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Abstract

Although overparameterized models have shown their success on many machine
learning tasks, the accuracy could drop on the testing distribution that is different
from the training one. This accuracy drop still limits applying machine learning
in the wild. At the same time, importance weighting, a traditional technique to
handle distribution shifts, has been demonstrated to have less or even no effect
on overparameterized models both empirically and theoretically. In this paper,
we propose importance tempering to improve the decision boundary and achieve
consistently better results for overparameterized models. Theoretically, we justify
that the selection of group temperature can be different under label shift and
spurious correlation setting. At the same time, we also prove that properly selected
temperatures can extricate the minority collapse for imbalanced classification.
Empirically, we achieve state-of-the-art results on worst group classification tasks
using importance tempering.

1 Introduction
Overparameterized neural networks have achieved state-of-the-art performance on numerous machine
learning tasks. However, they can fail when the test data distribution differs from the training data
distribution. In this paper, we consider the generalization properties of overparameterized neural
networks on a typical subgroup of the data [1, 2], particularly when a certain subgroup of the data
is hard to sample [3] and overparameterized neural networks become vulnerable to fitting spurious
features [4, 5, 6, 7, 8].

Importance weighting [10, 11, 12] is a classical statistical technique to train machine learning models
that can adapt to class imbalances by re-weighting the loss function during training. Using importance
weights, one can construct an unbiased estimator of the test loss via upweighting the training data that
are more likely to appear in the test data. However, recent studies show that importance weighting has
little to no impact on generalization when training deep neural networks to convergence [9, 13, 14],
but rather only improves optimization properties [15]. [16] proved that overparameterized models
trained with dynamic importance weightng [17] also does not improve over ERM. Moreover, in the
current deep learning paradigm, practitioners frequently train overparameterized models that can
interpolate the training data [18, 19]. Empirically, importance weighting has an impact only if strong
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(c) Importance Temperature.

(b) Multilayer Perceptron with two hidden lay-
ers of size 200

Figure 1: As shown in [9], importance weighting does not change the decision boundary, but
importance tempering can. Training data points are colored according to their true labels. The learned
boundary is plotted as dotted blue line in (a) and shown by the different background colors in (b).

regularization, i.e., early stopping or explicit l2 regularization, is applied [9, 1]. Theoretically, it
has been shown that overparameterized linear and non-linear models trained with the importance
weighted exponential or cross-entropy loss converge to the max-margin model [20, 21, 22, 23, 24]
and such models will ignore the importance weights [13].

In this paper, we address these problems by proposing an alternative to importance weighting for
overparameterized models, dubbed importance tempering (IT). Inspired by [3], we assign different
margins to the training examples from different groups by adding temperature parameters to the
exponential-tailed point loss. Unlike importance weighting, which has little to no impact when the
network interpolates the training data, importance tempering increases the margin for the minority
class and finds a better decision boundary, as shown in Figure 1 for a simple Gaussian mixture dataset.
Our numerical experiments show that importance tempering increases worst group accuracy even
when the model is overparameterized. This observation refutes the hypothesis of [2], which states
that overparameterization causes deep neural networks to overfit to spurious features in the data.

1.1 Related Works

Implicit Bias of Gradient Descent To understand how gradient descent and its variants help deep
learning to find solutions with good generalization performance on the test data, a recent line of
research has studied the implicit bias of gradient descent in different settings. For example, gradient
descent is biased towards solutions with minimum norm under `2 loss [25, 26] and will converge to
large margin solutions when using exponential-tailed loss [20, 21, 22, 23, 27].

Imbalanced Classification [3] considered a label-distribution-aware margin loss for imbalanced data
classification and selected the margin to minimize the generalization bound. [14] considered using a
polynomial tailed loss (such as the focal loss [28]) instead of an exponential-tailed or cross-entropy
loss. For the loss functions they consider, importance weighting can still have an effect even for
overparameterized models. In this paper, we focus on using the cross-entropy loss since this is the
most commonly used loss for classification problems in practice. [29, 30, 31, 32, 33, 34, 17] proposed
different loss functions for imbalanced classification tasks. For a detailed discussion, we refer the
reader to Remark 1. Furthermore, all of these papers focused on the average classification error over
all groups, while in the present paper we also address the worst group classification error. This leads
to a different selection of the class margins from what [3] proposed.

1.2 Our Contributions
In summary, our contributions are as follows:

• We introduce importance tempering to fix the ineffectiveness of importance weighting [9, 13]
for overparameterized models. Theoretically, we prove that using importance tempering
with a homogeneous neural network will result in the assignment of different margins to
each group [3] via the implicit bias of (stochastic) gradient descent on exponential-tailed
loss [20, 22, 24].

• We discuss the impact of importance tempering on the recently discovered phenomenon
of neural collapse [35] on imbalanced datasets. In particular, we show that importance
tempering can fix minority collapse [36] for overparameterized models. We also find that
it is consequential whether importance tempering is applied to the last layer features or
classifier. These two settings lead to different geometries for the last layer features, from
which we conclude that importance tempering should be applied to the last layer classifier
but not the features.

• We conduct experiments on two types of distribution shifts. We find that the optimal
importance tempering varies for different types of distribution shifts, which is in contrast to
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the common practice of selecting an importance weight equal to the imbalance ratio. We
also show that importance tempering consistently improves the worst group accuracy even
when the model is larger, refuting the hypothesis of [2] that overparameterization causes
deep neural networks to overfit to spurious features in the data.

2 Importance Tempering

In this section, we introduce our method, importance tempering (IT), which can be viewed as an
analogue of importance weighting for overparametrized models trained with an exponential-tailed
loss. We apply different temperatures to the exponential loss for different data points to control the
model’s level of confidence for each data point. Specifically, we show that IT will assign different
classification margins to different subgroups of the data. Our proofs use techniques from [20, 22, 24].

2.1 Problem setup

We assume that data points x = {(xi, yi, gi)}ni=1 are sampled from ng groups. Here xi ∈ Rd are the
features, yi ∈ R is the label, and gi ∈ {1, 2, . . . , ng} is the corresponding group label. Empirical
risk minimization (ERM) aims to optimize LERM(θ) = 1

n

∑n
i=1 exp(−yiq(xi, θ)), where q(x, θ)

denotes the output of a neural network on input x with parameters θ. For simplicity, in this section,
we consider a binary classification setting, i.e., y ∈ {−1, 1} and our prediction is given by the sign of
q(x, θ). We will discuss how to use importance tempering with cross-entropy loss for multi-class
classification problems in Section 3.2. IT modifies the ERM setting by adding temperature parameters
for each group in the data:

LIT(θ) =
1

n

n∑
i=1

exp(−yiq(xi, θ)f [gi]).

where f [gi] is the importance weight of group gi. We then train θ by minimizing LIT.

Remark 1. Adding a temperature parameter was first introduced for facial recognition in [37, 38].
Independent work [30, 29] also introduced a temperature for the label shift problem. Our paper is
different from these papers from two perspectives. First, these papers only address classification
error without distribution shift. In this paper, we mainly discuss the impact of importance tempering
on an overparameterized model’s worst group performance. At the same time, the theory in [29]
only considers the two-class classification problem with label shift. In Section 3.2, we show that the
geometry of multi-class problems can be very different. Second, label shift is a special case of the
problem we consider. In particular, the group variables gi can be different from the classes, which
leads to a different selection of the temperature.

2.2 importance tempering corrects the implicit bias
In this section, following [22], we will show that training an overparametrized homogeneous neural
network with IT results in the solution of a cost-sensitive SVM problem [39, 40]. We make the
following assumption on our model:

Assumption 1 (Homogeneous model). There exists a constant L > 0 such that

q(x, αθ) = αLq(x, θ),∀α > 0.

This assumption includes L-layer fully-connected and convolutional neural networks with ReLU or
LeakyReLU activations as widely used examples. For such a model, we can establish the following
result:
Theorem 1 (Informal). For a homogeneous model q(x, θ) with some regularity conditions, let θ(t)
denote the model parameters trained with gradient flow at time t. If there exists a time t0 such that
LIT(θ(t0)) < 1

n , then any limit point of θ(t0)
‖θ(t0)‖ is along the direction of (i.e., a scalar multiple of) a

Karush-Kuhn-Tucker (KKT) point of the following minimum-norm separation problem:

min
θ
‖θ‖ s.t. yiq(xi, θ) ≥ 1/f [gi], i = 1, . . . , n.
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3 Importance Tempering for Label Shift
In this section, we focus on the problem of label shift. In this case, the subgroups coincide precisely
with the different classes (labels) of the data. This setting has been well studied for underparameterized
models [41, 42, 43]. We provide the corresponding theory for overparameterized models in the label
shift setting. Our method is compared with the reweighting-based method [44] in Table 2. In this
setting, the ratio of sample sizes across different classes is different for training and testing. For
example, training data from a certain group of people may be extremely rare due to a bias in the
data collection procedure, but we still want our model to perform well for this under-sampled group
after we train and deploy it. Formally, consider a K-class classification problem, where ni, i ∈ [K]
samples in the training data are drawn from class i (sampled from distribution pi). In the imbalanced
setting, we may expect that the ni are of vastly different sizes.

3.1 A Generalization Theorem for the Binary Case
Below we provide a generalization bound in the binary label shift setting, which suggests setting the
temperature as the square root of imbalance ratio. The proof of the theorem is shown in Appendix B.
Theorem 2. (Informal) Let F denote the function class of two-layer 2-homogeneous neural networks,
and let C(F) denote some proper complexity measure of the model class. If we fix the sum of
temperatures

∑
i f [i] to be a constant, then with high probability over the randomness of the training

data, we have

max
i

Px∼pi [yiq(x, θ) ≤ 0] . max
i
f [i]

√
C(F)

nj
.

Furthermore, selecting f [i] ∝ √ni minimizes the resulting bound.

Remark 2. Similarly, if we consider a balanced test distribution, the average test error can be

bounded by
∑
i f [i]

√
C(F)
nj

. In this situation, f [i] ∝ √ni still minimizes the bound. The correspond-
ing empirical results are also plotted in Figure 3.2.
We tested our theory on both the CIFAR-10 [45] and Fashion MNIST [46] datasets with a ResNet-32
[47] model. We specify minority and majority groups with n1 and n2 training points, respectively,

and set the importance tempering for the minority group to be
(
n1

n2

)γ
, where γ is a hyperparameter

to be tuned. The majority group has an importance tempering equal to 1. (Note that this is equivalent
to setting the temperature for each group.) We then vary γ from 0 to 1. The experiment confirms
our theory as the model achieves the best performance with γ ≈ 0.5. For more details, we refer to
Section 3.3.

3.2 Multi-class and Neural Collapse
Recently, [35] observed that during the terminal phase of training (i.e., the stage after achieving zero
training error) over a balanced dataset, the features for data points within the same class collapse to
their mean, and the feature means for each class will converge to the simplex equiangular tight frame
(ETF). This neural collapse [35] phenomenon enables us to understand the benefit of training after
achieving zero training error to achieve better performance in terms of generalization and robustness.
For imbalanced datasets, [36] discovered that the minority classes are not distinguishable in terms of
their last layer classifiers when the imbalance ratio exceeds a threshold. This phenomenon is known
as minority collapse, and it fundamentally limits the performance of feature-learning models for
the minority classes. In this section, we aim to show that IT can extricate the minority collapse for
multi-class classification problems.

For the multi-class classification problem, there are two ways to introduce importance tempering.
Following [36], in this section, we study the two resulting loss functions and explore their differences
in the extremely imbalanced limit. We analyze this setting by way of the layer peeled model
[17, 48, 49] as follows. A standard neural network architecture computes an output of the form

f (x;W full) = WLσ (bL−1 + WL−1σ (· · ·σ (b1 + W 1x))) (1)

In the layer peeled model, for each data point in the dataset
⋃K
k=1{xk,i, i = 1, · · · , nk}, its last

layer representation hk,i = σ (bL−1 + WL−1σ (· · ·σ (b1 + W 1xk,i))) ∈ Rd is considered as a
free variable which we can choose directly. The same holds for the last layer classifier W ∈ RK×d =
WL = [w1,w2, · · · ,wK ]> which will be applied to the representations hk,i. The unconstrained
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Table 1: Effect of incorporating importance tempering on the last layer features vs. classifiers for
imbalanced CIFAR-10. We find that introducing the temperature on the last layer classifier is better.

