2dx.

Using the Bochner’s formula

1

2
∆(∇Φt,∇Φt)−(∇Φt,∇∆Φt)= ||∇2Φt||2, (3.3)

one can combine the first term in III1 and the first term in the second line in IV to
obtain

IV +III1=2

∫
ρt((−∆)−1∇ρt)

2|∇Φt|2dx+2

∫
ρ3tdx+

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx

+

∫
ρt((−∆)−1ρt)

2||∇2Φt||2dx+
1

2

∫
ρt∇((−∆)−1ρt)

2∇Φt∆Φtdx

−2

∫
∇ρt(−∆)−1∇ρt∇Φt(−∆)−1(ρt∇Φt)dx−2

∫
ρ2t (−∆)−1ρt∆Φtdx

−
∫

∇ρt(−∆)−1ρt∆Φt(−∆)−1(ρt∇Φt)dx+

∫
|∇ρt|2(−∆)−1ρtdx

+
1

2

∫
ρt∆((−∆)−1ρt)

2|∇Φt|2dx+
∫

ρt∇((−∆)−1ρt)
2∇|∇Φt|2dx.

We continue to apply the integration by parts here. Note that the first term in the
fourth line above can be written as

−
∫

∇ρt(−∆)−1ρt∆Φt(−∆)−1(ρt∇Φt)dx

=

∫
∆ρt∇Φt(−∆)−1ρt(−∆)−1(ρt∇Φt)dx

+

∫
∇ρt∇Φt(−∆)−1∇ρt(−∆)−1(ρt∇Φt)dx−

∫
|∇ρt|2(−∆)−1ρtdx,

with the last term obtained by plugging in Φt=−logρt. Furthermore, using this sub-
stitution can reformulate the second term in the third line of IV +III1 as

−2

∫
ρ2t (−∆)−1ρt∆Φtdx=2

∫
ρt∆ρt(−∆)−1ρtdx−2

∫
|∇ρt|2(−∆)−1ρtdx.

Finally, we can rearrange the terms into the form

IV +III1+III3

=2

∫
ρt((−∆)−1∇ρt)

2|∇Φt|2dx−
∫

∇ρt(−∆)−1∇ρt∇Φt(−∆)−1(ρt∇Φt)dx

+

∫
ρt((−∆)−1ρt)

2||∇2Φt||2dx+2

∫
ρ3tdx+2

∫
ρt∆ρt(−∆)−1ρtdx

+
1

2

∫
ρt∆((−∆)−1ρt)

2|∇Φt|2dx+
∫

ρt∇((−∆)−1ρt)
2∇|∇Φt|2dx

+

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx+
1

2

∫
ρt∇((−∆)−1ρt)

2∇Φt∆Φtdx

−2

∫
|∇ρt|2(−∆)−1ρtdx :=V.
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Using Φt=−logρt, the first line in V can be reduced to

2

∫
ρt((−∆)−1∇ρt)

2|∇Φt|2dx−
∫

∇ρt(−∆)−1∇ρt∇Φt(−∆)−1(ρt∇Φt)dx

=

∫
ρt((−∆)−1∇ρt)

2|∇Φt|2dx.

Moreover, in the second line, we observe that

2

∫
ρ3tdx+2

∫
ρt∆ρt(−∆)−1ρtdx=2

∫
ρt∂tρtdx=−2

∫
ρtKρtΦtdx

=−2

∫
ρ2t (−∆)−1ρt|∇Φt|2dx+2

∫
ρ2t∇Φt(−∆)−1(ρt∇Φt)dx :=V I.

Therefore,

V I+III4+III5=−3

2

∫
ρ2t (−∆)−1ρt|∇Φt|2dx+

∫
ρ2t∇Φt(−∆)−1(ρt∇Φt)dx.

The third and fourth lines in V can be organized as follows

1

2

∫
ρt∆((−∆)−1ρt)

2|∇Φt|2dx+
5

4

∫
ρt∇((−∆)−1ρt)

2∇|∇Φt|2dx

+

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx

=− 3

4

∫
ρt∆((−∆)−1ρt)

2|∇Φt|2dx−
1

4

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx

=
3

2

∫
ρ2t (−∆)−1ρt|∇Φt|2dx−

3

2

∫
ρt((−∆)−1∇ρt)

2|∇Φt|2dx

− 1

4

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx.

