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This paper introduces a factorization for the inverse of discrete Fourier integral operators 
of size N × N that can be applied in quasi-linear time. The factorization starts by 
approximating the operator with the butterfly factorization. Next, a hierarchical matrix 
representation is constructed for the hermitian matrix arising from composing the Fourier 
integral operator with its adjoint. This representation is inverted efficiently with a new 
algorithm based on the hierarchical interpolative factorization. By combining these two 
factorizations, an approximate inverse factorization for the Fourier integral operator is 
obtained as a product of O (log N) sparse matrices with O (N) entries. The resulting 
approximate inverse factorization can be used as a direct solver or as a preconditioner. 
Numerical examples on 1D and 2D Fourier integral operators, including a generalized 
Radon transform, demonstrate the performance of this new approach.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider Fourier integral operators (FIOs) of the form

(L f )(x) =
∫
Rd

a(x, ξ)e2π i�(x,ξ) f̂ (ξ)dξ. (1.1)

Here, ξ is the frequency variable, x the spatial variable, a(x, ξ) is a smooth amplitude function in both x and ξ , �(x, ξ) is 
a smooth phase function in (x, ξ) for ξ �= 0 with the homogeneity relation �(x, λξ) = λ�(x, ξ) for λ positive, and f̂ is the 
Fourier transform of f defined by

f̂ (ξ) =
∫
Rd

e−2π ix·ξ f (x)dx. (1.2)

Typical uses of FIOs include the study of hyperbolic equations or integration over certain curved manifolds used in 
inverse problems. For instance, FIOs are commonly used to represent the solution to wave equations in Rd [11].

To introduce the discrete analog of an FIO in the d-dimensional case, we start with two Cartesian grids

X =
{

x =
(n1

n
, . . . ,

nd

n

)
,0 ≤ n1, . . . ,nd < n and n1, . . .nd ∈ Z

}
, (1.3)
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� = {ξ = (n1, . . . ,nd),−n/2 ≤ n1, . . . ,nd < n/2 with n1, . . . ,nd ∈Z} , (1.4)

where the number of discretization points per dimension n is assumed to be even for simplicity. The d-dimensional discrete 
Fourier integral operator of a function f (x) is then defined by

(L f )(x) ≡ (K f̂ )(x) =
∑
ξ∈�

a(x, ξ)e2π i�(x,ξ) f̂ (ξ) (1.5)

for every x ∈X , where f̂ is the discrete Fourier transform of f defined by

f̂ (ξ) = 1

nd

∑
x∈X

e−2π ix·ξ f (x). (1.6)

The discrete FIO from (1.5) can be written in matrix form as

u = K f̂ (1.7)

with f̂ = F f and u being the discrete Fourier transform and the discrete Fourier integral transform of f , respectively, 
evaluated at each discretization point. Notice that K is a dense matrix of size nd × nd , with entries Kij = a(xi, ξ j)e2π i�(xi ,ξ j) .

While in some cases, one is only interested on applying a discrete FIO quickly, in others one needs to solve a system of 
equations with a discrete FIO matrix, which in general is computationally challenging. In particular, FIOs are widely used 
in inverse problems, where given some measurements u one wants to compute some unknown quantity of interest f by 
solving (1.7). Some important applications, that can be formulated as such, are radar imaging [8,49], thermoacoustic and 
photoacoustic tomography [22,41], seismic imaging [43], single photon emission computed tomography [24] and electrical 
impedance tomography [40], among many others.

Many matrix factorizations for the rapid application of discrete FIOs can be found in the literature that reduce the 
computational complexity from quadratic O (N2) to quasi-linear O (N log N) in the number of discretization points N = nd . 
However, those factorizations are not readily invertible. In this paper, we are concerned with providing a factorization for 
the inverse of discrete FIOs that can be applied in quasi-linear time in order to solve (1.7) efficiently. One can either solve 
u = K f̂ or u = K F f by inverting K or K F . In our numerical examples, we observe that inverting K is more efficient than 
inverting K F , since it leads to lower ranks and faster decay of the entries during the factorization. Since F is the discrete 
Fourier transform matrix, it can be inverted and applied efficiently with fast algorithms such as the fast Fourier transform 
(FFT), therefore in the rest of the paper we will be concerned with inverting K , which we refer to as FIO matrix.

The proposed factorization is tested on several FIOs, including a 2D generalized Radon Transform (RT) [21,37]. The Radon 
Transform can be seen as a set of line integrals, with many applications in seismic data processing and various types of 
tomography, where the integrals can be taken along lines, parabolas (parabolic RT), hyperbolas (hyperbolic RT) or spheres 
(spherical RT).

1.1. Background

There has been significant amount of research on developing fast algorithms and factorizations for the direct evalua-
tion of discrete FIOs. By exploiting the complimentary low-rank condition of the FIO matrix K , these algorithms compress 
certain approximate low-rank matrices that appear throughout the factorization process. Many of the state-of-the-art algo-
rithms [7,28–30,32,36] can be viewed as factorization schemes based on the butterfly algorithm [5,34]. Such factorizations, 
while efficient to represent K , cannot be easily inverted due to the telescoping nature of the factorization which leads to 
rectangular matrices throughout the factorization. Other approaches include fast directional algorithms [6]. While many al-
gorithms have been proposed for the efficient factorization of K , we are not aware of any prior literature on the efficient 
factorization for the inverse operator K −1 for a general class of FIOs.

A first approach to invert K consists on using classical direct methods such as Gaussian elimination or other standard 
matrix factorizations [14], which unfortunately achieve O (N3) complexity. For some dense matrices, this can be acceler-
ated by exploiting the low-rankness of certain submatrices. Many representations of dense matrices exist such as wavelet 
decompositions [4] or hierarchical matrices based on different admissibility conditions and the use of nested bases, in-
cluding H-matrices [12,15,16], hierarchically semiseparable (HSS) matrices [1,48], and hierarchically off-diagonal low-rank 
(HODLR) matrices [2], among others [3,10,33,35]. These algorithms can be much faster than classical direct methods, with 
some even attaining quasi-linear complexity to compute the inverse K −1. However, some of these approaches rely on the 
effective compression of the operator with wavelets, while others rely on a hierarchical partitioning of the domain and the 
admissibility condition at each level, which FIO matrices typically don’t satisfy with such partitioning.

Alternatively, one can solve the system of equations (1.7) using iterative methods [38]. That is with algorithms such as 
the generalized minimal residual method (GMRES) [39] or the biconjugate gradient method (BiCG) [44], which can achieve 
O (N2) complexity if only a small number of iterations are required. The complexity can be further reduced to O (N log N)

by using the butterfly factorization to perform fast matrix-vector multiplications with K . However, in general, the number of 
iterations required by an iterative solver is sensitive to the spectral properties of the matrix of the system to be solved. In the 
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case of FIO matrices, the number of iterations can be proportional to the problem size N , requiring efficient preconditioners. 
For the FIO matrices used in the numerical tests of this paper, the eigenvalues are located around a circle in the complex 
plane, and therefore, due to the lack of eigenvalue clusters, convergence is slow. A particular preconditioner that can be 
used is the adjoint FIO matrix K ∗ , which reduces the number of iterations, but still converges slowly in some cases.

As a result of these observations, there is a need for finding algorithms that can compute an approximate inverse factor-
ization of FIO matrices or provide efficient preconditioners. The main purpose of this paper is to address this issue.

1.2. Contributions

The main contribution of this paper is the introduction of an algorithm to obtain a factorization for the inverse FIO 
matrix K −1 as a product of O (log N) sparse matrices, each with O (N) nonzero entries, that can be applied in quasi-linear 
time to an arbitrary vector. The main building blocks to build such a factorization are:

• Building the butterfly factorization approximation K̇ of K using the algorithm from [28,29].
• Constructing the H-matrix approximation Ṡ of S ≡ K ∗K using the peeling algorithm [31] and quasi-linear time matrix-

vector multiplication with K̇ .
• The H-matrix approximation Ṡ is inverted using a new algorithm based on the hierarchical interpolative factorization 

[20] proposed in this paper to obtain the approximate factorization Ġ of G ≡ (K ∗K )−1.

The inverse factorization is then obtained as

K −1 ≈ Ġ K̇ ∗.
Throughout this paper, we shall use the dot accent to a matrix to indicate its approximation.

