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Abstract
This note proposes an efficient preconditioner for solving linear and semi-linear parabolic
equations. With the Crank–Nicholson time stepping method, the algebraic system of equa-
tions at each time step is solved with the conjugate gradient method, preconditioned with
hierarchical interpolative factorization. Stiffness matrices arising in the discretization of
parabolic equations typically have large condition numbers, and therefore precondition-
ing becomes essential, especially for large time steps. We propose to use the hierarchical
interpolative factorization as the preconditioning for the conjugate gradient iteration. Com-
puted only once, the hierarchical interpolative factorization offers an efficient and accurate
approximate inverse of the linear system. As a result, the preconditioned conjugate gradient
iteration converges in a small number of iterations. Compared to other classical exact and
approximate factorizations such as Cholesky or incomplete Cholesky, the hierarchical inter-
polative factorization can be computed in linear time and the application of its inverse has
linear complexity. Numerical experiments demonstrate the performance of the method and
the reduction of conjugate gradient iterations.
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1 Introduction

This note is concerned with the numerical solution of parabolic equations of the form

∂u(x, t)

∂t
= ∇ · (

a(x)∇u(x)
) + r

(
u(x, t)

)
, x ∈ Ω ⊂ R

d , (1)

in two and three dimensions, with appropriate boundary conditions on ∂Ω and initial con-
ditions u(x, 0) = u0(x). Here, a(x) > 0 is the coefficient field of the diffusion operator
and r

(
u(x, t)

)
is the reaction term. We are interested on approximating the unknown field

u(x, t). Such reaction–diffusion equations can model a great variety of physical phenomena,
such as heat conduction with internal heat generation, population dynamics [7,16] or pattern
formation [22] in biology.

The most common spatial discretizations for solving (1) are finite difference and finite
element methods. Such a spatial discretization results in a time-dependent system of form

∂u(t)

∂t
= Mu(t) + r(t), (2)

where u(t) ∈ R
N and r(t) ∈ R

N are the spatial discretizations of u(x, t) and r
(
u(x, t)

)

at time t , respectively, and N is the number of degrees of freedom (DOFs) in the spatial
discretization. The stiffness matrix M ∈ R

N×N is the discretization of the diffusion term.
The classical approach to solve (2) consists of discretizing in time and evolving the numer-

ical solution at successive time steps using a time marching method. For instance, an explicit
scheme to approximate the solution at every time step successively can be obtained by using
the forward Euler method in time,

uk+1 = (I + MΔt)uk + Δt · rk .
However, such an approach would require selecting a very small time step Δt in order to
satisfy the stability condition Δt ≤ 1

2Δx2 maxx∈Ω a(x), where Δx is the spacing of the
spatial grid.

Alternatively, one can overcome the stability condition and use larger time steps by using
an implicit scheme such as thefirst-order backwardEuler or the second-orderCrank–Nicolson
methods, which are unconditionally stable. However, such methods introduce another chal-
lenge by requiring to solve a system of equations at each time step. This note focuses on the
Crank–Nicolson method

(
I − Δt

2
M

)
uk+1 =

(
I + Δt

2
M

)
uk + Δt · rk . (3)

There are several ways to solve the system of equations. The most direct way is to use
exact factorization methods, such as Cholesky decomposition, which would be prohibitively
expensive for large problem sizes. Alternatively, one can use iterative methods such as con-
jugate gradient (CG) which takes O(nnz(M)) = O(N ) cost per iterations. However, since
the matrix I − Δt

2 M is typically ill-conditioned, the number of iterations can be quite large,
thus requiring the use of a preconditioner. Finding a good preconditioner is itself a challeng-
ing task that has been vastly studied in the literature. Among others, we highlight here the
incomplete Cholesky factorization [18] and multifrontal method based algorithms coupled
with hierarchical matrices [26] and skeletonization [2,5,11,15].

The main goal of this note is to describe a new efficient preconditioner based on a version
of the hierarchical interpolative factorization (HIF) described in [5] to reduce the number
of CG iterations at each time step. Due to the accuracy and efficiency of this version of HIF,
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the preconditioned CG iteration at each time step converges in a small number of iterations.
We demonstrate the effectiveness of this approach of solving (1) by studying several 2d and
3d numerical examples.

