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Abstract

We derive new gradient flows of divergence functions in the probability space
embedded with a class of Riemannian metrics. The Riemannian metric tensor is built
from the transported Hessian operator of an entropy function. The new gradient flow is
a generalized Fokker–Planck equation and is associated with a stochastic differential
equation that depends on the reference measure. Several examples of Hessian
transport gradient flows and the associated stochastic differential equations are
presented, including the ones for the reverse Kullback–Leibler divergence,
α-divergence, Hellinger distance, Pearson divergence, and Jenson–Shannon
divergence.
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1 Introduction
The de Bruijn identity plays crucial roles in information theory, probability, statistics,
geometry, and machine learning [11–13,30,34,38]. It states that the dissipation of the
relative entropy, also known as the Kullback–Leibler (KL) divergence function, along the
heat flow is equal to the relative Fisher information functional. This identity is important
for many applications in Bayesian statistics and Markov chain Monte Carlo methods.
It turns out that there are two geometric structures in the probability space related to

the de Bruijn identity. One is Wasserstein geometry (WG) [16,36], which refers to the
heat flows or Gaussian kernels. In [15,32], it shows that the gradient flow of the nega-
tive Boltzmann Shannon entropy in WG is the heat equation. The de Bruijn identity can
be understood as the rate of entropy dissipation within WG. The other one is informa-
tion geometry (IG) [1,5], which relates to the differential structures of the entropy. IG
studies various families of Hessian geometry of entropy and divergence functions. Here,
the Boltzmann–Shannon entropy, the Fisher–Rao metric, and the further induced KL
divergence function are of particular importance. Besides these classical cases, one also
studies generalized entropy and divergence functions, such as Tsallis entropy and Tsallis
divergence [2,35].
A natural question arises: What are natural families of geometries in the probability

space that connect entropy/divergence functions, heat flows, and the de Bruijn identity?
In this paper, we positively answer this question by introducing a family of Riemannian

metrics in the probability space. Consider a compact space" and a positive smooth prob-
ability space P("). For a strictly convex entropy functionH : P(") → R, we introduce a
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Fig. 1 Derivation diagram of the Hessian transport metric. The real lines are results of classical WG or IG
communities. The dot lines are results derived in this paper

new Riemannian metric tensor GH in the probability space

GH(ρ)−1 = [−∇ · ([δ2H(ρ)]−1∇)],

where ρ ∈ P(") is a probability density function, δ2H(ρ) is the L2 Hessian operator of
the entropy function, and finally, ∇ and ∇· are gradient and divergence operators on ",
respectively. We refer to Definition 1 for the formal definition. Notice that the proposed
metric involves both the Hessian geometry of H and the transport metric (gradient and
divergence operator on sample space). For this reason, it is called the Hessian transport
metric (HT-metric) (see Fig. 1 for a schematic diagram).
As a simple butmotivating example, the heat equation is the gradient flowof the entropy

functionH under the HT-metric GH induced byH itself:

∂tρ = −GH(ρ)−1δH(ρ)

= −
(

− ∇ · ([δ2H(ρ)]−1∇δH(ρ))
)

= ∇ · ([δ2H(ρ)]−1[δ2H(ρ)]∇ρ)
= ∇ · (∇ρ) = &ρ.

In a more general setting, we consider a family of entropy functions of form Hf (ρ) =∫
" f (ρ)dx, where f (·) is convex, f (1) = 0 and f ′′ is homogeneous of degree (−γ ). For a fixed
reference measure µ, there is an associated divergence function Df (ρ∥µ) =

∫
" f ( ρ

µ )µdx
for each Hf . By considering the gradient flow of Df (ρ∥µ) in (P("), GHf ), we derive a
generalized Fokker–Planck equation

∂tρ(t, x) = ∇ ·
(
µ(x)γ ∇

(
ρ(t, x)
µ(x)

))
,

along with a stochastic differential equation for independent particle dynamics

dXt = γµ(Xt )γ−2∇µ(Xt )dt +
√
2µ(Xt )γ−1dBt ,
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where Bt is the standard Brownian motion. Such a SDE is called a Hessian transport
stochastic differential equation (HT-SDE).
It is worth mentioning that two special cases of HT-metrics and their induced HT-

SDEs are particularly relevant. When γ = 1, H(ρ) is the Boltzmann–Shannon entropy,
theHT-metric is the usualWasserstein-2metric and theHT-SDE is the classical Langevin
dynamics.When γ = 0,H(ρ) is the Pearson divergence, theHT-metric is theH−1 metric,
and the associated HT-SDE is a diffusion process with zero drift. We refer to Table 1 for
a summary of the results.
Currently, there are several efforts in combining both Wasserstein metric and infor-

mation/Hessian metric [3,6–8,10,21,28,37] from various perspectives. There has also
been recent work on using novel diffusion/mobility tensors for numerical and modeling
purposes [23,27]. Within the Gaussian families, several extensions are studied in [29]. In
[9,14], a generalization of optimal transport metrics have been studied, in which δ2H is
only chosen as a scale function of ρ. Another example from themachine learning commu-
nity is the Stein variational gradient descent method [24–26]. Here we introduce a new
geometry structure, which keeps heat flows as gradient flows of general entropy func-
tions. The emphasis of this work is the interaction between the Hessian of the entropy
and the transport metric. By deriving the gradient flow of the entropy-generated diver-
gence functional, we introduce a new class of stochastic differential equations. In this
angle, our approach is a natural extension to both IG and WG. It can also be viewed as a
generalization for the field of Wasserstein information geometry [17,19,20].
We summarize the main contributions of this paper as follows:

(i) We propose a framework of Riemannian metrics in probability space, which com-
bines both transport operator and Hessian operator of entropy functional.