1.3. Outline

The rest of this paper is organized as follows. Sections 2 and 3 review some of the tools used for constructing the inverse 
factorization, i.e. the butterfly factorization, hierarchical matrices and the peeling algorithm. Section 4 presents the algorithm 
used to invert hierarchical matrices. Section 5 proposes an algorithm for the inverse factorization of FIOs by combining the 
previous factorizations from sections 2, 3 and 4. In Section 6, numerical results are provided to demonstrate the efficiency 
of the algorithm for 1D and 2D FIOs. Finally, Section 7 concludes with some discussion and future work.

2. Butterfly factorization

In order to build the inverse approximation of an FIO matrix K we first need an algorithm to perform matrix-vector 
multiplications with K and K ∗ efficiently. In this paper we use the multidimensional butterfly factorization [28,29] to 
obtain a factorization of the FIO matrix K and its conjugate K ∗ that can be applied in quasi-linear time to an arbitrary 
vector. Next, we provide a review of the butterfly factorization, but for more details we refer the reader to [28,29].

Define two trees TX and T� of the same depth L, constructed by recursive dyadic partitioning of each domain X and 
�. The nodes of each tree are subdomains of X and � respectively. Level � = L contains all the leaves of the tree and level 
� = 0 contains the root. With this partitioning, K satisfies the complementary low-rank condition as shown in [5]. That is for 
any level 0 < � < L, any node i at level � of TX and any node j at level L − � of T� , the submatrix K�;i j is numerically 
low-rank. In this section, we use the symbol K�;i j to represent the matrix K restricted to the rows indexed by the DOFs in 
the i-th node of TX at level � and to the columns indexed by the DOFs in the j-th node of T� at level L − �. Fig. 1 provides 
an illustration of a matrix partitioned at different complementary levels showing different low-rank block structure due to 
the complementary low-rank condition.

The butterfly factorization algorithm starts at the middle level � = L/2. Here, we assume that L is even in order to ease 
the description of the algorithm.

Level � = L/2. For each pair of nodes i at level � of TX and j at level L − � of T� , the algorithm computes a low-rank 
approximation with rank r of the submatrix K�;i j ,

K�;i j ≈ U�;i j D�;i j V ∗
�;i j (2.1)

with U�;i j ∈CNi×r , V�;i j ∈CN j×r , D�;i j ∈Cr×r and Ni being the number of DOFs in the i-th node. One can now approximate 
K as

K ≈ U�D�V ∗
� (2.2)

where D� ∈ CNr×Nr is a weighted permutation matrix with only O (N) non-zero entries and U�, V� ∈ CN×Nr are block 
diagonal matrices. Each diagonal block, denoted as U�;i , is the horizontal concatenation of all U�;i j matrices for every node 
j at level L − � of T� . Similarly for V� , each diagonal block V�; j is the horizontal concatenation of all V�;i j matrices for 
3
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Fig. 1. Illustration of a matrix having complementary low-rank property, with binary partition trees TX and T� and L = 5. Each of the illustrations shows 
a different splitting of the matrix indices according to different levels of the trees, where each block is low-rank. The fourth image shows the nodes (dark 
nodes) used from each tree for the partition of the matrix, which correspond to complementary levels.

every node i at level � of TX . As a result, matrices U L/2 and V L/2 have O (N3/2r) non-zero entries and therefore need to be 
further factorized to achieve a factorization that can be applied in quasi-linear time to arbitrary vectors.

Level � = L/2, · · · , L − 1. At each level, U� and V� are recursively factorized by

U� = U�+1C� and V� = V�+1 H�. (2.3)

Such factorization (2.3) is obtained by using nested bases, since each diagonal block U�;i can be obtained from the diagonal 
blocks U�+1;C(i) of the children C(i) of i in TX at next level. In particular consider the 1D setting, where each node has two 
children nodes except at the leaves level. One can partition U�;i by splitting first the matrix into two matrices indexed by 
DOFs of the children nodes i1, i2 of node i, and then merging together the subblocks of the form U�;ik j that share the same 
parent on T� . This is, for each node i, one can define blocks of the form U�;ı̂ ĵ = [U�;ı̂ j, U�;ı̂( j+1)], where j and j + 1 are 
nodes in level L − � of T� with common parent node ĵ , and ı̂ is a child of node i. This partitioning of the form

U�;i =
[ · · · U�;i1 j U�;i1( j+1) U�;i1( j+2) U�;i1( j+3) · · ·

· · · U�;i2 j U�;i2( j+1) U�;i2( j+2) U�;i2( j+3) · · ·
]

, (2.4)

can analogously be extended to the 2D setting, with quadtrees TX and T� , by partitioning the matrix U�;i over 4 children 
instead of 2 from TX , and concatenating each 4 sibling nodes from T� . Notice that due to the complementary low-rank 
condition, each U�;ı̂ ĵ is numerically low-rank and therefore one can obtain the corresponding low-rank approximation

U�;ı̂ ĵ ≡ [U�;ı̂ j, U�;ı̂( j+1)] = U�+1;ı̂ ĵ C�;ı̂ ĵ , (2.5)

where U�+1;ı̂ ĵ ∈CN ı̂×r′
, U�;ı̂ ĵ ∈CN ı̂×2r with r′ < 2r and C�,ı̂ĵ is a matrix of size r′ × 2r for 1D FIOs, and r′ × 4r for 2D FIOs. 

Rearranging all these factors for all nodes ı̂ and ĵ in a block-diagonal matrix U�+1 ∈ CN×Nr′
and a sparse matrix C� with 

only O (N) non-zero entries, one obtains the factorization from (2.3). The same recursion can be applied to V� .
By applying (2.3) recursively, one obtains at level � = L the approximate butterfly factorization K̇ of K as

K ≈ K̇ ≡ U L CL−1 · · · CL/2 D L/2 H∗
L/2 · · · H∗

L−1 V ∗
L (2.6)

with O (N1.5) factorization cost. Since all the factors in (2.6) have O (N) non-zero entries, the butterfly factorization of K
can be applied in quasi-linear time O (N log N) to an arbitrary vector. Additionally, one can easily approximate the transpose 
of K

K ∗ ≈ K̇ ∗ ≡ V L H L−1 · · · H L/2 D∗
L/2C∗

L/2 · · · C∗
L−1U∗

L .

Notice that most of the matrices in (2.6) are rectangular and therefore the factorization is not readily invertible.

3. Hierarchical matrix construction

Since K is a square matrix, its inverse is equal to its pseudo-inverse K + = (K ∗K )−1 K ∗ . In this section, in order to build 
K + , we are interested in a representation of the matrix K ∗ K that can be constructed and inverted in quasi-linear time. In 
particular, we propose to use the H-matrix framework with different admissibility conditions depending on the dimension 
of the problem.

3.1. Hierarchical matrix approximation of K ∗K

In order to analyze the properties of K ∗K we start by decomposing the FIO from (1.1) as L = KF , where F( f ) = f̂ is 
the Fourier transform, and
4
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(K f )(x) =
∫
Rd

a(x, ξ)e2π i�(x,ξ) f (ξ)dξ. (3.1)

Defining the adjoint operator of K as

(K∗ f )(ξ) =
∫
Rd

ā(x, ξ)e−2π i�(x,ξ) f (x)dx, (3.2)

with ā(x, ξ) the complex conjugate of a(x, ξ), we can construct the operator K∗K defined by

(K∗K f )(ξ) =
∫
Rd

S(ξ,η) f (η)dη, (3.3)

where S is the kernel of the operator K∗K defined by

S(ξ,η) =
∫
Rd

ā(x, ξ)a(x, η)e2π i[�(x,η)−�(x,ξ)]dx. (3.4)

The following proposition gives bounds for the kernel S (see Chapter IX Section 3.1.2 of [42]).

Proposition 1. Under the assumptions that

• a(x, ξ) is a fixed smooth function of compact support in x and ξ ,
• the phase function �(x, ξ) is real-valued, homogeneous of degree 1 in ξ and smooth in (x, ξ) for ξ �= 0 on the support of a,

• � satisfies the non-degeneracy condition for ξ �= 0: det
(

∂2�
∂xi∂ξi

)
�= 0,

we have that

|S(ξ,η)| ≤ Ak(1 + |ξ − η|)−k, ∀k ≥ 0

with Ak a constant depending on k.