Imbalance
Ratio

Vanilla Temperature over feature Temperature over classifier
Worst Group Average Worst Group Average Worst Group Average

1:10 64.3 85.65 67.2 86.27 72.7 87.89
1:100 21.5 67.52 25.9 70.11 57.2 76.65

layer-peeled model (ULPM) [49] simplifies the cross entropy loss as

L(W ,H) = −
K∑
k=1

nk∑
i=1

log

(
exp(w>k hk,i)∑K
j=1 exp(w>j hk,i)

)
. (2)

(a) CIFAR 10, Average (b) CIFAR 10, Worst (c) Fashion MNIST, Av-
erage

(d) Fashion MNIST,
Worst

Figure 2: Effect of the minority class temperature
(
n1

n2

)γ
on CIFAR-10 and Fashion MNIST with

an imbalanced of 1:100. The best performance on both average accuracy and worst group accuracy
occur when γ ≈ 0.5.
Following [50, 3, 36], we consider the step imbalance setting in this section. We consider two
different class sizes during training time: the majority classes each contain nA training examples
(n1 = n2 = · · · = n[K/2] = nA), and the minority classes each contain nB training examples
(n[K/2]+1 = n[K/2]+2 = · · · = nK = nB). We call R := nA

nB
the imbalance ratio. At test time,

however, the classes are balanced, i.e., each class has the same number of data points.

To incorporate importance tempering into the cross-entropy loss, we can either add the temperature to
the features h or to the last layer classifier w. Introducing the temperature at these different positions
results in two different objective functions:

LIT(H)(θ) = −
K∑
k=1

nk∑
i=1

log
exp(w>

k λkhk,i)∑K
j=1 exp(w

>
j λkhk,i)

,

(3)

LIT(W)(θ) = −
K∑
k=1

nk∑
i=1

log
exp(λkw

>
k hk,i)∑K

j=1 exp(λjw
>
j hk,i)

.

(4)

Remark 3. The ambiguity in where to add IT only appears in the case of label shift. For a general
worst group problem (i.e., where the groups are not necessarily aligned with the labels), one can only
add the temperature to the last layer features h. In this case, the objective function is different from
the independent work of [29].

3.2.1 Theoretical Results
Here we show how the choice of importance tempering and the position at which it is introduced can
impact the geometry of the last layer features and classifiers in the extremely imbalanced setting (i.e.,
R→∞) considered by [36]. We first link the converged solution of gradient flow on homogeneous
neural networks to the KKT point of the corresponding minimum-norm separation problem. We then
consider the global solution of the cost-sensitive SVM problem to study the geometry of the last
layer features. From [22, 49], we know that the gradient descent dynamics of objective function (2)
converges to a KKT point of

min
W ,H

1

2
||W ||2F +

1

2
||H||2F s.t. w>k hk,i −w>j hk,i ≥ 1, k 6= j ∈ [K], i ∈ [nk], (5)

the gradient descent dynamics of (3) converges to a KKT point of

min
W ,H

1

2
||W ||2F +

1

2
||H||2F s.t. λkw

>
k hk,i − λkw>j hk,i ≥ 1, k 6= j ∈ [K], i ∈ [nk], (6)

and the gradient descent dynamics of (4) converges to a KKT point of

min
W ,H

1

2
||W ||2F +

1

2
||H||2F s.t. λkw

>
k hk,i − λjw>j hk,i ≥ 1, k 6= j ∈ [K], i ∈ [nk]. (7)
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Theorem 3. (Informal) Assume R := nA
nB
→∞ and select the temperature as Theorem 2 suggests,

i.e. λj =
√
nj . Then the following statements hold:

• (a) If the global solution (H∗,W ∗) of (5) has a limit, then the limit is a minority collapse
solution, i.e. limR→∞ w∗k − w∗k′ = 0, for all K/2 < k < k′ ≤ K.

• (b) The global solution (H∗,W ∗) of (6) converges to the neural collapse solution, i.e a
simplex ETF solution: the vectors of the class means (after centering by their global mean)
converge to vectors of equal length, form equal-sized angles between any given pair, and
are the maximally pairwise-distanced configuration subject to having the previous two
properties cos(h̄k, h̄j) = − 1

K−1 , ||h̄k|| = ||h̄j ||, k 6= j.

• (c) If the global solution of problem (7) has a directional limit, the directional limit of
the global solution (H∗,W ∗) of (7) satisfies limR→∞ cos(h̄k, h̄j) = − 1

K
2 −1

, ||h̄k|| =
||h̄j ||, for all K/2 + 1 ≤ k 6= j ≤ K.

Discussion Theorem 3 shows that tempering the last layer features h enables the class means
(centered at the global-mean) to form the largest possible equal-sized angles between any pair of
class means, while tempering the last layer classifier w only enlarges the angles between the minority
classes. This leads to larger angles (from arccos

(
− 1
K−1

)
when tempering h to arccos

(
− 1

K
2 −1

)
when tempering w) between the minority class vectors and thus better results on the minority classes.
At the same time, arccos

(
− 1

K
2 −1

)
is the largest possible angle that can be achieved when all of the

minority feature vectors form an equiangular frame.

3.3 Experimental Results

(a) Average angle be-
tween majority groups

(b) Average angle be-
tween minority groups

Figure 3: Average angle of majority group and
minority group under different imbalance ratio on
Fashion MNIST. As our theory suggests, the an-
gle between minority groups is always roughly
arccos

(
1

K−1

)
when we add IT to the features,

while the angle between the minority groups con-
verges to arccos

(
1

K
2 −1

)
if we add IT to the last

layer classifier.

Following [36], we test our algorithms on
the FashionMNIST [46] and CIFAR-10 [45]
datasets. We choose the first five classes as ma-
jority classes and make the second five classes
into minority classes by subsampling. We test
adding IT to either the features or the last layer
classifier, with the temperature proportional to
the square root of the number of samples. The
results are shown in Table 1. [36] has shown that
importance weighting can also mitigate minority
collapse. [36] only trains the network for 300
epochs. As shown in [9], after training the net-
work for 1000 epochs, the effect of importance
weighting will become negligible. In this paper, we mainly consider fully-trained networks and leave
the regularization of early stopping for future work.

As our theory suggests, one should add the temperature to the last layer linear classifier; this is in
agreement with the results of [38]. However, we find that the class feature means do not converge to
an equiangular tight frame as [35] suggested. The effect of the imbalance ratio on angles between
majority/minority classes is shown in Figure 3, where the constants arccos

(
1

K−1

)
(gray line) and

arccos
(

1
K
2 −1

)
(green line) are marked for comparison. Our experimental results matches what our

theory (Theorem 3) predicts: adding IT to the last layer classifier leads to the largest possible angle in
the extremely imbalanced limit.

4 Importance Tempering for Spurious Correlations
Worst group accuracy [1, 2, 51] is a relevant metric for reducing the the reliance of machine learning
models on spurious correlations [4, 7, 52]. In this setting, each example is composed of the input x,
a label (core attribute) y ∈ Y , and a spurious attribute a ∈ A. Each data point belongs to a group
g = (y, a) ∈ Y ×A. Spurious correlations refer to correlations between the label and the spurious
attribute for a particular group (which in general will not generalize across different groups). Here
we focus on the binary case Y = {0, 1} and A = {0, 1}. Following [1, 2, 51], we test our objective
function with a ResNet-50 [47] on the CelebA and Waterbird dataset and Bert [53] on the MultiNLI
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(b) CelebA
Figure 4: Overparameterization hurts the worst-group accuracy when the model is trained by ERM
and importance weighting objectives. However, overparameterization still helps when importance
tempering is applied. We plot the mean error over 2 replicates. The red line here indicates the
interpolation threshold.

dataset. In CelebA, the label y is whether or not the image contains a person with blonde hair. The
spurious attribute is the gender of the person in the image. In the Waterbird dataset, we aim to classify
land and water birds. Here, the spurious attribute is the background of the image (land or water).
For natural language processing, [54] recently found that there is a spurious correlation between
contradictions and the presence of negation words such as nobody, no, never, and nothing. We use
the MultiNLI dataset to distinguish between entailed, neutral, and contradictory examples and aim to
achieve good accuracy regardless of the spurious attribute (presence or absence of negation words).
More details on these datasets can be found in [1]. The experiment details are shown in Appendix E.
As shown in Table 2, importance tempering achieves comparable results with Group DRO [1].

Table 2: Comparison of Empirical Risk Minimization (ERM), Importance Weighting (IW), group
DRO, and importance tempering (IT) models on several group shift and spurious correlation bench-
marks. Large Models refers to results using WideResNet-50 for computer vision and Bert Large for
natural language processing.

Dataset Worst-Group Accuracy

ERM ERM IW IW Group
DRO

Group
DRO

IT IT

Label Shift 1:10 Fashion MNIST 69.9 0 73.2 0 - - 79.0 0
CIFAR10 64.3 0 71.3 0 - - 72.7 0

Label Shift 1:100 Fashion MNIST 27.7 0 59.8 0 - - 64.7 0
CIFAR10 21.5 0 33.2 0 - - 57.2 0

Spurious
Correlations

CelebA 41.1 47.8 82.1 83.8 88.3 88.9 89.1 90.1
Waterbird 60.0 63.7 - 88.0 86.0 91.4 88.7 89.5
MultiNLI 65.7 - 64.8 - 77.7 - 75.9 -

Large Models CelebA 76.7 77.8 86.8 88.5 87.4 87.6 90.6 89.8
MultiNLI 74.0 - 74.3 - 76.9 - 78.9 -

Strong `2 Regularization X X X X

4.1 Importance Tempering Cooperates with Overparameterization

It has recently been observed [55, 18] that increasing model size beyond zero training error, i.e.
overparameterization, can lead to better test error, which is commonly referred to as the “double
descent” phenomenon. However, [2] showed that increasing model size well beyond the point of zero
training error can hurt test error on minority groups when there are spurious correlations in the data,
and hypothesized that the inductive bias towards memorizing fewer examples hurts accuracy for the
minority group. Below we will show that importance tempering allows us to refute this hypothesis by
changing the importance of memorization for each group.

Synthetic Experiment Setup We first test the impact of overparameterization on the synthetic
dataset proposed in [2]. In this case, both the labels and spurious attributes are ±1: Y = A = {±1}.
Consider two equally-sized minority groups with a = −y and two equally-sized majority groups
with a = y. In addition, every input is composed of core features xcore ∈ Rd and spurious features
xspur ∈ Rd, i.e. x = [xcore, xspur] ∈ R2d. We assume that both the core and spurious features are
noisy and formally are sampled according to

xcore|y ∼ N (y1, σ2
coreId);xspur|y ∼ N (a1, σ2

spuId), (8)

where σ2
core, σ

2
spu are the variance of the core and spurious features. Consider logistic regression

on ReLU random features ReLU(Wx) ∈ Rm [56, 57], where W ∈ Rm×2d is a random matrix
with each row sampled uniformly from the unit sphere S2d−1. We set the number of training data
n = 3000 and dimension d = 100. Setting the same hyperparameters as [2], we vary the random
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feature model size by increasing the number of random features from 10 to 10,000. The average and
worst group test results are shown in Figure 4(a).

CelebA Following the experiment setting in [2], we train a ResNet-10 model [47] for 50 epochs,
varying model size by increasing the network width from 10 to 100 as in [58]. The average and worst
group test results are shown in Figure 4(b). Unlike [2] reporting the fully trained model, we report
the result of the model early-stopped at the epoch with the best worst-group validation accuracy.
Importance weighting achieves a best worst-group test error of 85.0% at width 20. If importance
tempering is used instead, the best worst-group test error of 86.7% is achieved at width 100. Thus
overparameterization still helps with generalization when importance tempering is used. We also
record the best epoch numbers and report them in Figure 5. We find that training longer in order to
explore the larger parameter space only helps when importance tempering is used.

These results inspired us to use importance temperature with even larger models to further push the
state of the art. We used WideResNet-50 [59] for CelebA and Bert Large [53] for MultiNLI. In
Table 2, larger models consistently improved the result when IT is used. To the best of the authors’
knowledge, these results give the new state-of-the-art performance on these datasets.

4.2 How Does Importance Tempering Help?
We return to the question of how importance tempering can help overparameterized models learn
patterns that generalize to both majority and minority groups, rather than learning spurious correlations
and simply memorizing the minority group. Here, we first re-investigate the intuitive story and the
toy dataset in [2]. Based on the story and theory, we discuss why importance tempering can avoid
learning spurious correlations and how different factors will affect the selection of the temperature.

The intuitive story in [2]. To answer the question of what makes overparameterized models mem-
orize the minority instead of learning generalizable patterns, [2] hypothesize that the inductive
bias of overparameterized models favors memorizing as few points as possible, e.g. by exploit-
ing variations due to noise in the features. Consider a model that takes advantage of the fact
that the label y and spurious feature a are correlated for the majority group in the training data
and predicts y using the spurious features. The model only needs to memorize the points in the
minority group. Conversely, if the core features are much nosier, then a model that predicts y
via the core features needs to memorize a large fraction of the training data. Due to the induc-
tive bias that seeks to minimize the number of points memorized, the training procedure will
select the model that uses spurious features rather than core features to make its predictions.
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Figure 5: The statistics of the best epoch for CelebA evalu-
ated by robust validation accuracy. Both ERM and IW need
early stopping to add strong regularization, while training
longer helps IT generalize better.