(ii) The new metrics allow us to derive gradient flows of various divergence function-
als. These flows are probability transition equations, which further introduce new
stochastic differential equations.

The rest of this paper is organized as follows. In Sect. 2, we define the Hessian transport
metric and show that the heat flow can be interpreted as the gradient flowof several energy
functions under appropriate HT-metrics. We then move on to derive, for general diver-
gence functions, the HT-metric gradient flows and the associated HT-SDEs. In Sect. 3,
we introduce the Hessian transport distance (HT-distance) and derive the corresponding
HT-geodesic equation. Several numerical examples are given in Sect. 4.

2 Hessian transport gradient flows
In this section, we introduce the Hessian transport metrics and derive the gradient flows
under these metrics.

2.1 Motivations

Consider a compact space " ⊂ Rd . Following the usual convention, we denote by ∇ and
∇· the gradient and divergence operators in ", by ∥ · ∥ the Euclidean norm in Rd and by
δ, δ2 the first and the second L2 variations. From now on, the boundary conditions on "

are given by either Neumann or periodic boundary conditions.
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The heat equation

∂tρ(t, x) = &ρ(t, x), (1)

can be written in several equivalent ways as follows:

∂tρ(t, x) =∇ ·
(
∇ρ(t, x)

)
,

∂tρ(t, x) =∇ ·
(
ρ(t, x)∇ log ρ(t, x)

)
,

∂tρ(t, x) =∇ ·
(

ρ(t, x)2∇
(

− 1
ρ(t, x)

))
,

where the following relation is used:

∇ρ = ρ∇ log ρ = ρ2∇
(

− 1
ρ

)
.

These formulas show that the heat flow has multiple gradient descent flow interpreta-
tions. Recall that a general gradient flow takes the form

∂tρ = −G(ρ)−1δE(ρ),

where E(·) is an energy function and the operator G(ρ) : C∞(") → C∞(") represents
the metric tensor. Under this framework, the heat equation can be interpreted in several
ways:

(i) Dirichlet energy formulation:

E(ρ) =
∫

"
∥∇ρ(x)∥2dx, δE(ρ) = −&ρ, G(ρ)−1 = I,

where I : C∞(") → C∞(") is the identity operator. Then

∂tρ = −G(ρ)−1δE(ρ) = −(−&ρ) = &ρ.

(ii) Boltzmann–Shannon entropy formulation:

E(ρ) =
∫

"
ρ(x) log ρ(x)dx, δE(ρ) = log ρ + 1, G(ρ)−1 = −∇ · (ρ∇),

∂tρ = −G(ρ)−1δE(ρ) = −(−∇ · (ρ∇ log ρ)) = &ρ.

(iii) Cross-entropy formulation:1

E(ρ) = −
∫

"
log ρ(x)dx, δE(ρ) = − 1

ρ
, G(ρ)−1 = −∇ · (ρ2∇),

∂tρ = −G(ρ)−1δE(ρ) = −
(

−∇ ·
(

ρ2∇
(

− 1
ρ

)))
= &ρ.

1Given µ ∈ C∞("), the cross-entropy is defined as follows

H(ρ,µ) = −
∫

"
µ(x) log ρ(x)dx

Here we let µ(x) = 1, for all x ∈ ".
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It is clear that the metric G and the energy E need to be compatible in order to give rise
to the heat equation. In fact, given a strictly convex energy function E in the probability
space, it induces a compatible metric operator

G(ρ)−1 :=
(

− ∇ · ([δ2E(ρ)]−1∇)
)
,

which combines both the transport operator (gradient, divergence operator in") and the
L2 Hessian operator of E . Following this relation, the heat equation can be viewed as the
gradient flow of the energy E under the E-induced metric operator. Below we include the
calculations of the above three cases for the sake of completeness.

(i) Dirichlet energy formulation:

E(ρ) =
∫

"
∥∇ρ(x)∥2dx, δ2E(ρ) = −&,

G(ρ)−1 =
(

− ∇ · ([δ2E(ρ)]−1∇)
)
=

(
− ∇ · ([−&]−1∇)

)
.

= I.

(ii) Boltzmann–Shannon entropy formulation:

E(ρ) =
∫

"
ρ(x) log ρ(x)dx, δ2E(ρ) = 1

ρ
,

G(ρ)−1 = −∇ · ([δ2E(ρ)]−1∇) = −∇ · (ρ∇).

(iii) Cross-entropy formulation:

E(ρ) = −
∫

"
log ρ(x)dx, δ2E(ρ) = 1

ρ2

G(ρ)−1 = −∇ · ([δ2E(ρ)]−1∇)
= −∇ · (ρ2∇).

2.2 Hessian transport gradient flows

In this subsection, we will make the discussion in Sect. 2.1 precise. Consider the set of
smooth and strictly positive densities

P(") =
{
ρ ∈ C∞(") : ρ(x) > 0,

∫

"
ρ(x)dx = 1

}
.

The tangent space of P(") at ρ ∈ P(") is given by

TρP(") =
{
σ ∈ C∞(") :

∫

"
σ (x)dx = 0

}
.

For a strictly convex entropy function H : P(") → R, we first define the following H-
induced metric tensor in the probability space.

Definition 1 (Hessian transport metric tensor) The inner product GH(ρ) : TρP(") ×
TρP(") → R is defined as for any σ1 and σ2 ∈ TρP("):

GH(ρ)(σ1, σ2) =
∫

"

∫

"

(
σ1(x),

(
− ∇ · ([δ2H(ρ)]−1∇)

)−1
(x, y)σ2(y)

)
dx dy,

where [δ2H(ρ)]−1 is the inverse of L2 Hessian operator ofH, and
(

− ∇ · ([δ2H(ρ)]−1∇)
)−1

: TρP(") → TρP(")
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is the inverse of weighted elliptic operator −∇ · ([δ2H(ρ)]−1∇).