Other approaches. In recent years, several exponential integrator based models for time
discretization have been proposed to solve parabolic equations, based on the integration
factor method [14] and the exponential time differencing method [13,27].

Boundary integral formulations provide an alternative to the PDE-based approach. In the
case where the diffusion coefficient a(x) is constant, one can make use of parabolic potential
theory [20,23] to obtain a boundary integral equation including time convolution of the form

u(x, t) =
∫

Ω(0)
G(x − y, t)u0(y)dy +

∫ t

0

∫

Ω(τ)

G(x − y, t − τ)r(y, τ )dydτ , (4)

where G(x, t) is the free-space Green’s function for the heat equation in d dimensions

G(x, t) = e−‖x‖2/4t

(4π t)d/2 . (5)

One can then use fast algorithms to evaluate layer potentials, such as the hierarchical inter-
polative factorization [12], the fast multipole method [8] as done by Messner et al. [19] or
the fast Gauss transform [9,21] used by Wang et al. [24] in this context. Other works include
[1,25]. This approach has many advantages, such as time stability, reduction of DOFs to the
boundary and the availability of fast linear algorithms for the evaluation of the layer poten-
tials. However, so far, the classical potential theory is restricted to the set of reaction–diffusion
equations with constant coefficients.

2 Algorithm

This section reviews the version ofHIF introduced in [5] and then describes the new precondi-
tioner. Throughout the note, the following notation are used: the uppercase letters (A, F, M ,
etc.) denote matrices; the calligraphic letters (I,B,R, etc.) denote sets of indices, associated
to DOFs; AIB refers to the restriction of A to the |I| × |J | submatrix with rows indexed by
I and columns indexed by B; the notation {Ii }pi=1 represents a collection of p disjoint sets
of indices Ii for i = 1, . . . , p.

Consider the PDE (1) on Ω = (0, 1)2 with the Dirichlet boundary conditions and initial
condition u(x, 0) = u0(x). We perform finite difference dicretization via the standard five-
point stencil over a uniform grid with step size h, resulting in N = (n − 1)2 DOFs, with
n = 1/h = 2Lm for some integers L and m. Each DOF corresponds to the solution u j =
u(x j ) at grid points x j = (hj1, hj2), with j = ( j1, j2) and 1 < j1, j2 < n− 1. The resulting
matrix M corresponding to the discretization of the diffusion term ∇a(x)∇ in (1) is sparse
and symmetric negative definite.

2.1 Crank–Nicolson Scheme

Since the diffusive term is the leading term, we use the Crank–Nicolson scheme for the
diffusive term and an explicit scheme for the reaction term, with time step Δt . This leads to
the algebraic system of Eq. (3), which can be solved successively to evolve the numerical
solution at future time steps,
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uk+1 =
(
I − Δt

2
M

)−1 [(
I + Δt

2
M

)
uk + Δt · rk

]
. (6)

Since the unconditionally stable Crank–Nicolson scheme is second order in time and space,
it allows for larger time steps than Backward or Forward Euler methods. Since A = I − Δt

2 M
is sparse and symmetric-positive-definite (SPD) one can use conjugate gradient to solve (6)
as opposed to classical direct solvers which are more expensive. However, the number of
iterations scale with κ(A), the condition number of A. For small time steps, κ(A) may be
close to 1. However, for the large time steps adopted here, κ(A) is comparable to the condition
number of M , which is quite large as M is ill-conditioned. Preconditioning then becomes
an essential step in order to reduce the number of CG iterations. The HIF has been shown
to significantly reduce the number of CG iterations for the Poisson equation with variable
coefficient [5] and we apply it to precondition A = I − Δt

2 M .

2.2 Recursively Preconditioned Hierarchical Interpolative Factorization

Herewe briefly review the recursively preconditioned hierarchical interpolative factorization
(PHIF) proposed in [5], which is an improved version of the original HIF described in [11].
Given a sparse SPD matrix A, PHIF produces a fast factorization that can be seen as a
multilevel generalized Cholesky decomposition, which alternates among block Gaussian
elimination, block Jacobi preconditioning and skeletonization at different levels.