Importance tempering can help this
situation by changing the cost of mem-
orizing data from the different groups.
Using importance tempering, we can
make the margin requirement on the
minority data larger. This makes mem-
orizing a single minority datum more
challenging. Concretely, we increase
the classifier norm by a larger amount
in order to memorize the minority
points. In this case, although the num-
ber of data to be memorized is smaller
for the model using spurious features,
the cost of memorizing the minority data is larger. The inductive bias of the training procedure will
then force the model to learn patterns that generalize to both the minority and majority classes, rather
than just memorizing the minority.
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(a) Optimal inverse temperature λ depends on the
information ratio. When the information stored in
the core feature increases, the optimal inverse tem-
perature λ decreases.
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Figure 6: Illustration of different factors that affect the optimal inverse temperature λ setting.
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Theory for the example in [2]. To theoretically illustrate the impact of importance tempering and
factors that affect the selection of temperature, we revisit a more general version of [2]’s example
parameterized by more hyper-parameters. In this model, the features x consist of a core feature, a
spurious feature, and noise features, i.e. x = [xc, xs, xn]. For simplicity, [2] set the core feature
xc ∈ R and the spurious feature xs ∈ R to be scalars. The model can memorize the data through the
noisy feature xn ∈ RN . Following [2], we consider a more general dataset

xc|y ∼ N (µcy, (µcσc)
2), xs|a ∼ N (µsa, (µsσc)

2), xn ∼ N
(
0,
σ2
n

N
IN

)
where σc, σs, σn, µ1, µ2 are five constants. µ1, µ2 denote the scale of the features. When the features
are larger, the classifier needs a smaller norm to achieve a margin of a fixed size. Due to the inductive
bias of training overparameterized models, this task is easier to learn. σc, σs denote the noise in the
features. Smaller noise means the feature contains more information, i.e. a smaller fraction of the
data needs to be memorized when this feature is used. For simplicity, we set σs = 0. (In [2], σs is
set to be very small, and reducing the noise level on the spurious feature should only make our task
harder.) We set N � n so that a linear classifier can interpolate and memorize all the data via the
noisy feature. The training data is composed of four groups, each corresponding to a combination of
the label y ∈ {−1, 1} and the spurious attribute a ∈ {−1, 1}. Each of the two majority groups with
a = y consists of nmaj

2 data points {(x(i)
maj, y

(i)
maj)}ni=1, and each of two minority groups with a = −y

consists of nmin
2 data points {(x(i)

min, y
(i)
min)}ni=1. We consider linear classifiers with a large margin

requirement for the minority class:

Fλinterpolate := {w :y
(i)
maj(w · x

(i)
maj) ≥ 1, i = 1, · · · , nmaj and y(i)min(w · x

(i)
min) ≥ λ, i = 1, · · · , nmin}. (9)

Theorem 4 (Informal). Suppose that σn is not too large (so memorizing points is expensive) and σc is
also not too large (so that the core feature is reasonably informative). Then there exists a selection of
inverse temperature λ for the minority group and an estimator wuse−core = [wcc, w

c
s, w

c
n] ∈ Finterpolate

with wuse−core
s = 0 such that for ∀wuse−spu = [wsc , w

s
s, w

s
n] ∈ Finterpolate with wuse−spu

c = 0 we
have ‖wuse−core‖ ≤ ‖wuse−spu‖.
The proof of this theorem is shown in Appendix D, and the discussion of how different factors affect
the selection of the temperature can be found in Remark 5. In short, if the core problem is easier
and more information is stored in the core feature, a smaller inverse temperature λ can be used. To
verify our theory, we also perform an experiment on the dataset (8) with logistic regression on the
ReLU random features ReLU(Wx) ∈ Rm [56, 57] and summarize the results in Figure 6. Figure 6(a)
shows that the optimal temperature increases when there is more information in the spurious feature,
while Figure 6(b) suggests that the optimal temperature increases when the spurious task is easier.
Both our theory and empirical experiments show that the importance tempering should be tuned
manually, rather than simply setting it to only depend on the imbalance ratio.

Last but not least, we investigate the same dataset that Theorem 1 [2] considers (with a special
selection of hyper-parameters). In [2], ERM and importance weighting have worst group error larger
than 2

3 . We show in Theorem 5 that, using IT, we can achieve better than random classification results
for all groups. The proof is presented in Appendix D.2.
Theorem 5 (Informal). Using IT, the inverse temperature λ can be selected so that the resulting
classifier achieves strictly better than random (i.e., less than error 1/2) worst-group performance on
[2]’s example, while ERM and importance weighting cannot.

5 Discussion and Future Works
We introduce importance tempering, a method that not only improves the decision boundary of
overparameterized models even when trained on imbalanced data, but also guarantees uniformly good
performance over all subgroups of the data both theoretically and empirically. We also observed that
the selection of optimal temperature can be different from the optimal importance weight in the label
shift setting. We characterized the last layer representation geometry resulting from different ways of
incorporating importance tempering. Lastly, in the case of avoiding learning spurious correlations,
we found that just considering the imbalance ratio is insufficient to decide the optimal temperature
for preventing a model from learning spurious correlations.

In this paper, we have mainly considered the classification problem. It remains an open problem
to modify the inductive bias for regression models in order to conquer imbalanced training sets. In

9



addition, our results currently suggest that the importance temperature should be tuned manually.
Automatic selection of the temperature is another avenue for future research. At the same time, the
optimization process is discussed in this paper, i.e. we have only considered the geometric skew in
[60] but not the statistical skew. It is interesting to consider the design of optimization methods for
our objectives.

References

[1] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[2] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of
why overparameterization exacerbates spurious correlations. In International Conference on
Machine Learning, pages 8346–8356. PMLR, 2020.

[3] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. arXiv preprint arXiv:1906.07413, 2019.

[4] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR 2011, pages
1521–1528. IEEE, 2011.

[5] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in
commercial gender classification. In Conference on fairness, accountability and transparency,
pages 77–91. PMLR, 2018.

[6] John R Zech, Marcus A Badgeley, Manway Liu, Anthony B Costa, Joseph J Titano, and
Eric Karl Oermann. Variable generalization performance of a deep learning model to detect
pneumonia in chest radiographs: a cross-sectional study. PLoS medicine, 15(11):e1002683,
2018.

[7] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

[8] Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The role of
image backgrounds in object recognition. arXiv preprint arXiv:2006.09994, 2020.

[9] Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning?
In International Conference on Machine Learning, pages 872–881. PMLR, 2019.

[10] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the
log-likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

[11] Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von Bünau, and
Motoaki Kawanabe. Direct importance estimation for covariate shift adaptation. Annals of the
Institute of Statistical Mathematics, 60(4):699–746, 2008.

[12] Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Learning bounds for importance
weighting. In Nips, volume 10, pages 442–450. Citeseer, 2010.

[13] Da Xu, Yuting Ye, and Chuanwei Ruan. Understanding the role of importance weighting for
deep learning. arXiv preprint arXiv:2103.15209, 2021.

[14] Ke Alexander Wang, Niladri S Chatterji, Saminul Haque, and Tatsunori Hashimoto. Is impor-
tance weighting incompatible with interpolating classifiers? 2021.

[15] Anonymous. Stochastic reweighted gradient descent. In Submitted to The Tenth International
Conference on Learning Representations, 2022. under review.

[16] Runtian Zhai, Chen Dan, Zico Kolter, and Pradeep Ravikumar. Understanding why generalized
reweighting does not improve over erm, 2022.

[17] Tongtong Fang, Nan Lu, Gang Niu, and Masashi Sugiyama. Rethinking importance weighting
for deep learning under distribution shift. arXiv preprint arXiv:2006.04662, 2020.

[18] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

10



[19] Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through
the prism of interpolation. arXiv preprint arXiv:2105.14368, 2021.

[20] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Research,
19(1):2822–2878, 2018.

[21] Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan
Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 3420–3428. PMLR,
2019.

[22] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural
networks. arXiv preprint arXiv:1906.05890, 2019.

[23] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on Learning Theory, pages 1305–1338.
PMLR, 2020.

[24] Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. arXiv
preprint arXiv:2006.06657, 2020.

[25] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning
Theory, pages 2–47. PMLR, 2018.

[26] Sharan Vaswani, Reza Babanezhad, Jose Gallego, Aaron Mishkin, Simon Lacoste-Julien, and
Nicolas Le Roux. To each optimizer a norm, to each norm its generalization. arXiv preprint
arXiv:2006.06821, 2020.

[27] Ziwei Ji, Miroslav Dudík, Robert E Schapire, and Matus Telgarsky. Gradient descent follows
the regularization path for general losses. In Conference on Learning Theory, pages 2109–2136.
PMLR, 2020.

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[29] Ganesh Ramachandra Kini, Orestis Paraskevas, Samet Oymak, and Christos Thrampoulidis.
Label-imbalanced and group-sensitive classification under overparameterization. arXiv preprint
arXiv:2103.01550, 2021.

[30] Han-Jia Ye, Hong-You Chen, De-Chuan Zhan, and Wei-Lun Chao. Identifying and compen-
sating for feature deviation in imbalanced deep learning. arXiv preprint arXiv:2001.01385,
2020.

[31] Harikrishna Narasimhan and Aditya Krishna Menon. Training over-parameterized models with
non-decomposable objectives. arXiv preprint arXiv:2107.04641, 2021.

[32] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit,
and Sanjiv Kumar. Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314,
2020.

[33] Jiaqi Wang, Wenwei Zhang, Yuhang Zang, Yuhang Cao, Jiangmiao Pang, Tao Gong, Kai Chen,
Ziwei Liu, Chen Change Loy, and Dahua Lin. Seesaw loss for long-tailed instance segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9695–9704, 2021.

[34] Anonymous. Learning towards the largest margins. In Submitted to The Tenth International
Conference on Learning Representations, 2022. under review.

[35] Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the
terminal phase of deep learning training. Proceedings of the National Academy of Sciences,
117(40):24652–24663, 2020.

[36] C. Fang, H. He, Q. Long, and W. Su. Exploring deep neural networks via layer-peeled model:
Minority collapse in imbalanced training. Proceedings of the National Academy of Sciences (in
press), 2021.

[37] Yandong Guo and Lei Zhang. One-shot face recognition by promoting underrepresented classes.
arXiv preprint arXiv:1707.05574, 2017.

11



[38] Salman Khan, Munawar Hayat, Syed Waqas Zamir, Jianbing Shen, and Ling Shao. Striking
the right balance with uncertainty. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 103–112, 2019.

[39] Grigoris Karakoulas John Shawe-Taylor and Grigoris Karakoulas. Optimizing classifiers for
imbalanced training sets. Advances in neural information processing systems, 11(11):253, 1999.

[40] Giorgio Fumera and Fabio Roli. Cost-sensitive learning in support vector machines. VIII
Convegno Associazione Italiana per L’Intelligenza Artificiale, 2002.

[41] Amos Storkey. When training and test sets are different: characterizing learning transfer.
Dataset shift in machine learning, 30:3–28, 2009.

[42] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
arXiv preprint arXiv:1804.06872, 2018.

[43] Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, and Zachary C Lipton. A unified view of
label shift estimation. arXiv preprint arXiv:2003.07554, 2020.

[44] Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data
balancing achieves competitive worst-group-accuracy. arXiv e-prints, pages arXiv–2110, 2021.

[45] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[46] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[48] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing
Qu. A geometric analysis of neural collapse with unconstrained features. arXiv preprint
arXiv:2105.02375, 2021.

[49] Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and Weijie J. Su. An unconstrained
layer-peeled perspective on neural collapse, 2021.

[50] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class
imbalance problem in convolutional neural networks. Neural Networks, 106:249–259, 2018.

[51] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pages 6781–6792.
PMLR, 2021.

[52] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[53] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[54] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R Bowman,
and Noah A Smith. Annotation artifacts in natural language inference data. arXiv preprint
arXiv:1803.02324, 2018.

[55] Manfred Opper. Statistical mechanics of learning: Generalization. The handbook of brain
theory and neural networks, pages 922–925, 1995.

[56] Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and Applied
Mathematics, 2019.

[57] Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error of
max-margin linear classifiers: High-dimensional asymptotics in the overparametrized regime.
arXiv preprint arXiv:1911.01544, 2019.

[58] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. arXiv preprint
arXiv:1912.02292, 2019.

12



[59] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[60] Vaishnavh Nagarajan, Anders Andreassen, and Behnam Neyshabur. Understanding the failure
modes of out-of-distribution generalization. arXiv preprint arXiv:2010.15775, 2020.

[61] Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient
method converges on tame functions. Foundations of computational mathematics, 20(1):119–
154, 2020.

[62] Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal
of Machine Learning Research, 18(1):629–681, 2017.

[63] Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction:
Risk bounds, margin bounds, and regularization. 2008.

[64] E Weinan, Chao Ma, and Lei Wu. Barron spaces and the compositional function spaces for
neural network models. arXiv preprint arXiv:1906.08039, 2019.

[65] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

13



A Connection to hard-margin Support Vector Machine

In this section, we will adopt the results in [22] and [49] to show the impact of importance tempering
on the convergence direction. Before starting formal discussion, we first introduce the regularity
assumption on our model

Assumption 2 (Regularity). q(x, ·) is locally Lipschitz and admits a chain rule for any fixed x.