The proposed metric tensor is an extension of the Wasserstein metric. To see it, we
represent themetric tensor into a cotangent bundle [17,32]. Denote the space of potential
functions on" byF ("), and consider the quotient spaceF (")/R. Here each( ∈ F (")/R
is a function defined up to an additive constant.
We first show thatF (")/R is the cotangent bundleT ∗

ρP("). Consider the identification
map V : F (")/R → TρP(") defined by

V(() = −∇ · ([δ2H(ρ)]−1∇().

At any ρ, define the elliptic operator

LH,ρ = −∇ · ([δ2H(ρ)]−1∇). (2)

The uniform elliptic property of LH,ρ guarantees that V : F (")/R → TρP(") is well
defined, linear, and one to one. In other words, F (")/R = T ∗

ρP("). This identification
further induces the following inner product on TρP(").

Definition 2 (Hessian transport metric on the cotangent bundle) The inner product
GH(ρ) : TρP(") × TρP(") → R is defined as for any two tangent vectors σ1 = V((1)
and σ2 = V((2) ∈ TρP(")

GH(ρ)(σ1, σ2) =
∫

"
σ1(2dx =

∫

"
σ2(1dx

=
∫

"

∫

"
(∇(1(x), [δ2H(ρ)]−1(x, y)∇(2(y))dx dy.

Here the equivalence of Definition 1 and 2 is shown as follows. By denoting σi(x) =
V((i) = LH,ρ(i for i = 1, 2, i.e.,

σi(x) = −∇ ·
(∫

"
[δ2H(ρ)]−1(x, y)∇(i(y)dy

)
(x),

one has
∫

"

∫

"
(∇(1, [δ2H(ρ)]−1∇(2)dx dy =

∫

"

∫

"
((1, LH,ρ(2)dx dy

=
∫

"

∫

"
V((1)L−1

H,ρLH,ρL−1
H,ρV((2)dx dy =

∫

"

∫

"
σ1L−1

H,ρσ2dx dy,

where in the first equality we apply the integration by parts with respect to " using the
boundary condition.

Remark 1 In particular, if H(ρ) =
∫
" ρ(x) log ρ(x)dx, then [δ2H(ρ)]−1 = ρ and the

Hessian transport metric takes the form

GH(ρ)(σ1, σ2) =
∫

"
(∇(1,∇(2)ρdx,

with σi = −∇ · (ρ∇(i), i = 1, 2. In this case, the Hessian transport metric is the
Wasserstein-2 metric [32,36].
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We are now ready to introduce the gradient flows in (P("), GH).

Lemma 3 (Hessian transport Gradient flow) Given an energy functional E : P(") → R,
the gradient flow of E in (P("), GH) is

∂tρ(t, x) = ∇ ·
(∫

"
[δ2H(ρ)]−1(x, y)∇δE(ρ)(y)dy

)
.

Proof The proof follows the definition. The Riemannian gradient in (P("), GH) is defined
as

GH(ρ)(σ , gradHE(ρ)) =
∫

"
δE(ρ)(x)σ (x)dx, for any σ (x) ∈ TρP("). (3)

Denote

σ (x) = −∇ ·
(∫

"
[δ2H(ρ)]−1(x, y)∇((y)dy

)
. (4)

Thus,

((x) =
∫

"

(
− ∇ · ([δ2H(ρ)]−1∇

)−1
(x, y)σ (y)dy.

Notice that

LHS of (3) = GH(ρ)(σ , gradHE(ρ))

=
∫

"

( ∫

"

(
− ∇ · ([δ2H(ρ)]−1∇

)−1
(x, y)σ (y)dy

)
gradHE(ρ)(x)dx

=
∫

"
((x)gradHE(ρ)(x)dx,

where we applies the definitions of the metric tensor and σ in (4). On the other hand,

RHS of (3) =
∫

"
δE(ρ)(x)σ (x)dx

=
∫

"
δE(ρ)(x)

(
− ∇ ·

(∫

"
[δ2H(ρ)]−1(x, y)∇((y)dy

) )
dx

=
∫

"

∫

"

(
∇δE(ρ)(x), [δ2H(ρ)]−1(x, y)∇((y)

)
dx dy

=
∫

"
((y)

(
−∇ ·

(∫

"
[δ2H(ρ)]−1(x, y)∇δE(ρ)(x)dx

))
dy,

where the second equality is obtained by integration by parts with respect to x and the
third equality holds by integration by parts with respect to y. Interchanging x and y in the
RHS and comparing the LHS and RHS of (3) for any (, we obtain the gradient operator

gradHE(ρ)(x) = −∇ ·
(∫

"
[δ2H(ρ)]−1(x, y)∇((y)dy

)
.

Thus, the Riemannian gradient flow in (P("), GH) satisfies

∂tρ(t, x) = −gradHE(ρ)(t, x) = ∇ ·
(∫

"
[δ2H(ρ)]−1(x, y)∇δE(ρ)(y)dy

)
.

⊓-



W. Li, L. Ying Res Math Sci (2019) 6:34 Page 9 of 20 34

In particular, when E(ρ) = H(ρ) =
∫
" f (ρ(x))dx, the gradient flow ofH in (P("), GH)

satisfies the heat equation (1) because

δH(ρ)(x) = f ′(ρ)(x), δ2H(ρ)(x, y) = f ′′(ρ)(x)δx=y

and

gradHH(ρ)(x) = −∇ ·
( 1
f ′′(ρ)(x)∇(f ′(ρ)(x))

)

= −∇ ·
( 1
f ′′(ρ)(x) f

′′(ρ)(x)∇ρ(x)
)
= −&ρ(x).