One starts by defining a uniform quad-tree with L levels, that partitions the domain Ω

into p� = 2L−� × 2L−� square cells at each level � = 0, 1, . . . , L . The leaves correspond
to level � = 0 and the root to level � = L . Throughout the factorization we denote active
DOFs the DOFs that have not yet been decoupled. We set A0 = A and start factorizing the
matrix by decoupling DOFs starting from the leaves level � = 0 up to level L − 1 with the
following three steps at each level �:

(1) Cell elimination. For each cell 1 < i < p� at level � we decouple the interior active
DOFs indexed by I�,i as follows. Up to a permutation matrix A� can be written as

A� =
⎡

⎣
AI�,iI�,i AT

BI�,i

ABI�,i ABB AT
RB

ARB ARR

⎤

⎦ , (7)

where I�,i represents the DOFs inside that cell, B the DOFs on the boundary (i.e. edges
and corners of the cell), and R the remaining DOFs. For clarity purposes, hereafter we
use sub-index � to denote matrices at level � and drop the sub-index � when referring
to a particular block of the matrix, for instance we use ABB to refer to A�BB . Let
AI�,i ,I�,i = LI�,i L

T
I�,i

, Gaussian elimination leads to

MT
I�,i

A�MI�,i =
⎡

⎣
I
XBB AT

RB
ARB ARR

⎤

⎦ , MI�,i =
⎡

⎣
L−T
I�,i

−A−1
I�,iI�,i

AT
BI�,i

I
I

⎤

⎦ , (8)

where XBB = ABB − ABI�,i A
−1
I�,iI�,i

AT
BI�,i

. Performing block eliminations for each cell
1 < i < p� at level � of the quadtree leads to

Ā� = MT
� A�M�, M� =

p�∏

i=1

MI�,i . (9)
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After block elimination with respect the collection of index sets {I�,i }p�

i=1, the DOFs
inside the cells have been decoupled from those in the edges and corners at level �.
Therefore, the remaining active DOFs are those in the edges and corners and we only
need to continue factorizing the matrix Ā� restricted on these active DOFs.

(2) Block Jacobi preconditioning. Let r� be the number of edges and corners at level �, and
{I�,i }r�i=1 be the collection of corresponding index sets for the active DOFs. For a given
edge or corner i , up to a permutation, Ā� can be written as

Ā� =
⎡

⎣
ĀI�,iI�,i ĀT

BI�,i

ĀBI�,i ĀBB ĀT
RB

ĀRB ĀRR

⎤

⎦ , (10)

where I�,i represents theDOFs in the edge/corner i,B theDOFs on the edges and corners
connected to edge/corner i in Ā�, andR the remaining active DOFs. Then a rescaling of
edge/corner i can be performed using the Cholesky decomposition ĀI�,iI�,i = LI�,i L

T
I�,i

as

CT
I�,i

Ā�CI�,i =
⎡

⎢
⎣

I L−1
I�,i

ĀT
BI�,i

ĀBI�,i L
−T
I�,i

ĀBB ĀT
RB

ĀRB ĀRR

⎤

⎥
⎦ , CI�,i =

⎡

⎣
L−T
I�,i

I
I

⎤

⎦ ∈ R
N×N ,

(11)

If we perform this preconditioning for each edge and corner in level �, we obtain a block
Jacobi preconditioning that yields

Ã� = CT
� Ā�C�, C� =

r�∏

i=1

CI�,i , (12)

whereC� is a block diagonal matrix, up to a permutation, since {I�,i }r�i=1 is a collection of
disjoint index sets. The diagonal blocks of the resulting matrix Ã� are identity matrices
and the set of active DOFs remains unchanged.

(3) Edge skeletonization. Let q� be the number of edges at level �, and {I�,i }q�

i=1 the collection
of corresponding index sets. For a given edge i withDOFs indexed by I�,i skeletonization
is performed as follows. For clarity we drop the subindex in I�,i in the remainder of the
explanation for the edge skeletonization step. Up to a permutation one can write

Ã� =
[

I ÃT
RI

ÃRI ÃRR

]
(13)

where I are theDOFs in edge i at level � and R are the rest of activeDOFs.Assume ÃRI ∈
R

NR×NI has numerical rank k to relative precision ε. Then, we can use interpolative
decomposition (ID) [3], to get a partition of I = Ĩ ∪ Î into skeleton Î and redundant Ĩ
DOFs, and approximate the redundant columns of ÃRI by a linear combination of its
skeleton columns such that

