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S U M M A R Y
We introduce a novel finite-difference (FD) approach for seismic wave extrapolation in time.
We derive the coefficients of the finite-difference operator from a lowrank approximation of
the space-wavenumber, wave-propagator matrix. Applying the technique of lowrank finite-
differences, we also improve the finite difference scheme of the two-way Fourier finite dif-
ferences (FFD). We call the new operator lowrank Fourier finite differences (LFFD). Both
the lowrank FD and lowrank FFD methods can be applied to enhance accuracy in seismic
imaging by reverse-time migration. Numerical examples confirm the validity of the proposed
technique.

Key words: Numerical solutions; Body waves; Seismic anisotropy; Computational seismol-
ogy; Wave propagation; Acoustic properties.

1 I N T RO D U C T I O N

Wave extrapolation in time is crucial in seismic modelling, imaging
(reverse-time migration) and full-waveform inversion. The most
popular and straightforward way to implement wave extrapolation in
time is the method of explicit finite differences (FDs), which is only
conditionally stable and suffers from numerical dispersion (Wu et al.
1996; Finkelstein & Kastner 2007). In practice, a second-order FD
for temporal derivatives and a high-order FD for spatial derivatives
are often employed to reduce dispersion and improve accuracy.
FD coefficients are conventionally determined using a Taylor-series
expansion around zero wavenumber (Dablain 1986; Kindelan et al.
1990). Therefore, traditional FD methods are accurate primarily for
long-wavelength components.

More advanced methods have been applied previously to FD
schemes in the case of one-way wave extrapolation (downward
continuation). Holberg (1987, 1988) designed the derivative opera-
tor by matching the spectral response in the wavenumber domain.
Soubaras (1996) adopted the Remez exchange algorithm to obtain
the L∞-norm-optimized coefficients for second-derivative filters.
Mousa et al. (2009) designed stable explicit depth extrapolators us-
ing projections onto convex sets (POCS). These approaches have ad-
vantages over conventional FD methods in their ability to propagate
shorter-wavelength seismic waves correctly. To satisfy the general
criterion for optimal accuracy (Geller & Takeuchi 1995), Geller &
Takeuchi (1998) derived an optimally accurate time-domain finite
difference method for computing synthetic seismograms for 1-D
problems extended later to 2-D and 3-D (Takeuchi & Geller 2000).
Liu & Sen (2009) proposed FD schemes for two-way scalar waves on
the basis of time-space dispersion relations and plane-wave theory.

Later on, they suggested adaptive variable-length spatial operators
in order to decrease computing costs significantly without reducing
accuracy (Liu & Sen 2011). The Liu-Sen scheme satisfies the exact
dispersion relation and has greater accuracy and better stability than
a conventional one. However, it still uses an expansion around the
zero wavenumber.

In sedimentary rocks, anisotropic phenomena are often observed
as a result of layering lithification, which is described as transversely
isotropic (TI). Tectonic movement of the crust may rotate the rocks
and tilt the natural vertical orientation of the symmetry axis (VTI),
causing a tilted TI (TTI) anisotropy. Wavefields in anisotropic media
are well described by the anisotropic elastic-wave equation. How-
ever, in practice, seismologists often have little information about
shear waves and prefer to deal with scalar wavefields. Conventional
P-wave modelling may contain shear wave numerical artefacts in the
simulated wavefield (Grechka et al. 2004; Duveneck et al. 2008;
Zhang et al. 2009). Those artefacts as well as sharp changes in
symmetry-axis tilting may introduce severe numerical dispersion
and instability in modelling. Yoon et al. (2010) proposed to re-
duce the instability by introducing elliptical anisotropy in regions
with rapid tilt changes. Fletcher et al. (2009) suggested to include
a finite S-wave velocity to enhance stability when solving cou-
pled equations. These methods can alleviate the instability problem;
however, they may alter the wave propagation kinematics or leave
residual S-wave components in the P-wave simulation. A number of
spectral methods are proposed to provide solutions which can com-
pletely avoid the shear wave artefacts (Etgen & Brandsberg-Dahl
2009; Chu & Stoffa 2011; Song & Fomel 2011; Fomel et al. 2012;
Fowler & Lapilli 2012; Cheng & Kang 2012; Zhan et al. 2012) at
the cost of several Fourier transforms per time step. These methods
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differ from conventional pseudo-spectral methods (Gazdag 1981;
Fornberg 2002), because they approximate the space-wavenumber
mixed-domain propagation matrix instead of a Laplacian operator.