The discrete analog of K∗K for the spatial and frequency domains X and � on the Cartesian grids (1.3) and (1.4) is

S ≡ K ∗K (3.5)

where K ∈CN×N is the discrete FIO matrix from (1.7) and S has been overwritten to represent the discrete matrix for the 
kernel S(ξ, η) of K∗K. According to Proposition 1, in the continuous case the kernel S(ξ, η) decays fast while in the discrete 
case we observe experimentally that the entries of the hermitian matrix S ≡ K ∗K also decay fast, so that S ≡ K ∗K can be 
represented as a banded matrix. Additionally, we observe that the interaction between non-adjacent clusters of points is 
numerically low-rank. Therefore, one can represent S ≡ K ∗K using hierarchical matrices. In particular, we use HODLR [2]
for the 1D setting and H-matrices [15] format for the 2D setting, using weak and strong admissibility respectively.

The admissibility condition is defined as follows: two disjoint sets of indices I and J are admissible if

min(diam(I),diam(J )) ≤ α · dist(I,J ) (3.6)

for α > 0, where diam(I) = maxi, j∈I |xi − x j | and dist(I, J ) = mini∈I, j∈J |xi − x j |. For well-separated (admissible) clusters 
of points, the corresponding submatrix block in K ∗ K is low-rank.

If weak admissibility is used, K ∗ K can be represented with HODLR format, i.e. every off-diagonal block of the matrix 
is considered low-rank. Otherwise, strong admissibility is used with α = 1, leading to the H-matrix format, where the 
interactions with the adjacent clusters are considered full-rank while the interactions with the remaining clusters are low-
rank. For any subblock of the matrix, we consider it to be numerically low-rank if its numerical rank increases very slowly 
with N , no more quickly than O (log N).

The pseudo-inverse of K can be computed as K + = (K ∗K )−1 K ∗ or as K + = K ∗(K K ∗)−1. However, for the examples 
of FIO from Section 6, we observe experimentally that while both K ∗ K and K K ∗ can be approximated with hierarchical 
matrices, the ranks of the admissible blocks are lower for the former. Therefore, we propose to construct the inverse of K
following K + = (K ∗K )−1 K ∗ . The observed experimental asymptotic complexity of the ranks of the admissible blocks for the 
examples in Section 6 are reported in Table 1. In Fig. 2 we illustrate the numerical rank of the interaction of admissible 
blocks for Examples 1 and 3 in Section 6, observing lower ranks for K ∗K than for K K ∗ . This experimental observations 
justify the use of weak admissibility for 1D FIOs to represent K ∗ K as a hierarchical matrix in HODLR format. However, we 
need to use strong admissibility and the H-matrix format for 2D FIOs to avoid ranks scaling with O (N1/2).
5
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Table 1
Approximate observed rank scalings of admissible blocks from the composition of a discrete FIO matrix with its 
adjoint for FIOs used in section 6, where strong admissibility is considered with α = 1.

Admissibility

Weak Strong

1D K K ∗ O (log N) O (1)

K ∗ K O (1) − O (log N) O (1)

2D K K ∗ O (N1/2) − O (N2/3) O (N1/3) − O (N1/2)

K ∗ K O (N1/2) O (log N)

Fig. 2. On the left, the numerical ranks for admissible blocks for 1D FIOs from Example 1 in Section 6. On the right, the numerical ranks for admissible 
blocks for 2D FIOs from Example 3 in Section 6.

3.2. Review of peeling algorithm for 1D HODLR matrices

In order to construct the HODLR representation of S ≡ K ∗K we use the peeling algorithm [31], which only requires 
matrix-vector multiplications that can be performed rapidly in quasi-linear time with the butterfly factorization K̇ ≈ K .

For a given matrix A, we start by defining a uniform cluster tree T� with L levels, that recursively partitions the domain 
� into 2� subdomains at each level � = 0, 1, ..., L, with level � = 0 being the root level and level � = L containing the leaves 
of the tree. To obtain the HODLR representation of A, at every level each subdomain is split into two child subdomains, and 
its interaction block in A is approximated by a low-rank matrix.

Following the peeling algorithm from [31], we can obtain the low-rank approximations of submatrices at each level 
�, starting from level � = 1 up to the leaves level � = L. Here, we consider obtaining the HODLR approximation for an 
hermitian matrix A ≡ K̇ ∗ K̇ . For the rest of the section, we denote A�;i j the subblock of the matrix A restricted on the rows 
and columns indexed by the i-th and j-th nodes at level � of the tree T� respectively.

Level � = 1. At this level, the domain is divided into two subdomains and the matrix takes the form

A =
[

A1;11 A1;12
A1;21 A1;22

]
, (3.7)

where A1;12 and A1;21 can be approximated by a low-rank matrix with rank k.
One starts by generating two random matrices R1;1 and R1;2 of size N/2 × (k + c), with c = O (1) an oversampling 

parameter. One can perform the following matrix-matrix multiplications to obtain[
A1;11 A1;12
A1;21 A1;22

][
R1;1

0

]
=

[
A1;11 R1;1
A1;21 R1;1

]
, (3.8)[

A1;11 A1;12
A1;21 A1;22

][
0

R1;2

]
=

[
A1;12 R1;2
A1;22 R1;2

]
. (3.9)

Since A is hermitian, A1;12 = A∗
1;21. Now, using QR factorization (or alternatively SVD), we can obtain a unitary column 

base matrix U1 of A1;21 R1;1 and a unitary column base matrix U2 of A∗
1;21 R1;2. A low-rank approximation [17] of A1;21 is 

obtained as

A1;21 ≈ Â1;21 = U1(R∗
1;2U1)

+(R∗
1;2 A1;21 R1;1)(U∗

2 R1;1)+U∗
2 . (3.10)

One can now construct the matrix Â1 containing the low-rank approximations at this level as
6
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Â1 =
[

0 Â∗
1;21

Â1;21 0

]
. (3.11)

Level � = 2. Generate the matrix [RT
2;1, 0, RT

2;3, 0]T where R2;1 and R2;3 are random matrices of size N/4 × (k + c). In 
order to obtain the low-rank approximations of A2;21 and A2;43 at level � = 2, we can now multiply A with the random 
matrices and subtract the contribution of the already computed low-rank approximations at previous levels,

A[RT
2;1,0, RT

2;3,0]T − Â1[RT
2;10RT

2;30]T =⎡⎢⎢⎣
A2;11 A2;12
A2;21 A2;22

A1;12 − Â1;12

A1;21 − Â1;21
A2;33 A2;34
A2;43 A2;44

⎤⎥⎥⎦
⎡⎢⎢⎣

R2;1
0

R2;3
0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
(

A2;11 R2;1
A2;21 R2;1

)
+ (A1;12 − Â1;12)

(
R2;3

0

)
(

A2;33 R2;3
A2;43 R2;3

)
+ (A1;21 − Â1;21)

(
R2;1

0

)
⎤⎥⎥⎦ ≈

⎡⎢⎢⎣
A2;11 R2;1
A2;21 R2;1
A2;33 R2;3
A2;43 R2;3

⎤⎥⎥⎦ .

(3.12)

Similarly, one can perform the same operation with (0, RT
2;2, 0, RT

2;4)T to obtain A2;12 R2;2 and A2;34 R2;4. The low-rank 
approximations for A2;21 and A2;43 are computed as in (3.10), resulting in the low-rank approximation matrix at this level

Â2 =

⎡⎢⎢⎢⎣
0 Â∗

2;21

Â2;21 0
0 Â∗

2;43

Â2;43 0

⎤⎥⎥⎥⎦ . (3.13)

Levels � = 3, · · · , L. Generate two matrices R1, R2 ∈ CN×(k+c) containing the random matrices for each of the 2� num-
bered subdomains as

R1(Ii, :) =
{

0, i is even

R�;i, otherwise
, R2(Ii, :) =

{
R�;i i is even

0, otherwise
(3.14)

with Ii being the DOFs of the i-th node of T� at level � for i = 1, · · · , 2� .
Similar to level � = 2, we compute AR j − ∑�−1

l=1 Âl R j with j = 1, 2, to obtain A�;(i+1)i R�;i and A∗
�;(i+1)i R�;i+1 for each 

node i such that (i mod 2) = 1. Analogously to the two previous levels, one can compute the low-rank approximations of 
each non-zero subblock Â�;(i+1)i ≈ A�;(i+1)i of Â� .