ÃRĨ = ÃRÎTI + EI , ‖EI‖ = O(ε‖ ÃRI‖), (14)
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with TI ∈ R
k×(NI−k). Up to a permutation, using ID we can approximately zero out the

redundant columns leading to

ZT
I Ã�ZI ≈

⎡

⎢
⎢
⎣

I + T T
I TI −T T

I
−TI I ÃT

RÎ
ÃRÎ ÃRR

⎤

⎥
⎥
⎦ , ZI =

⎡

⎣
I

−TI I
I

⎤

⎦ ∈ R
N×N , (15)

Now,we can decouple redundantDOFs Ĩ in the edge by performingGaussian elimination
using the Cholesky decomposition I + T T

I TI = L ÎL
T
Î ,

MT
Ĩ ZT

I Ã�ZIMĨ ≈
⎡

⎢
⎣

I
XÎÎ ÃT

RÎ
ÃRÎ ÃRR

⎤

⎥
⎦ , MI =

⎡

⎢
⎣
L−T
Î (I + T T

I TI)−1T T
I

I
I

⎤

⎥
⎦ (16)

with X ÎÎ = I − TI(I + T T
I TI)−1T T

I . Performing skeletonization for each edge i with
set of indices I�,i gives

A�+1 ≈ KT
� Ã�K�, K� =

q�∏

i=1

KI�,i , KI�,i = ZI�,i MI�,i . (17)

The remaining active DOFs are now the skeleton DOFs in the edges and the corners at
level �. We can now move to the following level on the tree and perform the same three
steps.

After performing these three steps for all levels � = 0, . . . , L − 1, i.e. once we are in the
root level of the tree, the resulting matrix is

AL ≈ RT
L−1 · · · RT

0 AR0 · · · RL−1, R� = M�C�K� (18)

which is everywhere the identity except in the block indexed by the remaining active DOFs
at the root level. As opposed to the nested dissection multifrontal factorization, the frontal
matrix at the root is small since sparsification on the separator fronts has been performed
throughout all the levels. Now, we can approximate the original matrix as

A ≈ F = R−T
0 · · · R−T

L−1AL R
−1
L−1 · · · R−1

0 , (19)

and its inverse as

A−1 ≈ F−1 = R0 · · · RL−1A
−1
L RT

L−1 · · · RT
0 . (20)

The factors R� = M�C�K� are easily invertible since M�,C�, K� are block diagonal up to
a permutation, with each block being triangular. Therefore, the factorization can be viewed
as a generalized Cholesky decomposition.

In the 3d case, the algorithm for PHIF is similar to the 2d case, except for a few details.
Instead of square cells, the domain is partitioned into cube cells. At each level �, Block Jacobi
preconditioning is performed in faces, edges and corners, while skeletonization is performed
on faces (although it can also be performed in edges to lower the computational complexity
of the factorization).

See Figs. 1 and 2 for an illustration of the active DOFs at different steps and levels of the
factorization process in 2d and 3d respectively. The Block Jacobi preconditioning step has
been omitted in the illustrations because it doesn’t change the active DOFs.
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� = 0 cell elimination � = 0 skeletonization � = 1 cell elimination

� = 1 skeletonization � = 2 cell elimination � = 2 skeletonization

Fig. 1 Active DOFs at each level � of PHIF in 2d, depicted with black dots. The square cells and edges at each
level, from which DOFs have been eliminated, are represented in gray for cell elimination and skeletonization
steps respectively

� = 0 cell elimination � = 0 skeletonization � = 1 cell elimination � = 1 skeletonization

DOFs on faces Skeletons

Fig. 2 Top: Active DOFs at each level � of PHIF in 3d. Bottom: Detail of DOFs on the faces of a cubic cell
before and after skeletonization, with skeleton DOFs represented by hollow circles

2.3 Crank–Nicolson Schemewith PHIF Preconditioned CG

We now proceed to describe the algorithm for evolving the numerical solution of (1). First,
we compute the PHIF factorization F ≈ A = (I− Δt

2 M). Since A is a sparse SPDmatrix, the
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PHIF can be computed in linear time to obtain F−1 ≈ A−1, andmatrix–vectormultiplications
with F−1 require only O(N ) work.

In each time step of the Crank–Nicolson method, the linear system of Eq. (3) is solved
by CG, with F−1 in its factorized form (20) used as the preconditioner. The algorithm
is presented in Algorithm 1, where pcg(A, b, P) represents the preconditioned conjugate
gradient with preconditioner P that attempts to solve for Ax = b.