This is a technical assumption on the network output, as shown in [61, 22], the output of almost
every neural network satisfies the regularity condition (as long as the neural network is composed by
definable pieces in an o-minimal structure, e.g., ReLU, sigmoid, LeakyReLU). Then we introduce
the formal version of Theorem 1

Theorem 6. Suppose Assumption 2 and 1 holds for q(x, θ). Let θ(t) denote the model parameters
trained with gradient flow at time t. If there exists a time t0 such that LIT(θ(t0)) < 1

n , then any limit
point of θ(t0)

‖θ(t0)‖ is along the direction (i.e., a scalar multiple of) of a Karush-Kuhn-Tucker (KKT)
point of the following minimum-norm separation problem:

min
w
‖w‖ s.t. yiq(xi, θ) ≥ 1/f [gi], i = 1, . . . , n.

Its proof is straightforward based on the following result in [22]:

Theorem 7 (Theorem 4.4 of [22]). Denote the loss function as L(θ) := 1
n

∑n
i=1 `(yiq(xi, θ)), where

`(q) = e−q denotes the exponential loss, for gradient flow with Assumption 1 and 2 hold, if we further
assume that there exists a time t0 such that L(θ)(t0) < 1

n , then any limit point θ̄of { θ(t)
‖θ(t)‖ : t > 0}

is along a KKT point of the following constrained optimization problem:

min
1

2
‖θ‖22 s.t. yiq(xi, θ) ≥ 1 ∀1 ≤ i ≤ n (10)

Proof of Theorem 6. The proof of Theorem 1 simply follows the fact that both the label yi and group
temperature f [gi] are determined at an instance level, thus we can absorb the group temperature in
the label. Note that we have no requirement on the dataset in Theorem 7, which allows us to create a
synthetic dataset {(xi, f [gi]yi)}ni=1 and apply Theorem 7 on this synthetic dataset. In this way, we
can conclude that the limit point of the gradient flow is along the direction of a KKT point of the
following minimum-norm separation problem:

min
1

2
‖θ‖22 s.t. yiq(xi, θ) ≥ 1/f [gi] ∀1 ≤ i ≤ n (11)

as desired.

B The Generalization Theorem

In this section, we consider the generalization property of a importance tempering large margin
two-layer neural network (Theorem 2). Let us consider a binary classification problem with a training
set (xi, yi)i∈[n] of n pairs of observations with xi ∈ Rd and yi ∈ −1, 1. We predict the function
using a two-layer neural network

hm(w, x) =
1

m

m∑
j=1

φ(wj , x),

where m ≥ 1 is the number of units and w = (wj)j∈[m] are trainable parameters. We refer to φ a
feature function and in this section we assume φ is 2-homogeneous. We train the two-layer neural
network using importance tempering and finally convergences to the following large margin SVM
problem

min ‖w‖
subject to γ1hm(w, xi)yi ≥ 1, for yi = 1

γ−1hm(w, xi)yi ≥ 1, for yi = −1

(12)
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Following [62, 23], we characterize the large margin solution of the two-layer neural network utilizing
the integral representation and its corresponding variational F1 norm. We formulate the large margin
problem of a infinite wide two-layer neural network using the following integral representation

C := max
µ∈P(Sp−1)

min
i∈[n]

γyiyi

∫
Sp−1

φ(θ, xi)dµ(θ)

To bound C, we define the complexity of the dataset Sn = (xi, yi)
n
i=1 is formulated as

∆r(Sn) := sup
P
{ inf
yi 6=y′i

‖P (xi)− P (xi′)‖ : P is a rank− r orthogonal projection}

Lemma 1. Assume that ‖xi‖ ≤ R for i ∈ [n]. For any ε ∈ (0, 1) and r ∈ [d], there exists
C(r), Cε(r) > 0 such that

C ≥ min
r∈[d]

min

{
C(r), Cε(r)

(
∆r(Sn)

R

) r+s
2−ε

(γ1 + γ2)
2d+3
2−ε

}
(13)

Proof. Let distS be the distance function to a set S, i.e. distS(x) = infy∈S ‖x− y‖. We know that
function distS is 1-Lipschitz. We denote D± := {xi : yi = ±1} and Pr the projection that achieves
the supremum in Equation (13). Now let us consider the following function

fr(x) = 2 max

(
0,

1

γ1
−

2distPr(D+)(Pr(x))

(γ1 + γ−1)∆r(Sn)

)
− 2 max

(
0,

1

γ−1
−

2distPr(D+)(Pr(x))

(γ1 + γ−1)∆r(Sn)

)
.

This function is 4
(γ1+γ−1)∆r(Sn) Lipschitz, satisfies ‖f‖∞ ≤ 2 and γyiyif(xi) = 2 for all i ∈ [n].

Using the approximation results of Lipschitz function in F1 (Prop 6 and Section 4.5 in [62]), we
knows that we have a function

‖f̂‖ ≤ O
(
C(ε, r)

(
∆r(Sn)

R

)) d+3
2−ε

(γ1 + γ−1)
2d+3
2−ε

such that sup‖x‖≤R |f̂(x) − fr(x)| ≤ 1
γ1+γ−1

. Thus we know that fr is a separation function and
the minimum norm solution only haves smaller norm.

Theorem 8. Suppose we have a class-imbalanced binary classification task with n1 positive examples
sampled from distribution p1 and n−1 < n1 negative examples sampled from distribution p−1. Then
if we train a infinite wide two-layer neural network with importance tempering objective function
exp(−γyiyihm(w, x)) on the negative class, with probability at lest 1− δ over the training set, the
limiting model have

max
i

Px∼pi [yiq(x, θ) ≤ 0] . max
i
γi

√
1

ni

(
R

∆r(P)

) r+3
2−ε

(γ1 + γ−1)−
2d+3
2−ε +

√
log 1

δ + log 1
γi

ni
.

If we fixed γ1 + γ−1 as a constant, the best way to select the temperature will become γi ∝
√
ni to

minimize the right hand size function.

Proof. If we train with importance tempering objective function exp(−γyiyihm(w, x)), then by
Theorem 1, we converge to the KKT point of

min ‖h‖F1

subject to γ1hm(w, xi)yi ≥ 1, for yi = 1

γ−1hm(w, xi)yi ≥ 1, for yi = −1

(14)

Using Theorem 1, we knows that

max
µ∈P(Sp−1)

min
i∈[n]

γyiyi

∫
Sp−1

φ(θ, xi)dµ(θ) ≥ min
r∈[d]

min

{
C(r), Cε(r)

(
∆r(Sn)

R

) r+s
2−ε
}

Combined the Rademacher complexity bound in [62] (Prop 7. [62]), we have

Radn ≤
‖f‖F1√

n
≤ 1√

n

(
R

∆r(P)

) r+3
2−ε

(γ1 + γ−1)−
2d+3
2−ε .
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Then we can apply the standard margin-based generalization bound (Theorem 2 of [63]), to obtain
with probability 1− δ, we have

Px∼pi [yiq(x, θ) ≤ 0] ≤ 4γiRadni +

√
log 1

δ + log 1
γi

ni

≤ γi
√

1

ni

(
R

∆r(P)

) r+3
2−ε

(γ1 + γ−1)−
2d+3
2−ε +

√
log 1

δ + log 1
γi

ni

(15)

Remark 4. We provided generalization bound for two-layer neural network because one can know
the margin for two-layer case using technique in [23]. We can also generalize our theorem to ResNet.
Theorem 9 [64] knows that the margin of ResNet can be bounded by the two-layer neural network.
Together with the Rademacher complexity bound (Theorem 12 [64]), we can a similar bound of
ResNet. If we can assume the margin after temperature to become O(1), then our theorem can also
be applied to general classifiers.

C Proof for ULPM with importance tempering

In this section, we present the proof of Theorem 3 in Section 3.2. We mainly follows the unconstrained
layer-peeled model [49], a top-down model to understand how overparameterized well-trained end-
to-end deep architectures can effectively extract features. We aim to show the last layer feature will
behave very different geometric properties under the extremely imbalanced setting [36].

C.1 Vanilla Cross-entropy Objective Leads To Minority Collapse Solution

We first consider the vanilla cross-entropy loss. We will show that the minority classes are distin-
guishable in terms of their last layer features. Following [36, 49], we consider the unconstrained
layer-peeled model (ULPM) temperature:

min
W ,H

L(W ,H)

:= min
W ,H

−
K∑
k=1

nk∑
i=1

log

(
exp(w>k hk,i)∑K
j=1 exp(w>j hk,i)

)
.

(16)

[22, 27] proved that gradient descent on this loss will converge to the solution of the minimum-norm
separation problem

min
W ,H

1

2
||W ||2F +

1

2
||H||2F

s.t.w>k hk,i −w>j hk,i ≥ 1, k 6= j ∈ [K], i ∈ [nk].

(17)

We first prove that the within-class variation of the activation becomes negligible as these activation
collapse to their class mean, i.e. hk,i1 = hk,i2 = 1

nk

∑nk
i=1 hk,i for all k ∈ [K]. If we have a

feasible solution (W,H) subject to ‖hk,i1 − hk,i2‖ ≥ ε > 0 for some k ∈ [K], i1, i2 ∈ [k]. We can
construct W̃ , H̃ via letting h̃k,i1 = h̃k,i2 = 1

2 (hk,i1 + hk,i2) and all the other vectors unchanged
h̃k′,i′ = hk′,i′ , w̃k′ = wk′ for all (k′, i′) 6= (k, i1) or (k, i1). We first check that W̃ , H̃ is also a
feasible solution for

w>k h̃k,i1−w>j h̃k,i1 = w>k h̃k,i2−w>j h̃k,i2 =
1

2

[
(w>k hk,i1 −w>j hk,i2) + (w>k hk,i1 −w>j hk,i2)

]
≥ 1.

At the same time, the objective function will decay at least ε2 for we have 1
2 [‖h̃k,i1‖2 + ‖h̃k,i2‖2] =

1
2 [‖hk,i1‖2 + ‖hk,i2‖2 − 2‖hk,i1 − hk,i2‖2] ≤ 1

2 [‖hk,i1‖2 + ‖hk,i2‖2]− ε2. Thus we know that the
within-class variation of the activation becomes negligible as these activation collapse to their class
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mean, i.e. hk,i1 = hk,i2 = 1
nk

∑nk
i=1 hk,i for all k ∈ [K]. Thus problem (17) can be formulated as

min
W ,H

1

2
||W ||2F +

1

2

K∑
i=1

nK ||hk||2

s.t.w>k hk −w>j hk ≥ 1, k 6= j ∈ [K].

(18)

To balance the problem, we further consider another reparameterization of W . We substitute W by√
Kn/2W , where n =

∑K
i=1 ni is the total number of data, and lead the following problem

min
W ,H

1

2
||W ||2F +

1

2

K∑
i=1

2nk
Kn
||hk||2

s.t.w>k hk −w>j hk ≥ 1, k 6= j ∈ [K].

(19)

The newly introduced parameterization will only changes the the scale of the solution but will not
change the angle between them. Thus this reformulation will not change our final conclusion.

We first proved that on the limiting objective function, i.e. the coefficient before the norm of minority’s
feature vector in objective function limits to zero and leads to objective (20), will cause a minority
collapse solution. For the features in not shown in the objective function, we also move the constraints
on the minority to have the proof.
Lemma 2. The global optimal solution of the following problem

min
W ,H

Llim(W ,H) :=
1

2
||W ||2F +

1

2

K/2∑
i=1

||hk||2

s.t.w>k hk −w>j hk ≥ 1, ∀k 6= j, k ≤ K

2
,

(20)

satisfies the condition that wk = wk′ ,∀K2 + 1 ≤ k < k′ ≤ K. Moreover, for any feasible solution
(W ,H) with ‖wk−wk′‖ ≥ ε for some K

2 +1 ≤ k < k′ ≤ K, we can find another feasible solution
(W ′,H ′) such that Llim(W ,H)− Llim(W ′,H ′) ≥ ε2

Proof. First we observe that the optimal solution (W ,H) must satisfy
∑k
i=1 wi = 0, otherwise we

can set w̃i = wi − 1
K

∑k
i=1 wi and W̃ = (w̃1, · · · , w̃K) such that

w̃>k hk − w̃>j hk = w>k hk −w>j hk ≥ 1, ∀1 ≤ k ≤ K/2, j 6= k,

and

‖W̃ ‖2F =

K∑
k=1

‖wk −
1

K

K∑
i=1

wi‖2 = ‖W ‖2F −
1

K
‖
K∑
i=1

wi‖2 < ‖W ‖2F , (21)

which contradicts the optimality of (W ,H).