Collecting all the terms above, we arrive at

V +III4+III5=− 1

2

∫
ρt((−∆)−1∇ρt)

2|∇Φt|2dx−
1

4

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx

+

∫
ρ2t∇Φt(−∆)−1(ρt∇Φt)dx+

∫
ρt((−∆)−1ρt)

2||∇2Φt||2dx

−2

∫
|∇ρt|2(−∆)−1ρtdx,

plus the remaining terms

II2+III2=

∫
(−∆)−1(∇ρt∇Φt)∂tρtdx+

1

2

∫
(−∆)−1((−∆)−1ρt∆ρt+ρ2t )ρt|∇Φt|2dx

=−1

2

∫
(−∆)−1(ρt|∇Φt|2)((−∆)−1ρt∆ρt+ρ2t )dx

=
1

2

∫
ρ2t (−∆)−1ρt|∇Φt|2dx−

∫
ρt(−∆)−1∇(ρt|∇Φt|2)(−∆)−1∇ρtdx,

when using the integration by parts to move the Laplacian operator to other places.
The second term above can be dealt with by viewing ρt as −∇·(−∆)−1∇ρt and an
integration by parts gives

−
∫

ρt(−∆)−1∇(ρt|∇Φt|2)(−∆)−1∇ρtdx=
1

2

∫
ρt((−∆)−1∇ρt)

2|∇Φt|2dx.
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Now we are ready to wrap up all terms,

I+II+III=− 3

2

∫
ρ2t (−∆)−1ρt|∇Φt|2dx+

∫
ρ2t∇Φt(−∆)−1(ρt∇Φt)dx

− 1

4

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx+
∫

ρt((−∆)−1ρt)
2||∇2Φt||2dx.

This proves (1.11).
The term, − 1

4

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx, can be rewritten using Φt=−logρt as

−1

2

∫
ρt∇Φt

(
|∇ρt|2(−∆)−1ρt

ρ2t

)
(−∆)−1(ρt∇Φt)dx.

We further decompose
∫
ρ2t∇Φt(−∆)−1(ρt∇Φt)dx into∫

ρ2t∇Φt(−∆)−1(ρt∇Φt)dx=α

∫
ρ3tdx+β

∫
ρ3tdx+γ

∫
ρ2t∇Φt(−∆)−1(ρt∇Φt)dx,

with 2(α+β)+γ=1. Now reorganizing terms, we obtain

β

∫
ρ3tdx−

3

2

∫
ρ2t (−∆)−1ρt|∇Φt|2dx=

∫
ρ2t

(
βρt−

3

2

|∇ρt|2(−∆)−1ρt
ρ2t

)
dx

and

γ

∫
ρ2t∇Φt(−∆)−1(ρt∇Φt)dx−

1

4

∫
∇ρt∇((−∆)−1ρt)

2|∇Φt|2dx

=
1

2

∫
ρt∇Φt

(
2γρt−

|∇ρt|2(−∆)−1ρt
ρ2t

)
(−∆)−1(ρt∇Φt)dx.

With γ=β/3∈ (0,1/7) for compatibility, then the positivity assumption (1.12), with
ignorance of the Hessian term, gives

d2

dt2
E(ρt)≥α

∫
ρ3tdx. (3.4)

Integrating (3.4) for [t,∞) results in

d

dt
E(ρt)≤−α

∫ ∞

t

∫
ρ3tdxdt=−α||ρt||3L3([t,∞);L3(R3))

which concludes the proof of Theorem 1.2. This relation gives us another view of time-
dependent entropy dissipation comparable to (1.6).

Remark 3.1. Recall that the first variation of E is

d

dt
E(ρt)= ⟨gradE|ρt

,Φt⟩=−
∫∫

∇Φt(x)Kρt
(x,y)∇Φt(y)dxdy.

Ideally, one hopes to obtain the following inequality with some κ(t)≥0,

d2

dt2
E(ρt)≥−κ(t)

d

dt
E(ρt),
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which can imply the convergence for the entropy with a rate depending on κ(t).
However, as one can see from the rearrangement of I+II+III, we are not able
to recover the full metric

∫∫
∇Φt(x)Kρt

(x,y)∇Φt(y)dxdy, although the terms with∫
ρt∇Φt(−∆)−1(ρt∇Φt)dx are part of it. That is why we take the assumption (1.12)

instead.

Remark 3.2. Although the convergence rate estimate we provide here is a very crude
bound, we can still observe the slowness of the entropy decay rate. From Theorem
2 in [12], we can see that ρt decays asymptotically close to 1/ts,t≫1 (see (1.9)). It
implies that the entropy E(ρt) decreases at most polynomially fast when t≫1.
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