Algorithm 1: Numerical solution of reaction–diffusion equations

Construct PHIF F for A = (I − Δt
2 M) with some tolerance ε;

Initialize u0 = u0;
for k = 1 : nsteps do

g = (I + Δt
2 M)uk−1 + Δt · rk−1;

uk = pcg(A, g, F−1) (see (20) for the factorization of F−1)
end

3 Numerical Results

In this section, we demonstrate the performance of PHIF preconditioning for parabolic equa-
tions by solving two examples of Eq. (1): the heat equation and a logistic reaction–diffusion
equation. The PHIF preconditioning is compared with incomplete Cholesky preconditioning
in terms of the following quantities

– mem: the memory usage for PHIF and incomplete Cholesky factorizations;
– t f : the factorization time;
– ts : the average solve time for one time step, obtained from averaging over 100 time steps;
– ni : the number of CG iterations averaged over 100 time steps, with the relative residual

equal to 10−12.

The only user-defined parameter in the PHIF factorization is the relative precision ε of the
interpolative decomposition, which is set to 10−3 and 10−6 in the numerical experiments.
Similarly, a drop tolerance ε is used for the incomplete Cholesky factorization.

The MATLAB code for PHIF used for the numerical experiments is a modified version
of FLAM [10] to account for the block Jacobi preconditioning.

Example 1 The heat equation. Consider first the 2d heat equation

∂u(x, t)

∂t
= ∇ · (a(x)∇u(x, t)), x ∈ Ω = (0, 1)2 (21)

with the zero Dirichlet boundary condition and the initial condition equal to the sum of two
Gaussians,

u0(x, y) = e−((x−c1)2+(y−c1)2)/σ 2 + e−((x−c2)2+(y−c2)2)/σ 2
, (22)

where c1 = 0.35, c2 = 0.65 and σ 2 = 0.05. The diffusion coefficient field is set to

a(x, y) ∼
m∑

i=1

e−((x−xi )2+(y−yi )2)/σ 2
2 , (23)
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Table 1 Numerical results for the heat equation in 2d

PHIF Incomplete Cholesky

N ε Mem t f ts ni ε Mem t f ts ni
(GB) (s) (s) (GB) (s) (s)

5112 10−3 0.19 1.4e1 1.7 4.6 10−3 0.085 1.7e−1 1.6 58.5

10232 10−3 0.80 6.2e1 7.9 5.2 10−3 0.343 4.7e−1 1.2e1 97

20472 10−3 3.24 2.6e2 3.6e1 5.7 10−3 1.37 2.1 7.4e1 152.7

40952 10−3 13.0 9.1e2 1.7e2 5.8 10−3 5.50 7.7 4.6e2 226.8

5112 10−6 0.205 1.6e1 8.6e−1 2.3 10−5 0.335 1.4 1.1 11

10232 10−6 0.834 6.6e1 4.3 2.7 10−5 1.35 6.1 7.7 16.4

20472 10−6 3.36 2.9e2 2.1e1 3 10−5 5.4 2.6e1 4.3e1 24.5

40952 10−6 13.5 9.8e2 7.9e1 3 10−5 21.6 1.1e2 2.7e2 38.2

rescaled and shifted to have values in the interval [0.1, 10], with σ 2
2 = 0.005,m = 100 and

xi and yi being i.i.d. random variables sampled from the uniform distribution U(0, 1).

The time step size is set to Δt = Δx = 1
N and the numerical solution is obtained for

100 successive time steps. Note that we want to set Δt on the order of Δx to get a second
order approximation. Since Crank–Nicolson is unconditionally stable we can select a large
time step, and since the initial condition is smooth, we don’t observe numerical spurious
oscillations.