Second we observe that the optimal solution (W ,H) must satisfy wK
2 +1 = · · · = wK , otherwise

we can set ŵi = wi,∀1 ≤ i ≤ K/2, ŵK
2 +1 = · · · = ŵK := 2

K

∑K
i=K/2+1 wi and Ŵ =

(w̃1, · · · , w̃K) such that

ŵ>k hk − ŵ>j hk =
2

K

K∑
j=K/2+1

(w>k hk −w>j hk) ≥ 1,∀1 ≤ k ≤ K/2, K
2

+ 1 ≤ j ≤ K,

and by Cauchy-Schwarz inequality:

‖Ŵ ‖2F =

K/2∑
k=1

‖wk‖2 +
K

2
‖ 2

K

K∑
k=K/2+1

wk‖2 <
K/2∑
k=1

‖wk‖2 +

K∑
k=K/2+1

‖wk‖2 < ‖W ‖2F , (22)

which contradicts the optimality of (W ,H).
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Finally, for any feasible solution (W ,H), if we have ‖wk −wk′‖ ≥ ε for K2 + 1 ≥ k < k′ < K.
Then we can replace wk and wk′ by 1

2 (wk + wk′), which is still feasible for (20), and

‖wk‖2 + ‖wk′‖2 − 2‖1

2
(wk + wk′)‖2 =

1

2
‖wk −wk′‖2 ≥ ε2 (23)

Then we aim to show that if the global solution (H∗,W ∗) of (5) have a limit, then the limit is a
minority collapse solution, i.e.

lim
R→∞

w∗k − w∗k′ = 0, for all K/2 < k < k′ ≤ K.

Once a solution satisfies the constraints on the majority constraints w>k hk −w>j hk ≥ 1, ∀k 6=
j, k ≤ K

2 , if ‖wk −wk′‖ ≥ ε for some K
2 + 1 ≤ k < k′ ≤ K, we can find another feasible solution

(W ′,H ′) such that Llim(W ,H) − Llim(W ′,H ′) ≥ ε2. To satisfies the minority constraints,
one only needs to let hi

‖hi‖ = wi
‖wi‖ and ‖hi‖ & 1

ε1+δ1
for some δ1 > 0. In this case, if we take

nB
nA
≤ ε1+δ1+δ2 for some δ2 > 0, then lim nB

n

∑K
i=K/2+1 ‖hi‖2 = 0. Thus limL(W ,H) −

Llim(W ′,H ′) ≥ ε2. At the same time, using the similar proof, we can proof that Llim(W ′,H ′) can
become the limit objective function value for some limiting feasible solutions. Thus we knows that
the limiting solution must satisfy the minority collapse condition, i.e.,‖wk −wk′‖ = 0,∀K/2 <
k < k′ < K.

C.2 importance tempering on h

In this subsection, we consider putting the temperature on the last layer feature H . Following [36, 49],
we consider the unconstrained layer-peeled model (ULPM), but here we cooperate the importance
tempering on W and leads to the following new model

min
W ,H

L(W ,H)

:= min
W ,H

−
K∑
k=1

nk∑
i=1

log

(
exp(λkw

>
k hk,i)∑K

j=1 exp(w>j λkhk,i)

)
.

(24)

[22, 27] proved that gradient descent on this loss will converge to the solution of the re-weighted
minimum-norm separation problem

min
W ,H

1

2
||W ||2F +

1

2

K∑
i=1

nK ||hk||2

s.t.λkw
>
k hk − λkw>j hk ≥ 1, k 6= j ∈ [K].

(25)

Similar to previous section, We first prove that the within-class variation of the activation becomes
negligible as these activation collapse to their class mean, i.e. hk,i1 = hk,i2 = 1

nk

∑nk
i=1 hk,i for

all k ∈ [K]. If we have a feasible solution (W,H) subject to ‖hk,i1 − hk,i2‖ ≥ ε > 0 for some
k ∈ [K], i1, i2 ∈ [k]. We can construct W̃ , H̃ via letting h̃k,i1 = h̃k,i2 = 1

2 (hk,i1 + hk,i2) and all
the other vectors unchanged h̃k′,i′ = hk′,i′ , w̃k′ = wk′ for all (k′, i′) 6= (k, i1) or (k, i1). We first
check that W̃ , H̃ is also a feasible solution for

w>k h̃k,i1−w>j h̃k,i1 = w>k h̃k,i2−w>j h̃k,i2 =
1

2

[
(w>k hk,i1 −w>j hk,i2) + (w>k hk,i1 −w>j hk,i2)

]
≥ 1.

Theorem 9. If we applied the importance tempering λk = C
√
nk,∀k ∈ [K], where C > 0 is a

positive constant, then the optimal solution of the following constrained optimization problem satisfies
neural collapse condition.

min
W ,H

1

2
||W ||2F +

1

2
||H||2F

s.t.λkw
>
k hk,i − λkw>j hk,i ≥ 1, k 6= j ∈ [K], i ∈ [nk].

(26)
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Proof. First we can find that the margin will not change if we minus a vector a for all wj , so if
we denote the mean of classifier w̃i = wi − 1

K

∑K
i=1 wi and then we have w>k hk,i −w>j hk,i =

w̃>k hk,i − w̃>j hk,i. Note that
∑K
j=1 w̃

>
j hk,i = 0 then sum this inequality over j we have:

(K − 1)w̃>k hk,i −
∑
j 6=k

w̃>j hk,i = Kw̃>k hk,i ≥
K − 1

λk
=

(K − 1)

C
√
nk

,∀k ∈ [K], i ∈ [nk].

By Cauchy inequality, we have:

1

2
(

1
√
nk
||w̃k||2 +

√
nk||hk,i||2) ≥ w̃>k hk,i ≥

(K − 1)

KC
√
nk
. (27)

Dividing
√
nk on both sides of (27) and sum over k and i we have:

1

2
(||W̃ ||2F + ||H||2F ) ≥ (K − 1)K

KC
, (28)

which gives us a lower bound for optimal value in optimization problem (26). On the other hand, by
the derivation of this lower bound we know that if the equality holds in equation (28), then the mean
of classifier equals to zero, i.e.,

∑K
i=1 wi = 0, wi = w̃i, and the equality in 27 holds for any k ∈ [K]

and i ∈ [nk], which implies that:

wk =
√
nkhk,i, ‖wk‖2 = nk‖hk,i‖2 =

K − 1

KC
, ∀k ∈ [K], i ∈ [nk]. (29)

Take above equation back into the constraint of the constrained optimization problem (26), we can
obtain that:

w>k hk,i =
K − 1

Kλk
, w>j hk,i = − 1

Kλk
, cos(wk, wj) = − 1

K − 1
. (30)

Combine equation (29) and (30) together we can obtain that the optimal solution satisfies neural
collapse conditions.

C.3 importance tempering on W

In this subsection, we consider putting the temperature on the last layer classifier W . Following
[36, 49], we consider the unconstrained layer-peeled model (ULPM), but here we cooperate the
importance tempering on W and leads to the following new model

min
W ,H

L(W ,H)

:= min
W ,H

−
K∑
k=1

nk∑
i=1

log

(
exp(λkw

>
k hk,i)∑K

j=1 exp(λjw>j hk,i)

)
.

(31)

[22, 27] proved that gradient descent on this loss will converge to the solution of the re-weighted
minimum-norm separation problem

min
W ,H

1

2
||W ||2F +

1

2

K∑
i=1

nK ||hk||2

s.t.λkw
>
k hk − λjw>j hk ≥ 1, k 6= j ∈ [K].

(32)

We want to proof that the classifier will form a ETF with largest possible angles. However, the
solution of the non-convex problem does not lies in a compact set and leads to technical problems. In
this section, we will discuss the intuition of why we think the limiting classifier will become a ETF.
Similar to previous section, We first prove that the within-class variation of the activation becomes
negligible as these activation collapse to their class mean, i.e. hk,i1 = hk,i2 = 1

nk

∑nk
i=1 hk,i for

all k ∈ [K]. If we have a feasible solution (W,H) subject to ‖hk,i1 − hk,i2‖ ≥ ε > 0 for some
k ∈ [K], i1, i2 ∈ [k]. We can construct W̃ , H̃ via letting h̃k,i1 = h̃k,i2 = 1

2 (hk,i1 + hk,i2) and all
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the other vectors unchanged h̃k′,i′ = hk′,i′ , w̃k′ = wk′ for all (k′, i′) 6= (k, i1) or (k, i1). We first
check that W̃ , H̃ is also a feasible solution for

w>k h̃k,i1−w>j h̃k,i1 = w>k h̃k,i2−w>j h̃k,i2 =
1

2

[
(w>k hk,i1 −w>j hk,i2) + (w>k hk,i1 −w>j hk,i2)

]
≥ 1.

At the same time, the objective function will decay at least ε2 for we have 1
2 [‖h̃k,i1‖2 + ‖h̃k,i2‖2] =

1
2 [‖hk,i1‖2 + ‖hk,i2‖2 − 2‖hk,i1 − hk,i2‖2] ≤ 1

2 [‖hk,i1‖2 + ‖hk,i2‖2]− ε2. Thus we know that the
within-class variation of the activation becomes negligible as these activation collapse to their class
mean, i.e. hk,i1 = hk,i2 = 1

nk

∑nk
i=1 hk,i for all k ∈ [K]. Thus problem (17) can be formulated as

min
W ,H

1

2
||W ||2F +

1

2

K∑
i=1

nK ||hk||2

s.t.λkw
>
k hk − λjw>j hk ≥ 1, k 6= j ∈ [K].

(33)

To balance and simplify the problem, we further consider another reparameterization of W . We
substitute wk by

√
KnnAnB/2wk, where n =

∑K
i=1 ni is the total number of data, and lead the

following problem

min
W ,H

K/2∑
i=1

nB
n
||wi||2 +

K∑
i=K/2+1

nA
n
||wi||2 +

K∑
i=1

2nk
n
||hk||2

s.t.w>k hk −w>j hk ≥ 1, k 6= j ∈ [K].

(34)

Note that this reparameterization will not change any conclusion of the directional convergence. We
first discuss the intuitive interpretation of this optimization problem. Under the limit nA

nB
→ ∞,

problem 34 can be considered as minimizing the norm of classifier corresponding to the minority
classes and the norm of the features corresponding to the majority classes.

We first prove that if the global solution of problem (34) have a directional limit when nA
nB
→ ∞,

then we will have limR→∞ ‖wi‖ = ∞, limR→∞ ‖hi‖ = 0(1 ≤ i ≤ K/2) for all majority classes
and limR→∞ ‖wi‖ = 0, limR→∞ ‖hi‖ =∞(K/2 + 1 ≤ i ≤ K) for all minority classes. First we
prove that

lim
R→∞

K/2∑
i=1

nB
n
||wi||2 +

K∑
i=K/2+1

nA
n
||wi||2 +

K∑
i=1

2nk
n
||hk||2 → 0.

This is because once w>j hk ≤ 0 for all pairs of k, j (this is feasible for the ETF is a simple example),
we can always keep wk

‖wk‖ = hk
‖hk‖ and scale ‖wj‖ to zero, ‖wj‖‖hk‖ to infinity and nB

nA
‖hk‖ to zero.

In this case wkhk ≥ 0 and −w>j hk ≥ 1 for all pairs of k, j. Thus we can keep this sequence always

satisfies the constraints and limits
∑K/2
i=1

nB
n ||wi||

2 +
∑K
i=K/2+1

nA
n ||wi||

2 +
∑K
i=1

2nk
n ||hk||

2 to

zero. For limR→∞
∑K/2
i=1

nB
n ||wi||

2 +
∑K
i=K/2+1

nA
n ||wi||

2 +
∑K
i=1

2nk
n ||hk||

2 → 0, we knows
that lim ‖hi‖ = 0(1 ≤ i ≤ K/2) and lim ‖wi‖ = 0(K/2 + 1 ≤ i ≤ K). To satisfies the constraints,
we know that lim ‖wi‖ =∞(1 ≤ i ≤ K/2) and lim ‖hi‖ =∞(K/2 + 1 ≤ i ≤ K).

Then we will prove that limR→∞ w>k hk ≥ 1(1 ≤ i ≤ K/2) for all majority classes. This is because
for wj(K/2 + 1 ≤ j ≤ K) for majority class and hk(1 ≤ i ≤ K/2) for the majority classes, we
have 0 ≤ |wjhk| ≤ ‖wj‖‖hk‖ → 0. Thus we have

lim
R→∞

w>k hk ≥ 1− lim
R→∞

|w>k hk| = 1(1 ≤ i ≤ K/2).