Our goal is to design an FD scheme that matches the spectral
response in the mixed space-wavenumber domain for a wide range
of spatial wavenumbers. The scheme is derived from the lowrank
approximation of the mixed-domain operator (Fomel et al. 2010,
2012) and its representation by FD with adapted coefficients. We
derive this kind of FD schemes which we call lowrank FD or LFD for
both isotropic and TTI media. Using this approach, we only need to
compute the FD coefficients once and save them for the whole pro-
cess of wave extrapolation or reverse-time migration. The method
is flexible enough to control accuracy by the rank of approximation
and by FD order selection.

The paper is organized as follows. We first give a brief review of
the lowrank approximation method. As a spectral method, it pro-
vides an accurate wave extrapolation, but it is not optimally efficient.
Next, we present the derivation of LFD. LFD as an FD method can
reduce the cost and is also more adaptable for parallel computing
on distributed computer systems. We also propose lowrank Fourier
FD (LFFD), by replacing the original FD operator in the two-way
Fourier FD (FFD) (Song & Fomel 2011) with the corresponding
LFD. LFFD improves the accuracy of FFD, in particular in TTI
media. A number of synthetic examples of increasing complexity
validate the proposed methods. In this paper, we solve the acoustic
wave equation in constant-density media, aiming at incorporating
wave extrapolation with LFD and LFFD into seismic imaging by
reverse-time migration. It is possible to extend LFD and LFFD to
variable-density media by factoring the second-order k-space oper-
ator into first-order parts (Tabei et al. 2002; Song et al. 2012).

2 T H E O RY

2.1 Lowrank approximation

The following acoustic-wave equation is widely used in seismic
modelling and reverse-time migration (Etgen et al. 2009)

∂2 p

∂t2
= v(x)2 ∇2 p , (1)

where x = (x1, x2, x3), p(x, t) is the seismic pressure wavefield
and v(x) is the propagation velocity. Assuming a constant velocity,
v, after Fourier transform in space, we could obtain the following
explicit expression,

d2 p̂

dt2
= −v2|k|2 p̂ , (2)

where

p̂(k, t) =
∫ +∞

−∞
p(x, t)eik·xdx , (3)

and k = (k1, k2, k3).
Eq. (2) has an explicit solution:

p̂(k, t + �t) = e±i |k|v�t p̂(k, t) . (4)

A second-order time-marching scheme and the inverse Fourier
transform lead to the well-known expression (Etgen 1989; Soubaras
& Zhang 2008):

p(x, t+�t)+ p(x, t−�t)=2
∫ +∞

−∞
p̂(k, t) cos(|k|v�t)e−ik·xdk.

(5)

Eq. (5) provides an efficient solution in the case of a constant-
velocity medium with the aid of the fast Fourier transform (FFT).
When velocity varies in space, eq. (5) can provide an approxima-
tion by replacing v with v(x). In such a case, a mixed-domain term,
cos(|k|v(x)�t), appears in the expression. As a result, the compu-
tational cost of a straightforward application of eq. (5) is O(N 2

x ),
where Nx is the total size of the 3-D space grid.