At the last level � = L, one can compute the block diagonal matrix D which approximate the diagonal full-rank blocks of 
matrix A for each of the 2L leave nodes of T� . The HODLR matrix representation of A can be expressed as

Ṡ ≡ D +
L∑

�=1

Â�. (3.15)

Since A ≡ K̇ ∗ K̇ ≈ K ∗K ≡ S , Ṡ is an approximation to S .

3.3. Review of peeling algorithm for 2D H-matrix

For 2D FIO matrices we use the H-matrix format to approximate K̇ ∗ K̇ , which only uses low-rank approximations on the 
interactions between non-intersecting and non-adjacent clusters. In this section, we review the algorithm used to construct 
such representation.

We start by defining a uniform quad-tree T� with L levels, that partitions the domain � into 2� × 2� square cells at 
each level � = 0, 1, ..., L. Therefore, at every level each subdomain is split into four child subdomains. The leaves correspond 
to level � = L and the root to level � = 0. Each cell at level � is represented as I�;i j with i = 1, · · · , 2� and j = 1, · · · , 2� . For 
each node/cell I of the tree we define the following two lists:

• NL(I): neighbor list of cell I . This is the list containing the cell I and the adjacent cells on level �.
• IL(I): interaction list of cell I . This is the list containing all the cells on level � that are children of cells in NL(P (I)) minus 

the cells in NL(I), where P (I) is the parent cell of I .

The peeling algorithm from [31] used to obtain the H-matrix representation for the 2D case is similar to the 1D case, 
starting from the root level and going all the way to the leaves, with the following main differences:
7
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Fig. 3. Square cells at level � = 2 of domain �. A particular cell I (with solid grey filling) at level � = 2 and the cells in N L(I) (with dashed grey filling).

• At every level �, for each cell I the algorithm only computes the low-rank approximation of subblocks A�;IJ of A
restricted to the rows indexed by the set of indices I of DOFs in cell I and the columns indexed by the set of indices 
J of DOFs in cell J , with J ∈ I L(I).

• In order to compute the low-rank approximation of A�;IJ one introduces the following 64 sets of cells Ppq for 1 ≤
p, q ≤ 8 with

Ppq = {I�;i j|i ≡ p mod 8, j ≡ q mod 8}. (3.16)

One can now construct 64 proving matrices, one for each set in Ppq , of the form

R(I, :) =
{

R I , I ∈ Ppq

0, otherwise,

with R I a random matrix of size |I| × (k + c). This provides for every cell I and cell J ∈ NL(I) the matrices A�;IJ R J

and A�;JI R I , which allows to efficiently construct a low-rank approximation

A�;IJ ≈ U�;IJ B�;IJ U∗
�;JI ,

with U�;IJ ∈C|I|×k and B�;IJ ∈Ck×k .

For more details we refer the reader to [31]. If we use A ≡ K̇ ∗ K̇ ≈ K ∗K ≡ S , the matrix Ṡ obtained from the peeling 
algorithm applied to A is an approximation of S . A particularity of constructing the H-matrix for the 2D FIO examples in 
Section 6 is that there is periodicity in both directions in the domain � when accounting for the admissible blocks. What 
that means is that any subblock of K̇ ∗ K̇ restricted to the rows of cell I and the columns indexed by any other cell J that 
becomes adjacent to I after padding the domain � with itself on both directions, is not considered low-rank. Therefore, J
is added to NL(I) in order to avoid numerical ranks increasing quickly with N . An example of a particular cell I and its 
neighbor list NL(I) is illustrated in Fig. 3.

4. Hierarchical matrix inversion

In this section we propose an algorithm to invert matrices expressed in hierarchical format using recursive skeletoniza-
tion (RSS) [19] and the hierarchical interpolative decomposition (HIF) [20].

4.1. 1D case

In the 1D setting, we have constructed an HODLR approximation Ṡ ≈ S ≡ K ∗K . One can easily invert Ṡ using recursive 
skeletonization [19], leading to an algorithm that resembles the work in [47].

In this subsection, we use A to denote the HODLR approximation Ṡ , which takes the form

A =

⎡⎢⎢⎣
A2;11 U2;1 B∗

2;21U∗
2;2

U2;2 B2;21U∗
2;1 A2;22

U1;1 B∗
1;21U∗

1;2

U1;2 B1;21U∗
1;1

A2;33 U2;3 B∗
2;43U∗

2;4
U2;4 B2;43U∗

2;3 A2;44

⎤⎥⎥⎦ (4.1)

with U�;i ∈ CN/2�×r being the low-rank orthogonal column base of A�;i(i+1) , the subblock of matrix A restricted by the 
DOFs of cells i and i + 1 at level �, and B�;i(i+1) ∈ Cr×r . The diagonal blocks A�;ii are recursively factorized following the 
levels of the tree up to the leaves, by making the off-diagonal matrix terms low-rank.
8
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The algorithm to invert A keeps eliminating nodes at each level starting from the leaves up to the root. Let A� be 
the state of the matrix A at level �, with AL = A, and let S� be the active DOFs at level �, i.e. DOFs that have not been 
decoupled/eliminated in previous levels throughout the factorization. To ease the description of the algorithm, we will drop 
� when representing subblocks of matrix A� restricted to rows indexed by I and columns indexed by J , AIJ ≡ (A�)IJ . 
The inversion algorithm proceeds from the leaves level � = L of the tree T� to level � = 1 performing the following two 
steps at each level �:

• Skeletonization of nodes at level �. There are q� = 2� nodes at level �. For each node we let I be the set of indices for 
the active DOFs associated with that node. First, we construct the matrix

Ū�;I =
⎡⎢⎣ U∗

�;I
...

U∗
1;I

⎤⎥⎦ , (4.2)

where U j;I are the corresponding columns of the low-rank base from the HODLR representation at level j of T�

for indices I in the corresponding node. Assume that Ū�;I can be approximated by a low-rank matrix with relative 
precision ε and rank k. Using the interpolative decomposition (ID) [9], we can find a disjoint partitioning I = Ĩ ∪ Î into 
redundant or fine (Ĩ) and skeleton or coarse (Î) DOFs such that

Ū�;Ĩ = Ū
�;Î TI + EI , ‖EI‖ = O (ε‖Ū�;I‖), (4.3)

where TI ∈ Rk×(|I|−k) is an interpolation matrix, which serves the purpose of approximating the redundant columns 
Ū�;Ĩ by a linear combination of the skeleton columns Ū

�,Î . Additionally, the interpolation matrix is constructed using 
strong rank-revealing QR so that ‖TI‖ is not too large. Using this decomposition we can approximately zero out the 
redundant DOFs in the low-rank bases of the form U∗

�;I resulting, up to a permutation, in

Ū�;I
[

I
−TI I

]
≈

⎡⎢⎢⎣
0 U∗

�;Î
...

...