Thus we have
1 = lim

R→∞
w>k hk ≤ lim

R→∞

n
√
nAnB

(
nB
n
‖w̃i‖2 +

nA
n
‖w̃i‖2). (35)
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For minority classes, we first decompose w̃i = wi − 2
K

∑K
i=K/2+1 wi, then w̃i>hi − w̃j>hi =

w>i hi − w>j hi ≥ 1 and
∑K
i=K/2 ‖wi‖2 =

∑K
i=K/2 ‖w̃i‖2 + K

2 ‖
2
K

∑K
i=K/2+1 wi‖2. At the same

time, we knows that

K

2
− 1 ≤

K∑
j=K/2+1,j 6=i

w̃i
>hi − w̃j>hi = (

K

2
− 1)w̃i

>hi − (

K∑
j=K/2+1,j 6=i

w̃j)
>hi =

K

2
w̃i
>hi ≤

nK
√
nAnB

(
nB
n
‖w̃i‖2 +

nA
n
‖hi‖2)

(36)

At the same time, the equality of (35) and (35) can be achieved when wi
‖wi‖ = hi

‖hi‖ and

lim
R→∞

cos(h̄k, h̄j) = − 1
K
2 − 1

, ||h̄k|| = ||h̄j ||,

for all ∀K/2 + 1 ≤ k 6= j ≤ K.

Finally, we only need to prove that the solution also satisfies the other constraints. This is because
if we can let w>j hi ≤ 0(∀1 ≤ j ≤ K

2 ,
K
2 + 1 ≤ j ≤ K) (the constraint that we can classify the

minority data from the majority data) then w>j hi →∞. This can be easily satisfied, for we can use
first half of the feature to construct the ETF for minority classes and the second part to construct the
majority classes. Once this happens, we have w>i hi − w>i hj →∞ ≥ 1.

D Proof for Synthetic Dataset from [2]

In this section, we present the proof of Theorem 4. We use the synthetic dataset [2].

• xc|y ∼ N (µcy, (µcσc)
2), xs|a ∼ N (µsa, (µsσc)

2),

• xn ∼ N
(

0,
σ2
nn
N IN

)
where σc, σs, σn, µ1, µ2 are five constants. µ1, µ2 denotes the scale of the features. When the features
are larger, the classifier will need a smaller norm to achieve a margin of a fixed size. Due to the
inductive bias of training overparameterized models, this task is easier to learn. σc, σs denote the
noise in the features. Smaller noise means the feature contains more information, i.e. a smaller
fraction of the data will need to be memorized when using this feature. Different from [2], we add
a normalizing factor n in the noisy feature, i.e. the σn in [2] is σn√

n
in our paper. We introduce this

normalization so that the cost to memorize all the data is O(1) but not O(n) in [2]’s setting. In this
regime, we could consider how the norm of core classifier and norm of spurious classifier affects the
problem. If one considers the limit σn → 0, i.e. the regime that inductive bias emphasize more on the
cost to memorize the data, the result will go back to [2]’s result. In Appendix D.2, we go back to [2]’s
example and proof that importance tempering can achieve better than random results while [2] proves
that overparametrized model will have error larger than 2

3 . We first provide several concentration
inequalities for the following proves
Lemma 3 ([2] Lemma 8, Lemma 9.). ForN = Ω(poly(n)), with probability greater than 1−1/2000,

|x(i)
n · x(j)

n | ≤
σ2
n

n6
,

(
1−O(

1

n3
)

)
σ2
n ≤ ‖x(i)

n ‖ ≤
(

1 +O(
1

n3
)

)
σ2
n

for all 1 ≤ i 6= j ≤ n

Following [2], for any estimator ŵ = [ŵc, ŵs, ŵn], ŵc, ŵs ∈ R and ŵn ∈ RN , we decompose ŵn
using representer theorem,

ŵn =

n∑
i=1

α(i)

σn
x(i)
n .

For we can separate all the data via setting α(i) = 1 and ŵc = ŵs = 0. Thus we can consider all
estimator with O(n) norm, this leads to α(i) ≤ O(n). Thus for all x(i), we have

ŵn · x(i)
n =

α(j)

σ2
n

‖x(i)
n ‖2 +

n∑
j=1,j 6=i

α(j)

σ2
n

x(j)
n

>
x(i)
n = α(j) +O(

1

n2
).
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D.1 Compare ‖wc‖ and ‖ws‖

Let λ > 1 be the margin for the minority class enforced by influence temperature. Furthermore, write
x

(i)
c = y(i) + z

(i)
c where z(i)

c ∼ N(0, σ). To simplify our proof, we use ws, wc to denote ws
µs
, wcµc

and the norm of w will be defined as w2
s

µ2
s

+
w2
s

µ2
s

+ ‖wn‖2. Suppose that wc and ws are fixed. By the

near-orthonormality of the x(i)
n and the margin constraint, we can actually determine α(i) almost

exactly:

α(i) =

{
y(i)(1− ws − wc − wcz(i)

c )+ +O( 1
n2 ) i ∈ Gmaj

y(i)(λ+ ws − wc − wcz(i)
c )+ +O( 1

n2 ) i ∈ Gmin

(For a complete proof of this fact, see Lemma 7 below.) This allows us to compute the expected norm
of a separator w in terms of ws and wc:

E[‖w‖2] =
w2
s

µ2
s

+
w2
c

µ2
c

+
nmaj

nσ2
n

E[(1−ws−wc+wcz)2
+]+

nmin

nσ2
n

E[(λ+ws−wc+wcz)2
+]+O(

1

n2
). (37)

We first consider the case when wc = 0 and we may only use the spurious feature. In this case, there
is no randomness in ‖w‖2 (all of the randomness comes from the core feature) and we can compute
the expectation exactly:

E[‖w‖2] =
w2
s

µ2
s

+
pmaj

σ2
n

(1− ws)2 +
pmin

σ2
n

(λ+ ws)
2

provided that ws ∈ [−λ, 1]. This is a quadratic with minimum at ws =
(
pmaj
σ2n
−λ pmin

σ2n
)

1
σ2n

+ 1
µ2s

(note that this

falls within the required range), which yields

E[‖wuse-spu‖2] ≥ pmaj

σ2
n

+
λ2pmin

σ2
n

−
(
pmaj

σ2
n
− λpmin

σ2
n

)2

1
σ2
n

+ 1
µ2
s

(38)

Next, we turn our attention towuse−core. The terms in (37) all take the form E[(a+bz)2
+], where a and

b are constants and z ∼ N(0, σ2). This is a Gaussian integral, and some elementary manipulations
show that, for b > 0,

E[(a+ bz)2
+] = (a2 + b2σ2)Φ

( a
bσ

)
+

abσ√
2π
e−

a2

2b2σ2 . (39)

Note that when a = 0, this equation simplifies to 1
2b

2σ2. Thus, taking ws = 0 and wc = 1, we obtain

E[‖wuse−core‖2] ≤ 1

µ2
c

+
1

2

nmaj

nσ2
n

+

[
((λ− 1)2 + σ2)Φ(

λ− 1

σ
) +

λ− 1√
2π

e−
(λ−1
σ

)2

2

]
nmin

nσ2
n

≤ 1

µ2
c

+
1

2

nmaj

nσ2
n

+ (λ2 − 2λ+ 1 + σ2 +
λ− 1√

2π
)
nmin

nσ2
n

(40)

=
1

µ2
c

+

(
1

2

pmaj

σ2
n

+

(
λ2 − 2λ+ 1 + σ2 +

λ− 1√
2π

)
(
1− pmaj

σ2
n

)

)
. (41)

Combining (38) and (41), we see that the max margin solution will prefer wuse−core over wuse−spu

provided that

pmaj

σ2
n

+
λ2pmin

σ2
n

−
(
pmaj

σ2
n
− λpmin

σ2
n

)2

1
σ2
n

+ 1
µ2
s

≥ 1

µ2
c

+

(
1

2

pmaj

σ2
n

+

(
λ2 − 2λ+ 1 + σ2 +

λ− 1√
2π

)
(
1− pmaj

σ2
n

)

)
.
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This gives us a quadratic in λ inequality p2min

σ4
n

1
σ2
n

+ 1
µ2
s

λ2

− 2

(
(1− 1

2
√

2π
)
pmin

σ2
n

+

pminpmaj

σ4
n

1
σ2
n

+ 1
µ2
s

)
λ

+
1

µ2
c

+
1

2

pmaj

σ2
n

+ (1− 1√
2π

+ σ2)

(
1− pmaj

σ2
n

)
− pmaj

σ2
n

−
p2maj

σ4
n

1
σ2
n

+ 1
µ2
s

≤ 0

(42)

First of all, we have

(
p2min
σ4n

1
σ2n

+ 1
µ2s

)
≥ 0. If σn is small enough, i.e. the inductive bias emphasis more on

reducing the effort to memorize data and the terms at the scale 1
σ2
n

dominates, then λ satisfies (43)
will always satisfies (42).

(1− 1
2
√

2π
)pmin + pminpmaj −

√
∆

p2
min

≤ λ ≤
(1− 1

2
√

2π
)pmin + pminpmaj +

√
∆

p2
min

. (43)

then ‖ws‖ ≤ ‖wc‖, where ∆ = ((1 − 1
2
√

2π
)pmin + pminpmaj)

2 − (p2
min)((1 − 1√

2π
+ σ)pmin −

p2
maj − 1

2pmaj). Note that if σ small enough and pmaj large enough, then ∆ > 0. This indicates that
there exists a temperature λ prefer to use the core feature in this regime.

Remark 5. In this remark, we will discuss how different parameters changes the selection of
temperature λ, i.e. the solution of (42). If using the spurious feature to classifier is harder (µs
becomes smaller), the quadratic coefficient becomes larger and the abstract value of linear coefficient
becomes smaller. This indicates that the mean of the solution λ will become smaller via Vieta’s
formulas. If the information of core feature decrease (σ becomes larger) or using the core feature to
classifier is harder (µc becomes smaller), (42) will becomes harder to satisfies. If the core feature
have too less information (σ is too larger) or the core task is hard enough (µc is large enough), even
importance tempering cannot fix the bias. At the same time, the smallest possible λ will becomes
larger. This indicates that lager temperature is needed.

D.2 Accuracy of importance tempering on [2]’s Example.

In this section, we present the proof of Theorem 5, which indicates that importance tempering can
achieve better random accuracy on [2]. At the same time, [1] proved that ERM/importance weighting
will have error larger than 2

3 .

In all of the proofs that follow, we use big-O notation to analyze the behavior of various quantities as
n gets large. Thus quantities such as 1/(1− p), λ, etc. will be hidden by O(1) as we assume that
they do not grow with the sample size n.

Our first goal will be to show that ‖w‖2/n concentrates around its expectation for any minimum-norm
separator w. This in turn will allow us to just analyze the expected norm to prove that importance
temperature achieves better than random worst-group accuracy. In all of the lemmas that follow, the
result holds for sufficiently large n; we omit this from the lemma statements for brevity.

Lemma 4. If w is a minimum norm separator and the high-probability results of Lemma 3 hold, then
‖w‖2 = O(n).

Proof. Define α(i) = 2y(i) if i ∈ Imaj and α(i) = 2λy(i) if i ∈ Imin. Observe that ‖w‖2 = O(n)

and y(i)w · x(i) satisfies all of the margin requirements for large enough n when the high probability
events of Lemma 3 hold. This completes the proof.

Lemma 5. If the high-probability results of Lemma 3 hold, then a minimum norm separator must
have |α(i)| = O(n).
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Proof. Let i be such that |α(i)| = maxj |α(j)|. We have

‖w‖2 =

n∑
i=1

(α(i))2‖x(i)‖2 +
∑
i 6=j

α(i)α(j)x(i) · x(j)

≥ |α(i)|2(1−O(
1

n3
))− n2|α(i)|2O(

1

n6
)

= |α(i)|2(1−O(
1

n3
)).

If |α(i)| = Ω(n), then ‖w‖2 = Ω(n2), but we know that a minimum norm separator has ‖w‖2 =
O(n) by the previous lemma. This completes the proof.

Lemma 6. Any minimum norm separator w has |wc| = O(1) and |ws| = O(1) with probability at
least 1− 4/2000.

Proof. Let r1 = P(yxc ≤ −1/2) and r2 = P(yxc ≥ 1/2), and note that r1, r2 > 0 are constants
independent of n. By Hoeffding’s inequality, there exists n0 (which can depend on p, r1, r2) such
that for all n ≥ n0, with probability at least 1 − 1/2000, all four of the following conditions hold
simultaneously:

1. At least 1
2r1nmaj of the majority points have y(i)x

(i)
c ≤ −1/2. (This will be used for the

case ws ≤ 0, wc ≥ 0.)