The gradient flow ofH(ρ) in (P("), GH(ρ)) is then given by

∂tρ(t, x) = −gradHH(ρ)(t, x) = −(−&ρ(t, x)) = &ρ(t, x),

which is the heat equation as demonstrated in Sect. 2.1.

2.3 Divergence and Hessian transport SDE

By taking E to be the divergence function associated with the entropy H, we derive here
a class of generalized Fokker–Planck equations as the gradient flows under the Hessian
transport metrics. In addition, we also give the associated Hessian transport stochastic
differential equations (HT-SDEs).
To the entropy functionHf (ρ) =

∫
" f (ρ(x))dx, we can associate a corresponding diver-

gence function:

Df (ρ∥µ) =
∫

"
f
(

ρ(x)
µ(x)

)
µ(x)dx.

Here ρ,µ ∈ P(") and f : R → R is a convex function such that f (1) = 0. In the literature,
Df (·∥·) is called the f -divergence function.

Theorem 4 (Hessian transport stochastic differential equations) Given a reference mea-
sure µ ∈ P("), the gradient flow of Df (ρ∥µ) in (P("), GHf ) satisfies

∂tρ(t, x) = ∇ ·
(
f ′′(ρ)(t, x)−1∇f ′

(
ρ

µ

)
(t, x)

)
. (5)

In addition, when f ′′(·) is homogeneous of degree −γ , i.e.,

f ′′(t) = f ′′(1)t−γ .

Equation (5) can be simplified

∂tρ(t, x) = ∇ ·
(
µ(x)γ ∇

(
ρ(t, x)
µ(x)

))
, (6)

and it is the Kolmogorov forward equation of the stochastic differential equation

dXt = γµ(Xt )γ−2∇µ(Xt )dt +
√
2µ(Xt )γ−1dBt , (7)

where Bt is the standard Brownian motion in ".
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Proof We first derive the gradient flow in (P , GHf ). Notice that

δDf (ρ∥µ)(x) := δ

δρ(x)Df (ρ∥µ) = f ′
(

ρ

µ

)
(x), (8)

and that the transport metric is

GHf (ρ) =
(

− ∇ · (f ′′(ρ)−1∇)
)−1

from Definition 1 and Hf (ρ) =
∫
" f (ρ(x))dx. Thus, the gradient flow of Df (ρ∥µ) in

(P("), GHf ) satisfies

∂tρ(t, x) = − GHf (ρ)−1δHf (ρ∥µ) = −
(
[−∇ · (f ′′(ρ)−1∇)]−1

)−1
f ′

(
ρ

µ

)

=∇ ·
(
f ′′(ρ)−1∇f ′

(
ρ

µ

))
= ∇ ·

(
f ′′(ρ)−1f ′′

(
ρ

µ

)
∇

(
ρ

µ

))
.

Notice f ′′
(

ρ
µ

)
= µγ f ′′(ρ) with γ ∈ R due to the homogeneity assumption. Then the

gradient flow (5) can be simplified to

∂tρ(t, x) = ∇ ·
(
µ(x)γ ∇

(
ρ(t, x)
µ(x)

))
.

This equation is a Kolmogorov forward equation (see for example [31,33]) ∂tρ = L∗ρ with
the forward operator given by L∗ = ∇ · (µγ ·∇( 1µ ·)). In order to obtain the corresponding
stochastic differential equation, we first write down its adjoint equation, the Kolmogorov
backward equation ∂tu = Lu for functions on " with L =

(
1
µ ·

)
∇ · (µγ · ∇). Expanding L

explicitly gives

∂tu =
( 1
µ
·
)

∇ · (µγ · ∇u) = γ (µ(x)γ−2∇µ(x)) · ∇u(x)+ µ(x)γ−1&u(x).

By identifying the coefficient γ (µ(x)γ−2∇µ(x)) before the drift term ∇u(x) and the coef-
ficient µ(x)γ−1 before the diffusion term &u(x), one notices that L is the generator of the
stochastic differential equation

dXt = γµ(Xt )γ−2∇µ(Xt )dt +
√
2µ(Xt )γ−1dBt ,

which finishes the proof. ⊓-

Following the gradient flowrelation (6), the referencemeasureµ is the invariantmeasure
for the HT-SDE (7). We next derive a generalized de Bruijn identity that characterizes the
dissipation of the divergence function along the gradient flow.

Corollary 5 (Hessian transport de Bruijn identity) Suppose ρ(t, x) satisfies (5), then

d
dtDf (ρ(t, ·)∥µ) = −If (ρ(t, ·)∥µ),

where the f -relative Fisher information functional If (ρ∥µ) is given by

If (ρ∥µ) =
∫

"

∥∥∥∥∇f ′
(

ρ

µ

)∥∥∥∥
2
f ′′(ρ)−1dx. (9)
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Proof The proof follows the dissipation of energy along gradient flows in the probability
space. Notice that

d
dtDf (ρ(t, ·)∥µ) = −

∫

"
δDf (ρ(t, ·)∥µ)∂tρdx

=
∫

"
δDf (ρ(t, ·)∥µ)∇ · (f ′′(ρ)−1∇δDf (ρ(t, ·)∥µ))dx

= −
∫

"
(∇δDf (ρ(t, ·)∥µ),∇δDf (ρ(t, ·)∥µ))f ′′(ρ)−1dx

= −
∫

"

∥∥∥∥∇f ′(ρ
µ
)
∥∥∥∥
2
f ′′(ρ)−1dx,

where the last equality holds by formula (11). ⊓-

Consider the case f (ρ) = ρ log ρ. The f -entropy is the negative Boltzmann–Shannon
entropy

∫
" ρ log ρdx, and the f -divergence is the usual relative entropy

Df (ρ∥µ) =
∫

"

ρ(x)
µ(x) log

ρ(x)
µ(x)µ(x)dx =

∫

"
ρ(x) log ρ(x)

µ(x)dx.