Fomel et al. (2010, 2012) showed that the mixed-domain matrix,

W (x, k) = cos(|k|v�t), (6)

can be efficiently decomposed into a separate representation of the
following form:

W (x, k) ≈
M∑

m=1

N∑
n=1

W (x, km)amn W (xn, k), (7)

where W (x, km) is a submatrix of W (x, k) that consists of selected
columns associated with km, W (xn, k) is another submatrix that
contains selected rows associated with xn, and amn stands for the
middle matrix coefficients. The construction of the separated form
(7) follows the method of Engquist & Ying (2009). The main ob-
servation is that the columns of W (x, km) need to span the column
space of the original matrix and that the rows of W (xn, k) need to
span the row space as well as possible.

Representation (7) speeds up the computation of p(x, t + �t)
because

p(x, t + �t) + p(x, t − �t) = 2
∫

e−ixkW (x, k) p̂(k, t)dk

≈ 2
M∑

m=1

W (x, km)

(
N∑

n=1

amn

(∫
e−ixkW (xn, k) p̂(k, t)dk

))
. (8)

Evaluation of eq. (8) requires N inverse FFTs. Correspondingly, the
lowrank approximation reduces the cost to O(NNx log Nx), where
N is a small integer, which is related to the rank of the above
decomposition and can be automatically calculated at some given
error level with a pre-determined �t. Increasing the time step size
�t may increase the rank of the approximation (M and N) and
correspondingly the number of the required Fourier transforms.

As a spectral method, the lowrank approximation is highly accu-
rate. However, its cost is several FFTs per time step. Our goal is to
reduce the cost further by deriving an FD scheme that matches the
spectral response of the output from the lowrank decomposition.

2.2 Lowrank finite differences

In a matrix notation, the lowrank decomposition problem takes the
following form:

W ≈ W1 · A · W2, (9)

where W is the Nx × Nx matrix with entries W (x, k), W1 is the
submatrix of W that consists of the columns associated with {km},
W2 is the submatrix that consists of the rows associated with {xn},
and A = {amn}.

Note that W2 is a matrix related only to wavenumber k. We
propose to further decompose it as follows:

W2 ≈ C · B, (10)

where we determine B to be an L × Nx matrix, and the entry, B(ξ, k),
has the form of cos(

∑3
j=1 ξ j k j�x j ), in which ξ is a 3-D integer

vector, ξ = (ξ 1, ξ 2, ξ 3), kj is the jth component of wavenumber k,
�xj is the space grid size in the jth direction, j = 1, 2, 3, and C is the
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matrix product of W2 and the pseudo-inverse of B. In practice, we
apply a weighted-inversion to achieve the pseudo-inverse: putting a
larger weight on the low-wavenumber part and a smaller weight on
the high-wavenumber part to enhance the stability. Now we have a
new decomposition for the mixed-domain matrix:

W ≈ G · B, (11)

where G is an Nx × L matrix,

G = W1 · A · C, (12)

and

p(x, t + �t) + p(x, t − �t) = 2
∫

e−ixkW (x, k) p̂(k, t)dk

≈ 2
L∑

m=1

G(x, m)

(∫
e−ixk B(ξm, k) p̂(k, t)dk

)

≈
L∑

m=1

G(x, m)

⎛
⎝∫

e−ixk2 cos

⎛
⎝ 3∑

j=1

ξ j
mk j�x j

⎞
⎠ p̂(k, t)dk

⎞
⎠

≈
L∑

m=1

G(x, m)

⎡
⎣∫

e−ix·k(e
i

3∑
j=1

ξ
j

m k j �x j +e
−i

3∑
j=1

ξ
j

m k j �x j

) p̂(k, t)dk

⎤
⎦ .

(13)

According to the shift property of FFTs, we finally obtain an ex-
pression in the space-domain

p(x, t+�t)+ p(x, t−�t)=
L∑

m=1

G(x, m)[p(xL , t)+ p(xR, t)],

(14)

where xL = (x1 − ξ 1
m�x1, x2 − ξ 2

m�x2, x3 − ξ 3
m�x3), and xR =

(x1 + ξ 1
m�x1, x2 + ξ 2

m�x2, x3 + ξ 3
m�x3).