2. At least 1
2r2nmaj of the majority points have y(i)x

(i)
c ≥ 1/2. (ws ≤ 0, wc ≤ 0)

3. At least 1
2r1nmin of the minority points have y(i)x

(i)
c ≤ −1/2. (ws ≥ 0, wc ≥ 0)

4. At least 1
2r2nmin of the minority points have y(i)x

(i)
c ≥ 1/2. (ws ≥ 0, wc ≤ 0)

We will show that |wc| = O(1) in the first case; the remaining three cases hold via nearly identical
arguments. Suppose that we are in the first case, i.e., w has ws ≤ 0 and wc ≥ 0. Then observe that

‖w‖2

n
≥ 1

n

∑
i∈Imaj

y(i)x(i)
c ≤−1/2

(1− ws − y(i)x(i)
c wc)

2
+ −O

(
1

n3

)
(44)

≥ 1

n

1

2
r1nmaj(1 +

1

2
wc)

2 −O
(

1

n3

)
(45)

=
r1pmaj

2
(1 +

1

2
wc)

2 −O
(

1

n3

)
. (46)

Note that this final expression goes to infinity at a rate independent of n as wc ≥ 0 increases. Since
we know that ‖w‖2/n = O(1) with probability at least 1 − 1/2000 (this is the case when we
do not use wc or ws and simply memorize all the points), a minimum norm separator must have
‖w‖2/n = O(1) as well. In particular, this means that wc ≥ 0 must remain bounded independent of
n. To complete the remaining cases, follow the same logic, but replace the indices of summation in
(44) with i ∈ Imaj, y

(i)x
(i)
c ≥ 1/2 for case 2, and so on for cases 3 and 4. Taking a union bound of

the failure probabilities completes the proof for wc with a failure probability at most 2/2000. The
same argument (actually it is simpler because there is no noise in the spurious feature) shows the
result for ws.

Lemma 7. A minimum norm separator has |α(i) − y(i)(1− ws − wcx(i)
c )+| = O( 1

n2 ) for i ∈ Imaj

and |α(i) − y(i)(λ+ ws − wcx(i)
c )+| = O( 1

n2 ) for i ∈ Imin.

Proof. Assume that the high probability events of Lemmas 3 and 6 hold; this happens with probability
at least 1− 5/2000. Observe that ‖w‖2 is increasing in |α(i)| as long as |α(i)| = Ω( 1

n4 ). We have

‖w‖2 = (α(i))2‖x(i)
n ‖2 +

∑
j 6=i

α(i)α(j)x(i)
n · x(j)

n + (constant terms in α(i)).
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This is a quadratic in α(i). The coefficient on (α(i))2 is ‖x(i)
n ‖2 ≥ 1 − O( 1

n3 ), and the absolute
value of the coefficient on α(i) is |

∑
j 6=i α

(j)x(i) · x(j)| ≤ n ·O(n) ·O( 1
n6 ) = O( 1

n4 ). Thus ‖w‖2

is increasing for |α(i)| ≥ O( 1
n4 )/(1 − O( 1

n3 )) = O( 1
n4 ), so we can choose c0 = O( 1

n4 ) such that
‖w‖2 is increasing in |α(i)| for |α(i)| ≥ c0.

Next, we examine the margin constraints on a separator. We will just examine the case that i ∈ Imaj

and y(i) = 1; the other cases are nearly identical. For such a point, we have

w · x(i) = ws + wcx
(i)
c + α(i)‖x(i)

n ‖2 +
∑
j 6=i

α(j)x(i)
n · x(j)

n ≥ 1

From this, it follows that the i-th point satisfies the margin constraint iff

α(i) ≥ 1

‖x(i)
n ‖2

(1− ws − wcx(i)
c −

∑
i 6=j

α(j)x(i)
n · x(j)

n ). (47)

The lower bound (47) is unwieldy because it depends on the other a(j), but by Lemmas 3 and 5, (47)
admits a precise form up to an O(n−2) correction. Observe that for the RHS of (47), we have:

(47) ≥ (1−O(1/n3))(1− ws − wcx(i)
c −O(

1

n4
))

≥ 1− ws − wcx(i)
c −O(

1

n4
)−O(

log n

n3
) (48)

≥ 1− ws − wcx(i)
c −O(

1

n2
). (49)

Here (48) follows because ws, wc = O(1) and |x(i)
c | = O(log n) with probability at least 1−1/2000.

Similarly, we have

(47) ≤ (1 +O(1/n3))(1− ws − wcx(i)
c +O(

1

n4
))

≤ 1− ws − wcx(i)
c +O(

1

n4
) +O(

log n

n3
)

≥ 1− ws − wcx(i)
c +O(

1

n2
). (50)

Thus we can let c1 = O(n−2) be chosen so that∣∣∣∣∣∣ 1

‖x(i)
n ‖2

1− ws − wcx(i)
c −

∑
i 6=j

α(j)x(i)
n · x(j)

n

− (1− ws − wcx(i)
c )

∣∣∣∣∣∣ ≤ c1.
Now we know that a(i) will be chosen according to two criteria: (i) subject to the constraint (47),
and (ii) to minimize ‖w‖2. From these two criteria, the definition of c0, and the lower and upper
bounds on (47), we conclude that α(i) must be a number between max{−c0, 1− ws − wcxc − c1}
and max{c0, 1− ws − wcxc + c1}. A simple casework argument shows that the endpoints of this
interval are always within O(n−2) distance from (1 − ws − wcxc)+. Taking a union bound over
the failure probabilities from Lemmas 3, 6, and |x(i)

c | = O(log n) shows that this result holds with
probability at least 1− 6/2000, completing the proof.

In the remainder of the proofs, we will define f(w) = w2
s + w2

c +
∑
i∈Imaj

(1 − ws − wcx(i)
c )2

+ +∑
i∈Imin

(λ+ ws − wcx(i)
c )2

+, so that

E[f(w)] = w2
s + w2

c + nmajE[(1− ws − wc + wcz)
2
+] + nminE[(λ+ ws − wc + wcz)

2
+].

This is the expected squared norm of w treating ws, wc, and the α(i) as parameters and in expectation
over the randomness in the x(i), under the assumption that the x(i)

n are perfectly orthonormal. A
combination of Lemma 7 and a Bernstein bound will show that ‖w‖2 concentrates tightly around
E[f(w)] with high probability, which we now prove.
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Lemma 8. With probability at least 0.99, we have |‖w‖2 − E[f(w)]| = O(
√
n).

Proof. From Lemma 7, we know that

α(i) =

{
y(i)(1− ws − wcx(i)

c )+ ±O( 1
n2 ) i ∈ Gmaj

y(i)(λ+ ws − wcx(i)
c )+ ±O( 1

n2 ) i ∈ Gmin

with probability at least 1 − 6/2000. It follows immediately that (α(i))2‖x(i)
n ‖2 = (1 − ws −

wcx
(i)
c )2

+ ±O( logn
n2 ) for majority points and similarly for the minority points. (Here we have used

that |x(i)
c | = O(log n) with probability at least 1− 1/2000, and that ‖x(i)

n ‖2 = 1±O(n−3).) From
this fact and Lemma 3 (which holds with probability at least 1− 1/2000), we have

|‖w‖2 − f(w)| ≤ n ·O(
log n

n2
) +

∣∣∣∣∣∣
∑
i6=j

α(i)α(j)x(i)
n · x(j)

n

∣∣∣∣∣∣ = O(
log n

n
). (51)

We now show that f(w) will be close to its expectation with high probability. Observe that (1−ws−
wcx

(i)
c )2

+ and (λ−ws−wcx(i)
c )2

+ are all (2(λ+ |ws|+ |wc|)+ |wc|)2 = O(1) sub-exponential. This
follows from the simple fact that ‖c‖ψ2 ≤ 2c for any constant c, (·)+ is 1-Lipschitz and therefore does
not increase the sub-Gaussian norm, and from the fact that ‖Z2‖ψ1

= ‖Z‖2ψ2
for any sub-Gaussian

random variable Z. Thus by Bernstein’s inequality, there exists a constant c2 = O(1) (depending on
λ,ws, wc) such that

P(|f(w)− Ef(w)| ≥ t) ≤ 2 exp

(
−min

(
t2

nc22
,
t

c2

))
. (52)

Letting t0 = c2
√
n log 2000 = O(

√
n), we see that |f(w) − Ef(w)| ≤ 2t0 = O(

√
n) with

probability at least 1 − 1/2000 for all sufficiently large n. Finally, using the triangle inequality
|‖w‖2 − Ef(w)| ≤ |‖w‖2 − f(w)|+ |f(w)− Ef(w)| and substituting the bounds (51) and (52) on
these two terms yields the desired result. Taking a union bound over the failure probabilities shows
that this fails with probability at most 9/2000 < 1/100.

Lemma 8 shows us that ‖w‖
2

n = Ef(w)
n + O(n−1/2) with high probability, so it suffices to prove

Theorem 5 for Ef(w). Note that by the construction of the data generating distribution, wc −ws > 0
means that the classifier has better than random accuracy on the majority group, and wc + ws > 0
means that the classifier has better than random accuracy on the minority group. The remainder of
the proof will therefore be spent analyzing Ef(w) and showing that wc − ws, wc + ws > 0 for a
minimum norm separator and for a specific range of values of λ.
Lemma 9. For any w, replacing wc with |wc| does not increase (37). Thus, we may assume WLOG
that wc ≥ 0.

Proof. If wc ≥ 0 the statement is obvious, so assume that wc < 0. Since z ∼ N(0, 1) in (37), it
suffices to show that

(1− ws − wc + wcz)+ ≥ (1− ws + wc + wcz)+

for any z. The above inequality holds because (·)+ is nondecreasing and wc < 0, so we are done.

Lemma 10. Let u = wc + ws and v = wc − ws. Then we have

E[‖w‖2] ≥ nmaj

[(
(1− u)2 +

(
u+ v

2

)2
)

Φ

(
2(1− u)

u+ v

)
+

(1− u)(u+ v)

2
√

2π
e
− 2(1−u)2

(u+v)2

]}
(I)

+ nmin

[(
(λ− v)2 +

(
u+ v

2

)2
)

Φ

(
2(λ− v)

u+ v

)
+

(λ− v)(u+ v)

2
√

2π
e
− 2(λ−v)2

(u+v)2

]}
(II)

Proof. We have wc = (u + v)/2. The inequality follows by dropping the w2
c + w2

s terms in (37),
rewriting the remaining terms in terms of u and v, and then applying formula (39) to each of the
expectations.
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Theorem 10 (Formal version of Theorem 5). For p
8(1−p) + 1

4 (1 − 1√
2πe

) ≤ λ ≤ 1+1/
√

2
8(1−p) , with

probability at least 0.99, we have that u, v > 0. In particular, for this range of margins λ, IT has
strictly better than random worst-group accuracy.

Proof. By Lemma 9, we may assume thatwc = (u+v)/2 ≥ 0. If 1−u ≥ 0, then 1−u = α(u+v)/2
for some α. Then (I) becomes

(I) = w2
c

[
(α2 + 1)Φ(α) +

α

2
e−α

2/2
]
.

If we similarly let λ− v = β(u+ v)/2, then we see that

(II) = w2
c

[
(β2 + 1)Φ(β) +

β

2
e−β

2/2

]
.

Combining these, we have:

E[‖w‖2]

n
≥ pw2

c

[
(α2 + 1)Φ(α) +

α√
2π
e−α

2/2

]
+ (1− p)w2

c

[
(β2 + 1)Φ(β) +

β√
2π
e−β

2/2

]
(53)

with the identities αwc = 1− u, βwc = λ− v, and wc = (u+ v)/2.

Before we proceed, let us first examine the quantity f(x) = (x2 + 1)Φ(x) + x√
2π
e−x

2/2. Observe
that for x ≥ 0, we have f(x) ≥ 1

2 (x2 + 1). Furthermore, if x ≥ 1, we have the tighter lower bound

Φ(x) ≥ 1− 1√
2π
e−x

2/2 =⇒ f(x) ≥ x2+1− 1√
2π
e−x

2/2(x2−x+1) ≥ x2+1− 1√
2πe

. (54)

The lower bound on Φ(x) comes from the standard Gaussian tail bound P(Z ≥ x) ≤ 1√
2π
e−x

2/2 for

x ≥ 1. The second inequality on the RHS of (54) follows from maximizing e−x
2/2(x2 − x+ 1) over

x ≥ 1.

Recalling that (I) and (II) were defined as expectations of nonnegative quantities, we also have the
lower bound f(x) ≥ 0 for x < 0. We can now use (53) to show that whenever u ≤ 0 or v ≤ 0, we
must have E[‖w‖2] > E[‖wuse−core‖2] for an appropriate choice of λ.

Note that since wc = (u+ v)/2 and we know that wc ≥ 0 for any separator, at most one of u, v may
be negative. Thus, the four cases that follow cover all possibilities. Also, recall that α and β are
defined such that α = 2(1−u)

u+v and β = 2(λ−v)
u+v .

Case 1.1: u ≤ 0 and v > λ. In this case, α ≥ 0, and we can replace (53) with

E[‖w‖2]

n
≥ 1

2
pw2

c (α
2 + 1) =

1

2
p

(
(1− u)2 +

(u+ v)2

4

)
. (55)

(This uses the fact that f(α) ≥ 1
2 (α2 + 1) for α ≥ 0.) The minimum of (55) over u occurs at

u = 4
5 −

v
5 and has value at least p

10 (λ+ 1)2 since v ≥ λ. Thus we have E[‖w‖2]
n ≥ p

10 (λ+ 1)2 in
this case.

Case 1.2: u ≤ 0 and 0 ≤ v ≤ λ. In this case, α, β ≥ 0. We further split into two subcases based
on whether β ≤ 1 or β > 1.