In this case, δDf (ρ∥µ) = log ρ
µ + 1, and thus,

d
dtDf (ρ(t, ·)∥µ) = −

∫

"

∥∥∥∥∇ log ρ(t, x)
µ(x)

∥∥∥∥
2
ρ(t, x)dx.

Here we recover the classical result that the dissipation of the relative entropy is equal to
the negative relative Fisher information functional. Our result extends this relation to any
f -divergence functions. For this reason, If in (9) is called the f -relative Fisher information
functional.

Remark 2 Here we demonstrate the relations between our approaches and the ones in
literature [4,8,38]. The generalized de Bruijn identity and f -relative Fisher information
functional (9) recovers exactly the ones in [38] when µ is a uniform measure. They differ
from [38] when µ is a non-uniform reference measure. Our approach always generalizes
the entropy dissipation as the geometric dissipation as gradient flows of the probability
manifold (P("), GH), while [38] studies the dissipation of relative entropy among two heat
flows for two variables in the divergence function. Our approach is also different from
the one in [4]. We derive a class of Fokker–Planck equation (6) with parameter γ , while
[4] studies the Fokker–Planck equation(6) with γ = 1. Lastly, our approach differs from
[8]. While [8] proposes a reference-measure-dependent metric under which the Fokker–
Planck equation (6) with γ = 1 is the gradient flow of the Renyi entropy, our approach
introduces a class of reference-measure-independentmetrics. They only depend on the L2
Hessian operator of the convex entropy function and allow us to derive a new class of
Fokker–Planck equations (6).

2.4 Examples

Below we consider a few special but important cases of f -divergences and present the
f -divergence induced HT-SDE in Theorem 4.
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Example 1 (KL divergence HT-SDE)

f (ρ) = ρ log ρ, f ′(ρ) = log ρ + 1, f ′′(ρ) = 1/ρ, γ = 1.

The gradient flow, theHT-SDE, and the relative Fisher information functional are, respec-
tively,

∂tρ(t, x) = ∇ ·
(
µ(x)∇

(
ρ(t, x)
µ(x)

))
,

dXt = µ(Xt )−1∇µ(Xt )dt +
√
2dBt ,

If (ρ∥µ) =
∫

"

∥∥∥∥∇ log ρ(x)
µ(x)

∥∥∥∥
2
ρ(x)dx.

Example 2 (Reverse KL divergence HT-SDE)

f (ρ) = − log ρ, f ′(ρ) = −1/ρ, f ′′(ρ) = 1/ρ2, γ = 2.

The gradient flow, theHT-SDE, and the relative Fisher information functional are, respec-
tively,

∂tρ(t, x) = ∇ ·
(
µ(x)2∇

(
ρ(t, x)
µ(x)

))
,

dXt = 2∇µ(Xt )dt +
√
2µ(Xt )dBt ,

If (ρ∥µ) =
∫

"

∥∥∥∥∇
(ρ(x)
µ(x)

)−1∥∥∥∥
2
ρ(x)2dx.

Example 3 (α-divergence HT-SDE)

f (ρ) = 4
1 − α2 (1 − ρ

1+α
2 ), f ′(ρ) = 2

α − 1ρ
α−1
2 , f ′′(ρ) = ρ

α−3
2 , γ = 3 − α

2 .

The gradient flow, theHT-SDE, and the relative Fisher information functional are, respec-
tively,

∂tρ(t, x) = ∇ ·
(
µ(x)(3−α)/2∇

(
ρ(t, x)
µ(x)

))
,

dXt =
3 − α

2 µ(Xt )
−1−α

2 ∇µ(Xt )dt +
√
2µ(Xt )

1−α
2 dBt ,

If (ρ∥µ) =
( 2

α − 1

)2 ∫

"

∥∥∥∥∥∇
(

ρ(x)
µ(x)

) α−1
2

∥∥∥∥∥

2

ρ(x) 3−α
2 dx.

Example 4 (Hellinger distance HT-SDE)

f (ρ) = (√ρ − 1)2,

and it is a special case of α-divergence with α = 0 and hence γ = 3/2. The gradient flow,
the HT-SDE, and the relative Fisher information functional are, respectively,

∂tρ(t, x) = ∇ ·
(
µ(x)3/2∇

(
ρ(t, x)
µ(x)

))
,

dXt =
3
2µ(Xt )−

1
2 ∇µ(Xt )dt +

√
2µ(Xt )

1
2 dBt ,

If (ρ∥µ) = 4
∫

"

∥∥∥∥∥∇
(

ρ(x)
µ(x)

)−1/2
∥∥∥∥∥

2
ρ(x) 32 dx.
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Example 5 (Pearson divergence HT-SDE)

f (ρ) = (ρ − 1)2,

and it is a special case of α-divergence with α = 3 and hence γ = 0. The gradient flow,
the HT-SDE, and the relative Fisher information functional are, respectively,

∂tρ(t, x) = ∇ ·
(

∇
(

ρ(t, x)
µ(x)

))
,

dXt =
√
2µ(Xt )−1dBt ,

If (ρ∥µ) =
∫

"

∥∥∥∥∇
(ρ(x)
µ(x)

)∥∥∥∥
2
dx.