The numerical solution is evolved by solving (6) at each time step using CG. The matrix
A = I − Δt

2 M is especially ill-conditioned for large time steps, therefore preconditioning
becomes necessary to reduce the number of CG iterations. Numerical results in Table 1
show a decrease on the number of CG iterations when using PHIF preconditioning instead
of incomplete Cholesky factorization, with the similar memory footprint. The computation
time per time step is approximately halved with the use of PHIF compared to incomplete
Cholesky. Additionally, PHIF exhibits constant and problem size independent number of CG
iterations, while the number of CG iterations for incomplete Cholesky scale with O(N 1/4).
This results in almost linear O(N ) scaling of ts with PHIF preconditioning and O(N 1.25)

scalingwith incomplete Cholesky preconditioning. PHIF also provides a good approximation
to the inverse for ε = 10−6, thus one could use the factorization to directly solve the system of
equations and bypassCG. For instancewith ε = 10−6 and N = 40952, the PHIF factorization
gives a solve error estimated as ‖I − AF−1‖ = 7.9× 10−6 with randomized power iteration
[4,17] to 10−2 relative precision.

Let us consider an analogous problem in three dimensions withΩ = (0, 1)3 and the initial
condition equal to a Gaussian function,

u0(x, y, z) = e−((x−c)2+(y−c)2+(z−c)2)/σ 2
, (24)

where c = 0.5 and σ 2 = 0.05. The coefficient field is generated by

a(x, y, z) ∼
m∑

i=1

e−((x−xi )2+(y−yi )2+(z−zi )2)/σ 2
2 (25)
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Table 2 Numerical results for the heat equation in 3d

PHIF Incomplete Cholesky

N ε Mem t f ts ni ε Mem t f ts ni
(GB) (s) (s) (GB) (s) (s)

633 10−3 1.33 2.5e2 3.8 5.2 10−4 0.444 6.0 3.4 14.5

1273 10−3 14.1 3.2e3 3.7e1 5.9 10−4 3.66 1.9e1 2.6e1 22.9

2553 10−3 137 1.3e4 3.7e2 6 10−4 29.7 1.9e2 3.8e2 35

633 10−6 1.78 8.7e1 1.9 3 10−6 3.54 5.2e1 6.0 5.8

1273 10−6 21.2 1.5e3 2.0e1 3 10−6 29.2 8.2e2 8.1e1 8

2553 10−6 223 2.2e4 1.8e2 3 10−6 473 1.1e4 1.4e3 11

rescaled and shifted to be within the interval [0.05, 20], with σ 2
2 = 0.005,m = 1000 and

xi , yi and zi being i.i.d. random variables sampled from the uniform distribution U(0, 1).
The time step is set to Δt = 0.1Δx .

Numerical results are shown in Table 2. Similarly to the 2d example, PHIF leads to a
reduction of CG iterations when compared to the threshold-based incomplete Cholesky. For
instance for N = 2553 with a tolerance ε = 10−6, CG with PHIF takes an average of 3
iterations, while CG with incomplete Cholesky takes 11. While the factorization time of
PHIF is high for this 3d example, the solve time per time step can be approximately halved
with the use of PHIF as opposed to incomplete Cholesky. For instance, the solve time per
time step for PHIF is 1.8×102 with ε = 10−6, while for incomplete Cholesky it is 3.8×102

for with ε = 10−4. Additionally, experimentally PHIF exhibits constant number of CG
iterations, while the number of CG iterations for incomplete Cholesky increases with the
problem size N . This results in better scaling of ts with PHIF preconditioning than with
incomplete Cholesky preconditioning, making PHIF better suited for large problem sizes.

Example 2 A logistic reaction–diffusion equation. Consider now a 2d reaction–diffusion
equation with logistic growth

∂u(x, t)

∂t
= ∇ · (a(x)∇u(x, t)) + k1u(x, t)

(
1 − u(x, t)

k2

)
, x ∈ Ω = (0, 1)2, (26)

with k1 = 1 and k2 = 10, the zero Dirichlet boundary conditions and initial condition

u0(x, y) = 2

3
√
2πσ 2

e−((x−c)2+(y−c)2)/σ 2
(27)

with c = 0.5, σ 2 = 0.05. The coefficient field is set analogously to Example 1. This problem
is run with the same time step and the same number of time steps as in Example 1 and we
observe no numerical spurious oscillations in the numerical solution.

The results are summarized in Table 3. Similarly to Example 1, we observe a decrease
on the number of CG iterations ni and on the computation time per time step ts when
preconditioning with PHIF. The initial condition and diffusion coefficients are illustrated in
Fig. 3 together with the numerical solution after 128 time steps for N = 40952 and the
relative error of the numerical solution u(k=128) for different problem sizes, which is close
to second order asymptotically.