0 U∗
1;Î

⎤⎥⎥⎦ . (4.4)

Notice that zeroing out the columns Ĩ in (4.4), also approximately zeroes out the redundant columns Ĩ of the subblock 
ARI of the matrix A� , with R = S� \ I . By symmetry of A, the rows Ĩ of the subblock AIR are also zeroed out. 
Introducing the zeroing matrix ZI and applying it on both sides leads, up to a permutation, to

Ã� = Z∗
I A� ZI ≈

⎡⎢⎣ ÃĨĨ Ã∗
ÎĨ

ÃÎĨ AÎÎ A∗
RÎ

ARÎ ARR

⎤⎥⎦ , ZI =
⎡⎣ I

−TI I
I

⎤⎦ , (4.5)

where only the terms ÃĨĨ and ÃÎĨ are updated with

ÃĨĨ = AĨĨ − T ∗
I AÎĨ − A∗

ÎĨ TI + T ∗
I AÎÎ TI , ÃÎĨ = AÎĨ − AÎÎ TI . (4.6)

We can now decouple the redundant DOFs Ĩ by performing standard Gaussian elimination

M ∗̃
I Ã�MĨ =

⎡⎣ I
ĀÎÎ A∗

RÎ
ARÎ ARR

⎤⎦ , MĨ =
⎡⎣(L∗̃

I)−1 − Ã−1
ĨĨ Ã∗

ÎĨ
I

I

⎤⎦ (4.7)

where ĀÎÎ has been updated to ĀÎÎ = AÎÎ − ÃÎĨ Ã−1
ĨĨ Ã∗

ÎĨ . At this point we have decoupled the redundant DOFs 
Ĩ from the rest of DOFs. This process is called skeletonization of I . Notice that in order to build the factorization in 
quasi-linear time, it is essential to perform ID on Ū�,I instead of the block ARI , since it only has O (r log N) rows, with 
r the average rank of the off-diagonal blocks at each level.
It is important to remark that performing skeletonization on I decouples its redundant DOFs (i.e. zeroes out AĨR and 
ARĨ ), while not changing the interactions of its skeleton DOFs with the remaining DOFs, since only the block AÎ,Î is 
changed. Therefore, the low-rank approximation of the remaining active DOFs at next levels remains the same and so 
does U

�;Î for all successive levels. This might be useful if one wants to select skeletons a priori based on their geometric 
interpretation in the matrix which is not lost by maintaining the original approximate values of the off-diagonal blocks 
in the matrix.
9
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Let {I�,i}q�

i=1 be the collection of disjoint index sets corresponding to each node i at level �. Skeletonization on all the 
index sets then gives

A�−1 ≈ R∗
� A�R�, R� =

q�∏
i=1

ZI�,i MĨ�,i
. (4.8)

The remaining active DOFs in A�−1 are S�−1 = ∪q�

i=1Î�,i . The DOFs indexed by ∪q�

i=1Ĩ�,i have been decoupled, i.e. their 
corresponding matrix block in A�−1 is the identity matrix.

• Merge child blocks. After the skeletonization step, we merge the active DOFs of sibling nodes in the tree and move to 
the next level of the tree, i.e. to the parent node at level � − 1.

At the end of this process, we have the resulting matrix

AL ≈ R∗
1 · · · R∗

L AR L · · · R1 (4.9)

at the root level of the tree, being the identity everywhere except in the submatrix indexed by the remaining active DOFs 
S0, which include DOFs near the boundary of the two subdomains � is divided into at level � = 1. One can easily write an 
approximate factorization of A as

A ≈ (R∗
L)

−1 · · · (R∗
1)

−1 AL R−1
1 · · · R−1

L , (4.10)

where the matrices of the form R� can be easily inverted since they are triangular up to a permutation. By inverting the 
factors one can efficiently get an approximate factorization of the inverse of A as

Ġ ≡ R L · · · R1 A−1
L R∗

1 · · · R∗
L ≈ A−1 = ( Ṡ)−1 ≈ (K ∗K )−1 (4.11)

that can be applied in linear time and whose error is controlled by the tolerance ε used in the skeletonization steps. In 
Fig. 4 we show the active DOFs after each level of the tree following the inversion algorithm, and how the skeletonization 
and merging steps look like for the HODLR representation.

Note that in the skeletonization step we first compute an interpolative decomposition and then we apply Gaussian 
elimination on the leading block. Similarly to [25,46], we could first compute the Cholesky decomposition of the diagonal 
block AII = LI L∗

I and scale the matrix[
L−1
I

I

][
AII AIR
AIR ARR

][
(L∗

I)−1

I

]
=

[
I L−1

I AIR
AIR(L∗

I)−1 ARR

]
(4.12)

so that the leading block becomes the identity matrix. Next, one can perform interpolative decomposition on Ū�;I(L∗
I)−1. 

In this case, after performing ID there is no need to perform Gaussian elimination (4.7) because the leading block is already 
identity. This may be advantageous in the case of ill-conditioned matrices, leading to improved accuracy of the inverse 
approximation [45].

4.2. 2D case

In the multidimensional case, we have constructed an H-matrix approximation Ṡ ≈ S ≡ K ∗K . Denoting Ṡ by A in this 
subsection, we can invert such a representation in a similar way to that of the hierarchical interpolative factorization [20], 
but exploiting the H-matrix representation.

Similarly to the one-dimensional case, the factorization proceeds from the leaves level � = L of the tree T� to level � = 1
and performs the following three steps at each level �:

• Skeletonization of cells at level �. There are q� = 2� × 2� square cells at level �. For each cell I we let I be the set of 
indices for the active DOFs in the cell. Then, for each set of indices I , we define the matrix

Ū�;I =

⎡⎢⎢⎢⎣
ABI
Ũ∗

�;I
...

Ũ∗
1;I

⎤⎥⎥⎥⎦ , (4.13)

with A�;BI the block of matrix A� indexed by DOFs in I and B, where B includes the active DOFs of the neighboring 
cells J ∈ N L(I) in level � of the tree, i.e. the near field of I . Denote I� the node containing the DOFs I at level � of T�

and m the number of nodes in I L(I�). The submatrices of the form Ũ�;I contain the low rank bases at level � for the 
low-rank approximation of subblocks AJ I = U�;J I B�;J I U∗ for all nodes J�,i ∈ I L(I�),
�,i � �,i � �,i � �;J�,iI�

10
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Fig. 4. Top row, from left to right: original matrix A, skeletonization step zeroing the light gray shade DOFs of the matrix and maintaining the skeleton DOFs 
in dark gray, merging the skeletons with common parent node. Rows 2 to 5 show the active DOFs on the 1D domain � after each step of the factorization, 
on three successive levels of skeletonization on the tree T� .

Ũ�;I =

⎡⎢⎢⎢⎢⎣
B�;J�,1I�

U∗
�;J�,1I

B�;J�,2I�
U∗

�;J�,2I
...

B�;J�,mI�
U∗

�;J�,mI

⎤⎥⎥⎥⎥⎦ , (4.14)

with U�;J�,iI containing only the columns indexed by I from U�;J�,iI�
.

Similar to the 1D case, we perform interpolative decomposition on Ū�,I (4.3) to obtain the corresponding interpolation 
matrix TI . Now one can apply the zeroing matrix ZI (4.5) followed by Gaussian elimination to eliminate the redundant 
DOFs Ĩ as in (4.7),

M ∗̃
I Z∗

I A� ZIMĨ ≈
⎡⎣ I

ĀÎÎ A∗
RÎ

ARÎ ARR

⎤⎦ . (4.15)

Notice we are computing TI using Ū�;I instead of the subblock ARI . This is equivalent but essential to reduce the 
numerical complexity of the algorithm, since Ū�;I has many less rows than ARI . In particular one can write ARI as

ARI =

⎡⎢⎢⎢⎣
I

V�;I
. . .

V 1;I

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ABI
Ũ∗

�;I
...

Ũ∗
1;I

⎤⎥⎥⎥⎦ ≡ Q �;I Ū�;I (4.16)

with Q �;I having orthogonal columns and V�;I containing the low-rank bases of all m nodes in I L(I�),

V�;I =

⎡⎢⎢⎢⎣
U�;J1I�

U�;J2I�

. . .

U�;JmI�

⎤⎥⎥⎥⎦ (4.17)

with U�;JiI�
the block U�;J�,iI�

(from the low-rank approximation AJ�,iI�
= U�;J�,iI�

B�;J�,iI�
U∗

�;J�,iI�
in the H-matrix 

representation) restricted to the rows indexed by the active DOFs of the node J�,i ∈ I L(I). Performing ID on Ū�;I gives 
an error
11
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‖EI‖ =‖ARĨ − ARÎ TI‖ = ‖Q �,I Ū�;Ĩ − Q �,I Ū
�;Î TI‖ =

‖Ū�;Ĩ − Ū
�;Î TI‖ = O (ε‖Ū�,I‖) = O (ε‖ARI‖), (4.18)

of the same order of magnitude that if ID had been performed on ARI directly, since Q �,I has orthogonal columns, 
and therefore ‖ARI‖ = ‖Ū�,I‖.
Let {I�,i}q�

i=1 be the collection of disjoint index sets corresponding to active DOFs of each of the q� cells at level �. 
Performing skeletonization over all cells at level � results in

Ā� ≈ R∗
� A�R�, R� =

q�∏
i=1

ZI�,i EĨ�,i
, (4.19)

where we have decoupled all the redundant DOFs in the square cells. Now, the remaining active DOFs in Ā� are ∪q�

i=1Îi , 
and the DOFs ∪q�

i=1Ĩi have been decoupled, i.e. their corresponding matrix block in Ā� is the identity matrix.
Analogously to the 1D case, for each cell at a level �, with active DOFs indexed by I , one can scale the off-diagonal low-
rank bases with the Cholesky factor of A�;II before computing the interpolative decomposition for improved accuracy 
of the factorization for ill-conditioned matrices.