Example 6 (Jensen–Shannon divergence HT-SDE)

f (ρ) = −(ρ + 1) log 1+ ρ

2 + ρ log ρ, f ′(ρ) = − log 1+ ρ

2 + log ρ, f ′′(ρ) = 1
ρ(1+ ρ)

The above discussion does not apply since f ′′(ρ) is not homogeneous in ρ. However, one
can still obtain a gradient flow PDE

∂tρ(t, x) = ∇ ·
( (1+ ρ(t, x))µ(x)2

(ρ(t, x)+ µ(x)) ∇
(

ρ(t, x)
µ(x)

))
,

and the f –relative Fisher information functional

If (ρ∥µ) =
∫

"

∥∥∥∥∇ log( 2ρ
ρ + µ

)
∥∥∥∥
2
ρ(1+ ρ)dx.

Remark 3 We note that the proposed metrics and the gradient flows could be useful
in machine learning. Matching a target distribution given some reference distribution is
a routine task. Here we derive a class of stochastic differential equations depending on
the reference measure µ. Many numerical methods in MCMC focus on preconditioning
the drift gradient operator of Langevin dynamics, while our method modifies both the
drift and diffusion coefficient terms by the reference measure. For example, the Pearson
transport SDE has no drift term. We notice that this approach brings more challenge in
numerical computation with new convergence rate to be analyzed. The related numerical
issues will be studied in future work.

3 Hessian transport distance
In this section, we introduce the Hessian transport distance following the metric tensor
proposed in Definition 1 and derive the geodesic equations.

Definition 6 (Hessian transport distance) Given a convex entropy function H, the dis-
tance functionWH : P(") × P(") → R between two densities ρ0 and ρ1 is

WH(ρ0, ρ1) =
(
inf
v,ρ

∫ 1

0

∫

"

∫

"

(
v(t, x), [δ2H(ρ)]−1(x, y)v(t, y)

)
dxdydt

)1/2
, (10)

such that the infimum is taken among all density path ρ : [0, 1]× " → R and vector field
v : [0, 1] × " → T", satisfying



34 Page 14 of 20 W. Li, L. Ying ResMath Sci (2019) 6:34

∂tρ(t, x)+ ∇ ·
(∫

"
[δ2H(ρ)]−1(x, y)v(t, y)dy

)
= 0,

with ρ(0, x) = ρ0(x) and ρ(1, x) = ρ1(x).

We first illustrate thatWH is a Riemannian distance. For a fixed density ρ(x), theHodge
decomposition for a vector function v(x) is

v(x) = ∇((x)+ u(x),

where ( : " → R and u : " → Tx" is the divergence free vector for ρ in the following
sense

∇ ·
(∫

"
[δ2H(ρ)]−1(x, y)u(y)dy

)
(x) = 0. (11)

Thus,

∫

"

∫

"
(v(x), [δ2H(ρ)]−1(x, y)v(y))dx dy

=
∫

"

∫

"
(∇((x), [δ2H(ρ)]−1(x, y)∇((y))dx dy+

∫

"

∫

"
(u(x), [δ2H(ρ)]−1(x, y)u(y))dx dy

+ 2
∫

"

∫

"
(u(x), [δ2H(ρ)]−1(x, y)∇((y))dx dy

=
∫

"

∫

"
(∇((x), [δ2H(ρ)]−1(x, y)∇((y))dx dy+

∫

"

∫

"
(u(x), [δ2H(ρ)]−1(x, y)u(y))dx dy

≥
∫

"

∫

"
(∇((x), [δ2H(ρ)]−1(x, y)∇((y))dx dy,

where the second equality uses the divergence free relation (11). Thus, the minimization
problem (10) is same as the one over variable (ρ(t, x),((t, x)), where ((t, x) is the first
part of the Hodge decomposition of v(t, x). By denoting ∂tρ(t, x) = LH,ρ((t, x) with LH,ρ
defined in (2), we arrive at

GH(ρ)(∂tρ, ∂tρ) =
∫

"

∫

"

(
∂tρ(t, x), L−1

H,ρ∂tρ(t, y)
)
dx dy

=
∫

"

∫

"

(
LH,ρ((t, x), L−1

H,ρLH,ρ((t, y)
)
dx dy

=
∫

"

∫

"
(((t, x), LH,ρ((t, y))dx dy.

Thus, the distance function defined in (10) can be formulated as

(
WH(ρ0, ρ1)

)2
= inf

ρ : [0,1]→P(")

{ ∫ 1

0
GH(ρ)(∂tρ, ∂tρ)dt : ρ0, ρ1 fixed

}
.

This is exactly the geometric action functional in (P("), GH), and therefore, WH is a
Riemannian distance on P(").
Next, we prove that the distance is well defined and derive the formulations of geodesics

equations.
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Theorem 7 (Hessian transport geodesic (HT-geodesic)) The Hessian transport distance
is well defined in P("), i.e., WH(ρ0, ρ1) < +∞. The geodesic equation is

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ(t, x)+ ∇ ·
(∫

"
[δ2H(ρ)]−1(x, y)∇((t, y)dy

)
= 0

∂t((t, x)+ 1
2δρ

∫

"

∫

"
∇((t, x), [δ2H(ρ)]−1(x, y)∇((t, y)dx dy = 0.

(12)

IfH(ρ) = Hf (ρ) =
∫
" f (ρ)(x)dx, the geodesic equation simplifies to

⎧
⎪⎨

⎪⎩

∂tρ + ∇ · (f ′′(ρ)−1∇() = 0

∂t( − 1
2(∇(,∇() f

′′′(ρ)
f ′′(ρ)2 = 0.