For the three dimensional case with Ω = (0, 1)3, we generate the initial condition u0(x)
and the coefficient field in the same way as the 3d case from Example 1, with a multiplicative
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Table 3 Numerical results for the 2d logistic reaction–diffusion equation

PHIF Incomplete Cholesky

N ε Mem t f ts ni ε Mem t f ts ni
(GB) (s) (s) (GB) (s) (s)

5112 10−3 0.19 1.4e2 2.3 5.1 10−3 0.085 1.5e−1 1.8 64.6

10232 10−3 0.81 5.7e1 8.7 5.6 10−3 0.343 5.7e−1 1.3e1 107.1

20472 10−3 3.24 2.3e2 5.0e1 6.5 10−3 1.37 2.4 8.7e1 167.1

40952 10−3 13.0 8.5e2 3.3e2 6.3 10−3 5.50 7.8 5.1e2 252.9

5112 10−6 0.205 1.5 9.2e−1 2.6 10−5 0.335 1.4 1.3 12.2

10232 10−6 0.834 6.0e1 4.3 3 10−5 1.347 6.2 8.6 18.5

20472 10−6 3.36 2.9e2 2.8e1 3.4 10−5 5.39 2.9e1 5.7e1 29.5

40952 10−6 13.5 9.8e2 1.9e2 4 10−5 21.5 1.2e2 3.2e2 40.8
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Fig. 3 Initial conditions (a), coefficient distribution (b), numerical solution (c) and relative error plot (d) for
the 2d logistic reaction–diffusion equation
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Table 4 Numerical results for 3d logistic reaction–diffusion equation

PHIF Incomplete Cholesky

N ε Mem t f ts ni ε Mem t f ts ni
(GB) (s) (s) (GB) (s) (s)

633 10−3 1.31 1.7e2 4.1 5 10−4 0.443 2.4 1.6 14

1273 10−3 13.9 9.6e2 4.0e1 6 10−4 3.66 1.6e1 2.4e1 21

2553 10−3 135 1.2e4 3.7e2 6 10−4 29.7 1.5e2 3.6e2 32

633 10−6 1.76 1.8e2 2.1 3 10−6 2.77 3.0e1 4.2 5.7

1273 10−6 21.2 1.5e3 2.3e1 3 10−6 29.1 5.2e2 6.2e1 7

2553 10−6 223 2.3e4 1.9e2 3 10−6 237 7.6e3 8.6e2 10
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Fig. 4 Initial conditions (a), coefficient distribution (b), numerical solution (c) and relative error plot (d) for
the 3d logistic reaction–diffusion equation

factor of (2πσ)−3/2 in (24) and m = 200. We also set the time step to Δt = 0.1Δx and the
solution is evolved for 100 time steps.

Numerical results are shown in Table 4. The initial conditions, coefficient field, solution
after 64 time steps for N = 2553 and relative error of the numerical solution u(k=64) for
increasing problem sizes are depicted in Fig. 4. We observe that the error is close to second
order asymptotically and CG converges with very few iterations using PHIF, independently
of N .
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4 Conclusions

This note proposed an efficient preconditioner for solving linear and semi-linear parabolic
equations based on the hierarchical interpolative factorization in [5]. The preconditioned CG
iteration enjoys several advantages: (1) it provides a good approximate inverse that can be
applied very rapidly, (2) one only needs to construct HIF factorization once at the beginning,
and (3) applying the inverse approximation at each time step has linear cost. Computing the
factorization can be done in linear time as opposed to other more expensive factorizations
such as Cholesky or incomplete Cholesky.Well-suited for ill-conditionedmatrices associated
with large time steps, the newpreconditioner reduce the number ofCG iterations significantly.

This approach can also be extended to solve other parabolic equations, for instance the
time-dependent fourth-order differential equations for studying the buckling plate or the
clamping plate problems in the plate theory [6]. In such cases, HIF needs to use separators
twice as wide, when using the 9-point and 13-point finite differences stencils in 2d and 3d,
respectively.

If the PDE has time-dependent coefficients or moving geometries, instead of constructing
the PHIF factorization once at the beginning, one would need to compute the factorization
at each time step. Such a computation can be expensive, especially for 3d geometries. How-
ever, if the coefficients change slowly with time, one can reuse the result by computing the
factorization once every few time steps.
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