• Skeletonization around the edges at level �. After performing cell skeletonization, most skeletons concentrate around 
the edges. This happens because of the high-rank interaction between the DOFs of adjacent cells located near a common 
edge. However, if these nodes are considered all together, then their interaction with the rest of the matrix can be 
assumed to be low-rank and we can reduce the number of skeleton DOFs around each edge.
In order to take advantage of this behavior, we start by assigning every active DOF to the nearest edge at level �. Each 
edge will have DOFs assigned to it from two adjacent cells. For each edge, let I be the active DOFs assigned to it from 
adjacent cells. Then, we define the matrix

Ū�;I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĀBI1 ĀBI2

Ũ∗
�;I1
...

Ũ∗
1;I1

Ũ∗
�;I2
...

Ũ∗
1;I2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.20)

with I1 and I2 the indices of I corresponding to each of the two cells adjacent to the edge and subblocks Ũ�,Ii defined 
as in (4.14). Here, B contains the DOFs in the union of the near field and the interior DOFs of the cells adjacent to the 
edge we are sparsifying. Now we can compute the interpolative decomposition of Ū�;I to construct the zeroing matrix 
ZI (4.5) and decouple the redundant DOFs Ĩ as in (4.7) with Gaussian elimination resulting in

M ∗̃
I Z∗

I Ā� ZIMĨ ≈
⎡⎢⎣ I

¯̄AÎÎ Ā∗
RÎ

ĀRÎ ĀRR

⎤⎥⎦ . (4.21)

One can decompose ĀRI as

ĀRI =

⎡⎢⎢⎢⎣
I

V�;I1 V�;I2

. . .
. . .

V 1;I1 V 1;I2

⎤⎥⎥⎥⎦ Ū�,I ≡ Q �,I Ū�,I (4.22)

where V�;I1 and V�;I2 are defined as in (4.17). Analogously to cell skeletonization, the error committed with ID per-
formed on Ū�;I is

‖EI‖ =‖ARĨ − ARÎ TI‖ = ‖Q �,I Ū�;Ĩ − Q �,I Ū
�;Î TI‖ ≤√

2‖Ū�;Ĩ − Ū
�;Î TI‖ = O (ε‖Ū�,I‖), (4.23)

where we have used the fact ‖Q �,I‖ ≤ 2. Since Q �,I is a tall skinny matrix composed of two tall-skinny matrices 
(Q �,I = [Q 1, Q 2]) with orthogonal columns, concatenated horizontally, it is trivial to bound its norm by
12
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Fig. 5. Active DOFs on the 2D square domain � for each step of the factorization, on two successive levels of the tree T� .

‖( Q 1 Q 2 )‖ = max
‖( v1 v2 )‖=1

‖( Q 1 Q 2 )( v1 v2 )T ‖ ≤ max
‖( v1 v2 )‖=1

‖Q 1 v T
1 + Q 2 v T

2 ‖ ≤

max
‖( v1 v2 )‖=1

‖Q 1 v T
1 ‖ + ‖Q 2 v T

2 ‖ = max
‖( v1 v2 )‖=1

‖v1‖ + ‖v2‖ = √
2.

(4.24)

Let s� be the number of edges and {I�,i}s�
i=1 the collection of corresponding disjoint index sets at level �, corresponding 

to each edge i. Performing skeletonization on all the index sets gives

A�−1 ≈ R̄ T
� Ā� R̄�, R̄� =

s�∏
i=1

ZI�,i MĨ�,i
, (4.25)

where the remaining active DOFs in A�−1 are S�−1 = ∪s�
i=1Î�,i . The index sets ∪s�

i=1Ĩ�,i have been decoupled, i.e. their 
corresponding matrix block in A�−1 is the identity matrix.

• Merge child blocks. After the skeletonization step on all edges, we merge the active DOFs of sibling nodes and move 
to the next level in the tree, i.e. to the parent node at level � − 1 obtained from merging 4 adjacent square cells into a 
bigger square cell.

Similarly to the 1D case, at the end of the factorization we can approximate the inverse of the H-matrix as

Ġ = R L R̄ L R L−1 R̄ L−1 · · · R1 R̄1 A−1
L R̄∗

1 R∗
1 · · · R̄∗

L−1 R∗
L−1 R̄∗

L R∗
L ≈ A−1 = ( Ṡ)−1 ≈ (K ∗K )−1, (4.26)

with R� and R̄� the cell and edge skeletonization matrices at level � respectively. The matrix AL defined at the root level 
can be easily inverted since it has few remaining active DOFs. Fig. 5 illustrates the active DOFs concentrating around the 
edges and the vertices after each cell and edge skeletonization steps respectively, for two levels of the tree.

5. Approximate inverse factorization for FIOs

We now proceed to describe the algorithm for inverting the discrete FIO. Given that the discrete FIO matrix K is square 
and invertible, we can obtain its inverse by computing the pseudo-inverse

K −1 = K + = (K ∗K )−1 K ∗. (5.1)

First, we approximate K ∗ and K using the butterfly factorization K̇ ≈ K . Since the Hermitian matrix K ∗K has low-rank 
blocks for well separated clusters, we can use HODLR and H-matrix representations in 1D and 2D respectively.

The HODLR (or H-matrix) approximation Ṡ of S ≡ K ∗K is then computed using the peeling algorithm. Fast matrix-vector 
multiplications with K ∗ K needed in the peeling algorithm are obtained by multiplying with K̇ and K̇ ∗ , which can be done 
in quasi-linear time.
13
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Next, we invert the hierarchical matrix approximation Ṡ of K ∗K using the inversion algorithm described in section 4, 
obtaining an approximate inverse Ġ ≈ (K ∗K )−1. Finally, we can construct the approximate factorization of the inverse FIO by 
approximating the terms (K ∗K )−1 and K ∗ in (5.1) with Ġ and K̇ ∗ respectively, i.e. K −1 ≈ Ġ K̇ ∗ . The algorithm is summarized 
in Algorithm 1.

One can use the above factorization to get an approximate inverse, but for higher accuracy, Ġ K̇ ∗ can be used as a 
preconditioner. If we want to solve a non-symmetric system of equations of the form K F f = u (1.7), we can first solve the 
system

K f̂ = u (5.2)

and then apply inverse FFT to f . In order to solve (5.2) efficiently, we can first approximate the FIO matrix by its butterfly 
factorization K̇ ≈ K so that matrix-vector multiplication can be performed in quasi-linear time. Next, we precondition the 
system with Ġ K̇ ∗ and solve the approximate system

Ġ K̇ ∗ K̇ f̂ = Ġ K̇ ∗u (5.3)

for which we can run conjugate gradient [18] on the hermitian matrix K̇ ∗ K̇ preconditioned with Ġ , pcg(K̇ ∗ K̇ , K̇ ∗u, Ġ).

Algorithm 1: Inverse factorization of multidimensional FIOs.
Given: FIO phase function �(x, ξ), butterfly factorization tolerance εB F F , peeling tolerance εpeel , HIF inversion tolerance εH I F

// Factor the FIO matrix K with butterfly factorization with tolerance εB F F

K̇ ← BFF(�(x, ξ), εB F F )

// Construct Hierarchical matrix representation of K ∗ K with matrix peeling using fast matrix-vector 
multiplications with F and tolerance εpeel

Ṡ ← peeling(K̇ , εpeel)

// Invert Ṡ with the hierarchical interpolative factorization
Ġ ← HIF(Ṡ, εH I F )

// Construct the inverse FIO
K −1 ≈ Ġ K̇ ∗

5.1. Computational complexity

The butterfly factorization K̇ can be computed in O (N3/2) time complexity, and its direct and transpose application to a 
vector v , K̇ v and K̇ ∗v , can be computed in quasi-linear time O (N log N). While some other recent butterfly factorizations 
exist in literature that can reduce the construction complexity to quasi-linear [7,30,36], we observe that in general better 
run times for constructing the inverse are obtained with the butterfly factorization from [28,29], especially in 2D. After 
constructing the butterfly factorization one has to apply it to many random matrices to construct Ṡ through the peeling 
algorithm. However, if one is interested in obtaining a quasi-linear complexity FIO inversion algorithm one can substitute 
the butterfly factorization used in this work for any of these other quasi-linear complexity factorizations.