Proof Wefirst prove that the distance function is well defined. First, by denotingm(t, x) =
[δ2H(ρ)]−1v(t, x), we can rewrite the minimization problem (10) as

WH(ρ0, ρ1)2 = inf
ρ,m

∫ 1

0

∫

"

∫

"
(m(t, x), δ2H(ρ)(x, y)m(t, y))dx dydt (13)

along with the constraints

∂tρ(t, x)+ ∇ ·m(t, x) = 0,

with fixed initial and terminal densities ρ0, ρ1. We show that there exists a feasible path
for any ρ0, ρ1 ∈ P("). Notice that min{minx∈" ρ0,minx∈" ρ1} > 0. We construct a path
ρ̄(t, x) = (1 − t)ρ0 + tρ1, where t ∈ [0, 1]. Thus, ρ̄(t, x) ∈ P(") and mint,x∈" ρ̄(t, x) > 0.
Construct a feasible flux function m̄(t, x) = ∇(̄(t, x), with (̄(t, x) = −&−1∂t ρ̄(t, x) ∈
C∞("). Thus,

∫ 1

0

∫

"

∫

"
(∇(̄(t, x), [δ2H(ρ)]−1(x, y)∇(̄(t, y))dx dydt < ∞,

Then (ρ̄(t, x), m̄ = ∇(̄(t, x)) is a feasible path for minimization problem (13) for any ρ0,
ρ1 ∈ P(").
We next derive the geodesic equation within P("). The first step is to write down the

Lagrangian multiplier ((t, x) of the continuity equation ∂tρ + ∇ ·m = 0

L(m, ρ,() =1
2

∫ 1

0

∫

"

∫

"
(m(t, x), δ2H(ρ)(x, y)m(t, y))dx dydt

+
∫ 1

0

∫

"
((x)(∂tρ(t, x)+ ∇ ·m(t, x))dx.

At ρ ∈ P("), δρL = 0, δmL = 0, and δ(L = 0, we know that the minimizer satisfies
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

"
δ2H(ρ)(x, y)m(t, y)dy = ∇((t, x),

1
2δρ

∫

"

∫

"
(m(t, x), δ2H(ρ)(x, y)m(t, y))dx dy = ∂t((t, x),

∂tρ(t, x)+ ∇ ·m(t, x) = 0.
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Finally, by denotingm(t, x) =
∫
" δ2H(ρ)−1(x, y)∇((t, y)dy and using the fact

δρ[δ2H(ρ)] = −[δ2H(ρ)]−1δρ[δ2H(ρ)−1][δ2H(ρ)]−1,

we derive the geodesic equation (12). ⊓-

Remark 4 Consider the special case that H(ρ) is the f -entropy with f ′′(·) homogeneous
of degree −γ . The objective function

∫ 1

0

∫

"

∫

"
(m(t, x), δ2H(ρ)(x, y)m(t, y))dx dydt =

∫ 1

0

∫

"

∥m(t, x)∥2
ρ(t, x)γ dxdt

is convex jointly in (m, ρ) if and only if γ ∈ [0, 1]. As two special cases, the proposed
minimal flux minimization (13) for the optimal KL (γ = 1) and the Pearson (γ = 0)
Hessian transport is convex.

3.1 Examples

Here we list the geodesic equation for the f -divergence functions.

Example 7 (KL divergence HT-geodesic)

f (ρ) = ρ log ρ, f ′(ρ) = log ρ + 1, f ′′(ρ) = 1
ρ
, f ′′′(ρ) = − 1

ρ2 .

Thus, f ′′′(ρ)/f ′′(ρ)2 = −1 and the geodesic equation is
⎧
⎨

⎩

∂tρ + ∇ · (ρ∇() = 0,

∂t( + 1
2(∇(,∇() = 0.

This is the classical geodesic equation in Wasserstein geometry, including both the con-
tinuity equation and the Hamilton–Jacobi equation.

Example 8 (Reverse KL divergence HT-geodesic)

f (ρ) = − log ρ, f ′(ρ) = − 1
ρ
, f ′′(ρ) = 1

ρ2 , f ′′′(ρ) = − 2
ρ3 .

Thus, f ′′′(ρ)/f ′′(ρ)2 = −2ρ, then the geodesic equation is
{

∂tρ + ∇ · (ρ2∇() = 0
∂t( + (∇(,∇()ρ = 0.

Example 9 (α-divergence HT-geodesic)

f (ρ) = 4
1 − α2 (1 − ρ

1+α
2 ), f ′(ρ) = 2

α − 1ρ
α−1
2 , f ′′(ρ) = ρ

α−3
2 , f ′′′(ρ) = α − 3

2 ρ
α−5
2 .

Thus, f ′′′(ρ)/f ′′(ρ)2 = α−3
2 ρ

1−α
2 , then the geodesic equation is

⎧
⎪⎨

⎪⎩

∂tρ + ∇ · (ρ 3−α
2 ∇() = 0,

∂t( + 3 − α

2 (∇(,∇()ρ 1−α
2 = 0.
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Example 10 (Hellinger distance HT-geodesic)

f (ρ) = (√ρ − 1)2,

and it is a special case of α-divergence with α = 0. Hence, the geodesic equation takes the
form

⎧
⎪⎨

⎪⎩

∂tρ + ∇ · (ρ 3
2 ∇() = 0,

∂t( + 3
2(∇(,∇()ρ 1

2 = 0.

Example 11 (Pearson divergence HT-geodesic)

f (ρ) = (ρ − 1)2,

and it is a special case of α-divergence with α = 3. Hence, the geodesic equation is
{

∂tρ + &( = 0,
∂t( = 0.

This geodesic equation satisfies ∂2
∂t2 ρ(t, x) = 0, which implies that

ρ(t, x) = (1 − t)ρ0(x)+ tρ1(x).

It states that the geodesic equation in optimal Hellinger distance transport metric is a
straight line in the probability space.