If β > 1, then we can apply (54) to the β portion of (53) as well as the lower bound for α ≥ 0 to the
other part. This yields

E[‖w‖2]

n
≥ 1

2
pw2

c (α
2 + 1) + (1− p)w2

c (β
2 + 1− 1√

2πe
)

=
1

2
p

(
(1− u)2 +

(u+ v)2

4

)
+ (1− p)

(
(λ− v)2 + c1(u+ v)2

)
, (56)
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where c1 = 1
4 (1− 1√

2πe
). The minimum of (56) over v occurs at

v =
2(1− p)λ−

(
2c1(1− p) + p

4

)
u

2(1 + c)(1− p) + p
4

.

Substituting this into (56), we obtain

E[‖w‖2]

n
≥ −16c1λ

2(−1 + p)2 − 8p+ 8c1(−1 + p)p+ 2λ2(−1 + p)p+ 7p2

2(−8 + 8c1(−1 + p) + 7p)
(57)

+
−32c1λ(−1 + p)2 + 16p− 16c1(−1 + p)p+ 4λ(−1 + p)p− 14p2

2(−8 + 8c1(−1 + p) + 7p)
u

+
16c1(−1 + p)− 10p− 8c1(−1 + p)p+ 9p2

2(−8 + 8c1(−1 + p) + 7p
u2.

Taking the derivative of (57) with respect to u, we arrive at

32c1λ(1− p)2 − 16p− 16c1p(1− p) + 4λ(1− p)p+ 14p2

2(8 + 8c1(1− p)− 7p)
+

16(1− p) + 10p− 8c1p(1− p)− 9p2

8 + 8c1(1− p)− 7p
u.

Observe that since 0 < c1, p < 1, the coefficient on u is nonnegative. If λ ≤ 1
2(1−p) , then the

constant term in this expression is also negative. Thus for u ≤ 0, (57) is decreasing in u and the
minimum occurs at u = 0. Substituting u = 0, we finally find that

E[‖w‖2]

n
≥ 16c1(1− p) + 2p

2(8 + 8c1(1− p)− 7p)︸ ︷︷ ︸
c2

(1− p)λ2 +
8p+ 8c1p(1− p)− 7p2

2(8 + 8c1(1− p)− 7p)︸ ︷︷ ︸
c3

.

Otherwise, β ≤ 1. In this case, we have

β =
2(λ− v)

u+ v
≤ 1 =⇒ v ≥ 2λ− u

3
≥ 2

3
λ

since u ≤ 0. Since both α, β ≥ 0, (53) can be lower bounded by

E[‖w‖2]

n
≥ 1

2
pw2

c (α
2+1)+

1

2
(1−p)w2

c (β
2+1) =

1

2

(
p(1− u)2 +

(u+ v)2

4
+ (1− p)(λ− v)2

)
.

(58)
The minimum of (58) over u occurs at u = 4p−v

4p+1 , at which point we have

E[‖w‖2]

n
≥ 1

2

(
p

(
1− 4p− v

1 + 4p

)2

+ (1− p)(λ− v)2 +
1

4

(
4p− v
1 + 4p

+ v

)2
)
. (59)

The derivative of the above with respect to v is

p− (1 + 3p− 4p4)λ+ (1 + 4p− 4p2)v

1 + 4p
,

which is positive when v ≥ (1+3p−4p2)λ−p
1+4p−4p2 ; in particular, it is positive for v ≥ 2

3λ, and therefore
plugging v = 2

3λ into (59) gives us the lower bound

E[‖w‖2]

n
≥ (1 + 7p− 4p2)λ2 + 12pλ+ 9p

18 + 72p
.

For p ≈ 1, this lower bound is greater than the one we obtained for the β > 1 case. Thus we can
conclude that

E[‖w‖2]

n
≥ c2(1− p)λ2 + c3

whenever u ≤ 0 and 0 ≤ v ≤ λ.
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Case 2.1: v ≤ 0 and u > 1. In this case, β ≥ 0. We further split into two sub-cases depending on
the size of β.

If 0 ≤ β ≤ 1, then note that

β =
2(λ− v)

u+ v
≤ 1 =⇒ 0 ≥ v ≥ 2λ− u

3
.

Thus we must have u ≥ 2λ. With this in mind, we can replace (53) with
E[‖w‖2]

n
≥ 1

2
(1− p)

(
(λ− v)2 +

(u+ v)2

4

)
. (60)

The minimum of (60) over v ≤ 0 occurs at v = 0 if u ≤ 4λ and v = 4λ−u
5 ) if u > 4λ. In the former

case, we have
E[‖w‖2]

n
≥ 1

2
(1− p)(λ2 +

u2

4
) ≥ (1− p)λ2

since u ≥ 2λ. In the latter case, substituting v = 4λ−u
5 into (60) and recalling that u > 4λ, we have

E[‖w‖2]

n
≥ 1

10
(1− p)(λ+ u)2 ≥ 5

2
(1− p)λ2.

We always have the lesser of these two lower bounds, namely E[‖w‖2]
n ≥ (1− p)λ2.

Otherwise, we have β > 1 and we can apply inequality (54) to (53). This yields
E[‖w‖2]

n
≥ (1− p)w2

c

(
β2 + 1− 1√

2πe

)
= (1− p)

(
(λ− v)2 + c1(u+ v)2

)
, (61)

where c1 = 1
4 (1 − 1√

2πe
). We can minimize the above expression with respect to v ≤ 0. The

minimum occurs at v = 0 when u ≤ λ
c1

and at v = λ−c1u
1+c1

when u > λ
c1

. In the first case, we have

E[‖w‖2]

n
≥ (1− p)(λ2 + c1u

2) ≥ (1− p)(λ2 + c1)

since u > 1. In the second case, we have

E[‖w‖2]

n
≥ (1− p)

((
(1 + c1)λ− λ+ c1u

1 + c1

)2

+ c1

(
(1 + c1)u+ λ− c1u

1 + c1

)2
)

= (1− p)

((
c1(λ+ u)

1 + c1

)2

+ c1

(
λ+ u

1 + c1

)2
)

≥ (1− p)(1 +
1

c1
)λ2.

To finish Case 2.1, we always have at least the minimum of the lower bounds which we have obtained
in this section, namely E[‖w‖2]

n ≥ (1− p)λ2.

Case 2.2: v ≤ 0 and 0 ≤ u ≤ 1. In this case, β, α ≥ 0. In fact, we have the stricter constraint
β > 1. To see this, recall that we showed in Case 2.1 that when β ≤ 1, we have v ≥ 2λ−u

3 > 0
for 0 ≤ u ≤ 1. Since we have assumed v ≤ 0, this cannot happen, thus β > 1 and we can apply
inequality (54) to (53). Since α ≥ 0 in this setting as well, we have

E[‖w‖2]

n
≥ 1

2
p

(
(1− u)2 +

(u+ v)2

4

)
+ (1− p)

(
(λ− v)2 + c1(u+ v)2

)
, (62)

with c1 = 1
4 (1− 1√

2πe
) as before. We again compute the derivative of (62) with respect to v:

p
u+ v

4
+ 2(1− p)(v − λ+ c1(u+ v)) =

(p
4

+ 2(1− p)(1 + c1)
)
v +

(pu
4

+ 2(1− p)c1u− 2(1− p)λ
)

≤
(p

4
+ 2(1− p)(1 + c1)

)
v +

(p
4

+ 2(1− p)(c1 − λ)
)
.

Note that this is nonpositive for all v ≤ 0 provided that λ ≥ c1 + p
8(1−p) . In this case, (62) is

minimized at v = 0 and we have
E[‖w‖2]

n
≥ 1

2
p

(
(1− u)2 +

u2

4

)
+ (1− p)(λ2 + c1u

2) ≥ (1− p)λ2.
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Combining the cases. Let us now gather the constraints on λ as well as the lower bounds on
E[‖w‖2]

n . The smallest lower bound comes from Case 1.2, and we have

E[‖w‖2]

n
≥ 16c1(1− p) + 2p

2(8 + 8c1(1− p)− 7p)︸ ︷︷ ︸
c2

(1− p)λ2 +
8p+ 8c1p(1− p)− 7p2

2(8 + 8c1(1− p)− 7p)︸ ︷︷ ︸
c3

.

Case 1.2 also required that λ ≤ 1
2(1−p) . From Case 2.2, we also have the constraint λ ≥ c1 + p

8(1−p) .
Our problem is therefore reduced to finding λ such that

c2(1− p)λ2 + c3 >
1

2
p+ (1− p)

(
λ2 − 2λ+

9

4

)
(63)

subject to c1 + p
8(1−p) ≤ λ ≤

1
2(1−p) . The inequality (63) reduces to

(1− c2)λ2 − 2λ+
9

4
+

1
2p− c3
1− p

< 0 =⇒ λ ∈ Range

1±
√

1− (1− c2)
(

9
4 +

1
2p−c3
1−p

)
1− c2

 .

(64)
We now analyze c2 and c3, starting with c3. Observe that

c3 =
8p+ p

<0︷ ︸︸ ︷
(8c1(1− p)− 7p)

2(8 + 8c1(1− p)− 7p)
≥ 8p+ 8c1(1− p)− 7p

2(8 + 8c1(1− p)− 7p)
≥ 1

2
.

The inequality holds because p < 1. Next, we consider 1− c2:

1− c2 =
16 + 16c1(1− p)− 14p− 16c1(1− p)− 2p

2(8 + 8c1(1− p)− 7p)
=

8(1− p)
8 + 8c1(1− p)− 7p

≤ 8(1− p).

Plugging these into our range for λ, we see that

1 +

√
1− (1− c2)

(
9
4 +

1
2p−c3
1−p

)
1− c2

≥
1 +

√
1− 8(1− p)

(
9
4 −

1
2

)
8(1− p)

=
1 +

√
1− 14(1− p)
8(1− p)

.

Finally, we see that the range c1 + p
8(1−p) < λ <

1+
√

1
2

8(1−p) satisfies both (64) as well as the constraints
c1 + p

8(1−p) < λ < 1
2(1−p) . This completes the proof.

E Experiment Details

E.1 Label Shift

For numerical experiments under label shift setting, we train a ResNet-32 [47] on both Fashion
MNIST [46] and CIFAR-10 [45] datasets. In both cases, we train the ResNet-32 model using
stochastic gradient descent method with a momentum term of 0.9, a weight decay rate of 2e-4 and
a batch size of 128. Each model is trained for 400 epochs, and we use an adaptive learning rate
schedule where the initial learning rate is set to be 0.1 and it will be annealed to 1e-3 after 150 epochs
and 1e-5 after 250 epochs.

In particular, we find that when applying importance tempering method for learning extremely
imbalanced dataset, the optimization landscape become much more complicated and hard to optimize.
To tackle this problem, we will first use a low temperature to train the model for a number of epochs
and then apply the high temperature to train for the remaining epochs. For results in Figure 3.2,
we will first set γ = 0.2 to pretrain the model for 100 epochs and then apply the real γ for 300
epochs when the true γ is greater than 0.2. For results in Table 21, and Figure 3, we also adopt this
pretraining techniques and report the optimal results for γ ranging from 0.0 to 1.0.
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E.2 Spurious Correlation

On Waterbirds and CelebA dataset, we use the Pytorch torchvision implementation of the ResNet50
model, starting from pretrained weights. We train the ResNet50 models using stochastic gradient
descent with a momentum term of 0.9 and 1‘a batch size of 128; the original paper used batch
sizes of 128 or 256 depending on the dataset. Following [1], we use a fixed learning rate instead
of the standard adaptive learning rate schedule so that we can compare the difference between ours
and previous methods (avoid introducing more hyperparameters). Different from [1], we train all
the model till 500 epochs, so that we can fully explore the feature space which enables us to get
benefit from overparameterization. For the standard training, we select apply a 1e-4 weight decay
and for strong `2 penalty, we use λ = 1.0 for waterbirds and λ = 0.1 for CelebA. For CelebA,
we select temperature (1/75, 1/100, 1/100, 1) for standard training and (1/100, 1/225, 1/275, 1)
for regularized models. For Waterbirds, we select temperature (1/100, 1/50, 1, 1/75) for standard
training and (1/20, 1/15, 1, 1/15) for regularized models. We use the Pytorch torchvision imple-
mentation of the WideResNet50 model as our larger models. For other hyperparameter, we set
the same as the previous setting. For CelebA, we select temperature (1/75, 1/250, 1/250, 1) for
standard training and (1/100, 1/225, 1/275, 1) for regularized models. On MultiNLI dataset, we use
huggingface pytorch-transformers implementation [65] for the Bert (bert-base-uncased) and Bert
large (bert-large-uncased) model, starting from pretrained weights. We use the default tokenizer and
model settings from that implementation, including a fixed linearly-decaying learning rate starting at
0.00002, AdamW optimizer, dropout, batch size of 32 and no weight decay as [1] implements. We
select temperature as (1/150, 1/8000, 1.300, 3, 1/80, 1).
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