The HODLR and H-matrix approximation Ṡ of K ∗K can be constructed in O (N log2 N), since K̇ ∗ K̇ can be applied in 
O (N log N) time to any arbitrary vector v and we need to apply it to O (log N) proving matrices with size N × (k + c).

Finally, Ṡ can be inverted in O (N log2 N) time since during the factorization we need to perform interpolative decompo-
sition on matrices resulting from concatenation of O (log N) submatrices. Such factorization can be applied in quasi-linear 
time O (N log N) since it consists of log N sparse factors [20]).

Therefore, the computational complexity for computing a factorization for the inverse FIO matrix K −1 is O (N3/2) and its 
application to a vector is O (N log N). Table 2 summarizes the asymptotic complexity of each step in the construction and 
application of the inverse factorization of discrete FIOs.

6. Numerical results

In this section, we demonstrate the effectiveness of the method for 1D and 2D FIOs. Here, we have considered a typical 
setting with periodic functions a(x, ξ) and φ(x, ξ) on x, with �(x, ξ) = x · ξ +φ(x, ξ). This allows one to embed the problem 
in a periodic cell, chosen here to be [0, 1)d .

The factorization obtained to approximate the inverse operator is also used as a preconditioner to solve a system of 
equations of the form K̇ x = b. The performance of the preconditioner is compared with K̇ ∗ , which can also be used as a 
preconditioner. Notice that without a preconditioner any iterative solver will take too many iterations to converge due to 
the fact that eigenvalues are not clustered. In particular, we compare the number of conjugate gradient (CG) iterations of 
the system

K̇ ∗ K̇ x = K̇ ∗b, (6.1)
14



J. Feliu-Fabà and L. Ying Journal of Computational Physics 446 (2021) 110654
Table 2
Complexity estimates for different steps in the FIO inverse factor-
ization.

Operation Complexity

Construct K̇ O (N3/2)

Apply K̇ and K̇ ∗ to a vector O (N log N)

Construct H-matrix Ṡ O (N log2 N)

Construct Ġ O (N log2 N)

Apply Ġ to a vector O (N log N)

Apply Ġ K̇ ∗ ≈ K −1 to a vector O (N log N)

preconditioned with and without Ġ . The following quantities are used in the rest of the section to evaluate the performance 
of the preconditioner:

• N: total number of DOFs in the problem;
• ea: the relative error of the butterfly approximation K̇ of K , defined as ‖K − K̇‖/‖K‖;
• ε: the tolerance used in the hierarchical matrix construction and inversion;
• es: the relative error of the approximation Ġ K̇ ∗ of K −1, defined as ‖I − Ġ K̇ ∗K‖ ≥ ‖K −1 − Ġ K̇ ∗‖/‖K −1‖;
• t K̇ : factorization cost to compute K̇ ;
• tĠ : factorization cost to compute Ġ;
• ts: total running time of CG to solve (6.1);
• ni : the number of CG iterations with relative residual equal to 10−8.

The errors ea and es are approximated using randomized power iteration [13,23] to 10−2 relative precision. The butterfly 
factorization is computed using the code from [27].

Example 1 (1D FIO with uniform amplitude). We begin with an example of a one-dimensional discrete FIO of the form

u(x) =
∫
R

a(x)e2π i�(x,ξ) f̂ (ξ)dξ (6.2)

with uniform amplitude a(x, ξ) = 1 and phase function �(x, ξ) given by

�(x, ξ) = x · ξ + c(x)|ξ |, c(x) = (2 + sin(2πx))/8. (6.3)

Discretizing x and ξ on [0, 1) and [−N/2, N/2) with N points,

xi = (i − 1)/N and ξ j = j − 1 − N/2, (6.4)

leads to the discrete system u = K f , with ui = u(xi), f j = f̂ (ξ j) and Kij = e2π i�(xi ,ξ j) .
The resulting FIO matrix K is well conditioned, although its eigenvalues are not clustered, instead they are scattered 

around a circumference, as depicted in Fig. 6. As a result any iterative method would require a large number of iterations 
to converge. Preconditioning with Ġ K̇ ∗ moves the eigenvalues to 1.

We compute the approximate inverse factorization with tolerance ε = 10−3 and ε = 10−6, leading to errors es of the 
order between 10−3 and 10−6 as reported in Table 3. The factorization Ġ K̇ ∗ is also a much more efficient preconditioner 
than the adjoint FIO matrix K̇ ∗ . For example, when ε = 10−6 is used, CG converges in just 2 iterations instead of 28, leading 
to a reduction in time by a factor of approximately 7.

Example 2 (1D FIO with variable amplitude). Here, we consider the 1D FIO from the previous example with variable periodic 
amplitude a(x, ξ) in x on the interval [0, 1], defined by a mixture of Gaussians of the form

nk∑
k=0

e
− (x−xk)2+(ξ−ξk)2

σ2 , (6.5)

where σ 2 is set to 0.1 or 0.05.
We report the results in Tables 4 and 5. We observe that when using a variable amplitude function, the adjoint FIO 

matrix K̇ ∗ is not an efficient preconditioner, since CG requires a very large number of iterations to converge, while the 
approximate inverse Ġ K̇ ∗ converges in just very few iterations, similar to Example 1. Additionally, the solve time with CG 
is 20 to 400 times lower depending on the tolerance ε and the amplitude function a(x, ξ) used. In particular, if σ 2 is set 
to 0.05 as in Table 5, K̇ ∗ becomes a very bad preconditioner, requiring the use of an approximate factorization of K −1. We 
observe that constructing the approximate inverse factorization takes O (N3/2) complexity, while its application can be done 
in quasi-linear time, as illustrated in Fig. 7.
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Fig. 6. On the left, the distribution of the eigenvalues of the FIO matrix K . On the right, the distribution of the eigenvalues of the preconditioned matrix 
Ġ K̇ ∗ K .

Table 3
Numerical results for 1D uniform amplitude FIO using the approximate inverse Ġ K̇ ∗ and the adjoint FIO matrix K̇ ∗ as preconditioners for CG with tolerance 
1e − 8. The condition number of each FIO matrix K is approximately 3.

N K̇ ≈ K Ġ K̇ ∗ ≈ K −1 K̇ ∗ ≈ K ∗

t K̇ (min) ea ε es ni tĠ (min) ts(s) ni ts(s)

1024 1.00e − 1 3.59e − 7
1e − 6 4.32e − 6 2 1.42e + 0 1.79e − 2

28 1.17e − 1
1e − 3 2.06e − 3 3 7.37e − 1 2.68e − 2

4096 8.38e − 1 4.77e − 7
1e − 6 8.71e − 6 2 1.47e + 1 1.15e − 1

28 7.97e − 1
1e − 3 2.08e − 3 3 7.99e + 0 1.63e − 1

16384 4.59e + 0 5.49e − 7
1e − 6 2.73e − 5 2 1.08e + 2 7.42e − 1

27 4.68e + 0
1e − 3 4.26e − 3 3 6.00e + 1 9.02e − 1

65536 2.59e + 1 7.87e − 7
1e − 6 9.56e − 5 2 6.97e + 2 3.92e + 0

28 2.72e + 1
1e − 3 4.07e − 3 3 3.78e + 2 4.83e + 0

262144 1.73e + 2 8.90e − 7
1e − 6 2.89e − 4 2 3.49e + 3 2.07e + 1

27 1.25e + 2
1e − 3 5.57e − 3 3 2.62e + 3 1.85e + 1

Table 4
Numerical results for 1D variable amplitude (with σ 2 = 0.1) FIO using the approximate inverse Ġ K̇ ∗ and the adjoint FIO matrix K̇ ∗ as preconditioners for 
CG with tolerance 1e − 8. The condition number of each FIO matrix K is approximately 20.