Example 12 (Jensen–Shannon divergence HT-geodesic)

f (ρ) = −(ρ + 1) log 1+ ρ

2 + ρ log ρ, f ′′(ρ) = 1
ρ(1+ ρ) , f ′′′(ρ) = − 2ρ + 1

(ρ + 1)2ρ2

Thus, f ′′′(ρ)/f ′′(ρ)2 = −(2ρ + 1). Hence, the geodesic equation is
⎧
⎨

⎩

∂tρ + ∇ · (ρ(1+ ρ)∇() = 0,

∂t( + 1
2(∇(,∇()(2ρ + 1) = 0.

Remark 5 The derivation of geodesics equation works also for the Stein metric [24]. In
particular, when the kernel is equal to the delta measure, the reverse KL divergence HT-
geodesic satisfies exactly the geodesic equation for the Stein metric. In addition, there
are interesting directions in machine learning where geometric structures are applied in
statistical manifold to accelerate the optimizationmethod inMCMC. Our results provide
a general class of metrics and gradient operators in probability space, which could be
helpful in this direction.

4 Numerical examples
In this section, we demonstrate the properties of the newly derived equations with several
examples. Since the gradient flow equations are linear, the flow dynamics are governed
mostly by the spectrum of the Kolmogorov forward and backward operators. Here, we
consider the simple setting of " equal to the unit interval [0, 1] with periodic boundary
condition. The PDEs are numerically discretized with a finite element method with a
uniform discretization.



34 Page 18 of 20 W. Li, L. Ying ResMath Sci (2019) 6:34

0 0.2 0.4 0.6 0.8
x

1

2

3

4

5

(x
)

20 40 60 80 100 120
i

105-
i

=0.0

20 40 60 80 100 120
i

103

104

-
i

=1.0

cba

20 40 60 80 100 120
i

102

104

-
i

=1.5

20 40 60 80 100 120
i

100

102

104

-
i

=2.0

0 0.5 1 1.5 2

100

101

102

| 2|

fed

Fig. 2 Unimodal case. a Reference measure µ(x). b–e The spectrum (part close to the zero) in the log-scale
for the gradient flow PDEs with γ = 0, 1, 1.5, 2. f The smallest nonzero eigenvalue λ2 for the gradient flow
PDEs with different choices of γ

We consider two simple examples in this setting. In the first example, the reference
measure µ(x) is a unimodal distribution (shown in Fig. 2a). Figure 2b–e plots the bottom
part of the spectrum of the gradient flow PDEs for γ = 0, 1, 1.5, 2. These γ values corre-
spond to the Pearson, KL, Hellinger, and reverse KL divergence. We also summarize the
magnitude of the smallest nonzero eigenvalue λ2 for these choices of γ in Fig. 2f. For these
linear gradient flow PDEs, |λ2| controls the convergence rate to the reference measure
µ(x) for a generic initial condition ρ(t = 0). The plot suggests that among various choices
of γ , the standard Fokker–Planck equation (γ = 1) has the largest |λ2| and hence the
fastest convergence rate.
In the second example, the reference measure µ(x) is a multimodal distribution (shown

in Fig. 3a). Figure 3b–e plots the bottompart of the spectrum of the gradient flow PDEs for
γ = 0, 1, 1.5, 2.We again summarize the magnitude of the smallest nonzero eigenvalue λ2
for these choices of γ in Fig. 3f. It is awell-known fact that, for themultimodal distribution,
there exists a gap between the first few lowest eigenvalues (the number of which is equal
to the number of modes) and the rest of the spectrum, due to the metastable states. For
the standard Fokker–Planck equation (γ = 1), this gap is shown clearly in Fig. 3d. From
the plots in Fig. 3, one can make two observations concerning the gradient flow PDEs
introduced in Sect. 2. The first is that, although the gap seems to persist for γ greater
than 1, it decreases when γ increases from 1. For example in Fig. 3, the gap is significantly
smaller at γ = 0. The second observation is that, in contrast to the unimodal case, |λ2| for
the multimodal case is no longer obtained at γ = 1. In fact, |λ2| increases quite rapidly
as γ decreases from 1, thus implying that the gradient flow PDE of the Pearson (γ = 0)
divergence converges at a faster rate compared to the one of the standard Fokker–Planck
equations (γ = 1).
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Fig. 3 Multimodal case. a Reference measure µ(x). b–e The spectrum (part close to the zero) in the log-scale
for the gradient flow PDEs with γ = 0, 1, 1.5, 2. f The smallest nonzero eigenvalue λ2 for the gradient flow
PDEs with different choices of γ

5 Discussions
In this paper, we propose a family of Riemannian metrics in the probability space, named
Hessian transportmetric.We demonstrate that the heat flow is the gradient flowof several
energy functions under the HT-metrics. Following this, we further introduce the gradient
flows of divergence functions in the HT-metrics, which can be interpreted as Kolmogorov
forward equations of the associated HT-SDEs.
Our study is the first step to bridgeHessian geometry,Wasserstein geometry, and diver-

gence functions. Several fundamental questions arise. Firstly, there aremany entropies and
divergence functions in information theory [1]. Besides the α divergences and α entropy,
which type of entropy’s HT-gradient flows of divergence functions is the probability tran-
sition equation of HT-SDEs? Secondly, in machine learning applications, especially the
parametric statistics, our new geometry structure leads to a new class ofmetrics in param-
eter spaces/statistical manifold. We expect some of these metrics will help the training
process [18,22]. Lastly and most importantly, we introduce a new class of stochastic dif-
ferential equations, named HT-SDEs. In the future, we shall study the convergence rate
of these HT-SDEs and apply them for related machine learning applications.
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