N K̇ ≈ K Ġ K̇ ∗ ≈ K −1 K̇ ∗ ≈ K ∗

t K̇ (min) ea ε es ni tĠ (min) ts(s) ni ts(s)

1024 1.20e − 1 3.66e − 7
1e − 5 6.13e − 5 2 1.15e + 0 1.90e − 2

173 6.81e − 1
1e − 3 3.79e − 2 3 7.48e − 1 2.71e − 2

4096 9.37e − 1 5.03e − 7
1e − 5 1.38e − 4 2 1.28e + 1 1.25e − 1

200 5.80e + 0
1e − 3 5.69e − 3 3 8.77e + 0 1.73e − 1

16384 5.09e + 0 6.69e − 7
1e − 5 3.48e − 4 2 8.99e + 1 7.38e − 1

205 3.62e + 1
1e − 3 8.52e − 3 3 6.32e + 1 9.42e − 1

65536 3.00e + 1 8.49e − 7
1e − 5 9.97e − 4 3 5.54e + 2 5.18e + 0

207 2.08e + 2
1e − 3 8.45e − 3 3 4.05e + 2 5.02e + 0

262144 2.32e + 2 8.58e − 7
1e − 5 3.92e − 3 3 2.82e + 3 3.05e + 1

207 1.10e + 3
1e − 3 1.45e − 2 4 1.91e + 3 3.61e + 1

Example 3. [2D generalized Radon transform] Finally, we consider the 2D analog of the numerical Example 1,

u(x) =
∑
ξ∈�

e2π i�(x,ξ) f̂ (ξ), x ∈ X (6.6)

with phase function �(x, ξ) defined as

�(x, ξ) = x · ξ +
√

c2
1(x)ξ2

1 + c2
2(x)ξ2

2 ,

c1(x) = (2 + sin(2πx1) sin(2πx2))/16,

c2(x) = (2 + cos(2πx1) cos(2πx2))/16,

(6.7)
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Table 5
Numerical results for 1D variable amplitude (with σ 2 = 0.05) FIO using the approximate inverse Ġ K̇ ∗ and the adjoint FIO matrix K̇ ∗ as preconditioners for 
CG with tolerance 1e − 8. The condition number of each FIO matrix K ranges between 2.5 × 102 and 3.5 × 102.

N K̇ ≈ K Ġ K̇ ∗ ≈ K −1 K̇ ∗ ≈ K ∗

t K̇ (min) ea ε es ni tĠ (min) ts(s) ni ts(s)

1024 1.34e − 1 3.33e − 7
1e − 4 3.11e − 3 3 1.18e + 0 3.06e − 2

1020 4.02e + 0
1e − 3 1.02e − 2 4 9.62e − 1 3.84e − 2

4096 9.38e − 1 4.10e − 7
1e − 4 5.57e − 3 3 1.10e + 1 1.88e − 1

2221 6.43e + 1
1e − 3 1.24e − 1 4 8.75e + 0 2.22e − 1

16384 5.08e + 0 7.08e − 7
1e − 4 1.37e − 2 4 7.74e + 1 1.20e + 0

2517 4.29e + 2
1e − 3 2.45e − 2 4 5.97e + 1 1.33e + 0

65536 2.94e + 1 7.51e − 7
1e − 4 1.87e − 2 4 4.58e + 2 6.15e + 0

2630 2.34e + 3
1e − 3 4.46e − 2 5 3.77e + 2 7.98e + 0

262144 2.17e + 2 7.29e − 7
1e − 4 6.36e − 2 5 2.21e + 3 3.38e + 1

2668 1.13e + 4
1e − 3 1.75e − 1 7 1.81e + 3 4.39e + 1

Fig. 7. Scaling results for 1D FIO from Example 2 with σ 2 = 0.1 and ε = 0.001. Timings are provided for each step of the algorithm to build the inverse 
factorization as well as the timings for matrix-vector multiplications with the resulting factorization. Reference O (N log N) and O (N3/2) lines are plotted, 
with dashed lines −− and − · −, respectively.

and

X =
{

x =
(n1

n
,

n2

n

)
,0 ≤ n1,n2 < n, with n1,n2 ∈Z

}
, (6.8)

� =
{
ξ = (n1,n2),−n

2
≤ n1,n2 <

n

2
, with n1,n2 ∈Z

}
, (6.9)

with n being the number of points in each dimension and N = n2. This leads again to the system u = K f with K =
(e2π i�(x,ξ))x∈X,ξ∈� , for which we are interested in the inversion of matrix K and the solution f = K −1u. This FIO models 
an integration over ellipses centered at a point x ∈ X with axis lengths defined by c1(x) and c2(x).

One can use the butterfly factorization to obtain a factorization K̇ of K with forward error ea between 10−4 and 10−5. 
As observed in Table 6, using tolerance ε = 10−3 for the peeling algorithm and the H-matrix inversion we can find an 
approximate inverse factorization that is ε-accurate. This factorization of the inverse can be used as direct solver or as a 
preconditioner for CG, which converges in just 3 iterations, as opposed to the 20 iterations needed when only K̇ ∗ is used. 
Notice also that the total timing of CG is 4 times lower. The timings for the different parts of the algorithm are illustrated 
in Fig. 8. We observe O (N3/2) time complexity for building the factorization and almost O (N) time for performing matrix–
vector multiplication. The algorithm proposed for H-matrix inversion experimentally shows quasi-linear complexity.

7. Conclusions

In this paper, we have introduced an algorithm to obtain a factorization of inverse discrete FIO matrices K ∈ CN×N in 
1D and 2D that can be computed in O (N3/2) time and space complexity. The algorithm combines the butterfly factorization 
with hierarchical matrices, to exploit the complimentary low-rank condition of discrete FIO matrices K and the numerical 
low-rank subblocks that appear in the corresponding hermitian matrix K ∗ K . With such factorization, the inverse matrix K −1

is represented as a product of O (log N) sparse matrices, and therefore it can be applied in quasi-linear time, O (N log N). 
This factorization can be used either as a direct solver or as a preconditioner for iterative methods depending on the 
accuracy required. When used as a preconditioner the factorization can reduce the number of iterations of iterative methods 
17
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Table 6
Numerical results for 2D FIO using the approximate inverse Ġ K̇ ∗ and the adjoint FIO matrix K̇ ∗ as preconditioners with tolerance 1e − 8. The FIO matrices 
K are well conditioned, with condition numbers ranging between 1 and 2.

N K̇ ≈ K Ġ K̇ ∗ ≈ K −1 K̇ ∗ ≈ K ∗

ea ε es ni ts ni ts

642 9.62e − 5 1e − 3 2.13e − 3 3 7.09e − 1 20 1.36e + 0
1282 9.72e − 5 1e − 3 2.64e − 3 3 4.25e + 0 21 1.56e + 1
2562 2.05e − 4 1e − 3 4.75e − 3 3 2.27e + 1 22 7.6e + 1
5122 2.27e − 4 1e − 3 9.46e − 3 4 1.87e + 2 22 6.5e + 2

Fig. 8. Scaling results for 2D FIO with ε = 0.001. Timings are provided for constructing BFF and H-matrix as well as for inverting the H-matrix and 
performing matrix-vector multiplications with the factorizations of Ġ and Ġ K̇ ∗ . Reference O (N log N) and O (N3/2) lines are plotted, with dashed lines −−
and − · − respectively.

such as CG or GMRES, which otherwise can take O (N) iterations to converge. We have also proposed a new algorithm to 
invert HODLR and H-matrix representations based on recursive skeletonization and HIF, that construct approximate inverse 
factorizations in quasi-linear time.

Notice that the three main steps of the algorithm (butterfly factorization, H-matrix construction and H-matrix inversion) 
can be easily parallelized. The butterfly factorization and H-matrix inversion algorithms are organized following a tree 
structure, where at each level every node can be processed independently of the rest, as done in [26]. Similarly, the H-
matrix construction for the 2D case can be easily parallelized at each level of the tree with 64 processors, one for each 
subset Pp,q in (3.16).

The algorithm proposed here could, in principle, be used on higher dimensions (d > 2) by partitioning the domain in 
d-dimensional hypercubes, as far as admissible blocks on K ∗ K can be considered low-rank, though some subtleties may 
inevitably arise.
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