Eq. (14) indicates a procedure of finite differences for wave ex-
trapolation: the integer vector, ξm = (ξ 1

m, ξ 2
m, ξ 3

m) provides the sten-
cil information, and G(x, m) stores the corresponding coefficients.
We call this method lowrank finite differences (LFD) because the
finite-difference coefficients are derived from a lowrank approxima-
tion of the mixed-domain propagator matrix. We expect the derived
LFD scheme to accurately propagate seismic-wave components
within a wide range of wavenumbers, which has advantages over
conventional finite differences that focus mainly on small wavenum-
bers. In comparison with the Fourier-domain approach, the cost is
reduced to O(L Nx), where L, as the row size of matrix B, is related
to the order of the scheme. L can be used to characterize the number
of FD coefficients in the LFD scheme, shown in eq. (14). Take the
1-D 10th order LFD as an example, there are one center point, five
left points (xL ) and five right ones (xR). So ξ 1

m = 0, 1, 2, 3, 4, 5 and
ξm = (ξ 1

m, 0, 0). Thanks to the symmetry of the scheme, coefficients
of xL and xR are the same, as indicated by eq. (14). As a result, one
only needs six coefficients: L = 6.

We use a 1-D example shown in Fig. 1 to demonstrate the accu-
racy of the proposed LFD method. The velocity linearly increases
from 1000 to 2275 m s−1. The rank is 3 (M = N = 3) for lowrank
decomposition for this model with 1 ms time step. The propagator
matrix is shown in Fig. 1(a). Figs 1(b)–(d) display the errors corre-
sponding to different approximations. The error by the 10th-order
LFD (Fig. 1c) appears significantly smaller than that of the 10th-
order finite difference (Fig. 1d). Fig. 2 displays the middle column

of the error matrix. Note that the error of the LFD is significantly
closer to zero than that of the FD method.

To analyse the accuracy, we let

p(x, t) = ei(k·x−ωt), (15)

by using the plane wave theory. Inserting (15) into eq. (14) and also
adopting the dispersion relation ω = |k| v, defines the phase velocity
of LFD (vLFD) as follows:

vLFD = 1

|k|�t
arccos

(
L∑

m=1

G (x, m)
(
cos

(
ξ 1

m k1�x1

)

+ cos
(
ξ 2

m k2�x2

) + cos
(
ξ 3

m k3�x3

)))
. (16)

For 1-D 10th order LFD, L = 6, ξm = (ξ 1
m, 0, 0) and ξ 1

m =
0, 1, 2, 3, 4, 5. With eq. (16), we can calculate phase-velocities
(vLFD) by 1-D 10th order LFD with different velocities (v = 2500,
3000, 3500, 4000), and we use the ratio δ = vLFD/v to describe the
dispersion of FD methods. Fig. 3(a) displays 1-D dispersion curves
by 1-D 10th order LFD, and Fig. 3(b) shows those by conventional
FD method. Note that compared with the conventional FD method,
LFD is accurate in a wider range of wavenumbers (up to 70 per cent
of the Nyquist frequency).

2.3 TTI Lowrank Finite Differences

The LFD approach is not limited to the isotropic case. In the case
of TTI media, the term v(x) |k| on the right-hand side of eq. (6),
can be replaced with the acoustic approximation (Alkhalifah 1998,
2000; Fomel 2004),

f (v, k̂, η) =√√√√1

2

(
v2

1 k̂2
1 + v2

2 k̂2
2

)
+ 1

2

√(
v2

1 k̂2
1 + v2

2 k̂2
2

)2
− 8η

1 + 2η
v2

1v
2
2 k̂2

1 k̂2
2,

(17)

where v1 is the P-wave phase velocity in the symmetry plane, v2 is
the P-wave phase velocity in the direction normal to the symmetry
plane, η is the anisotropic elastic parameter (Alkhalifah & Tsvankin
1995) related to Thomsen’s elastic parameters ε and δ (Thomsen
1986) by

1 + 2δ

1 + 2ε
= 1

1 + 2η
; (18)

and k̂1 and k̂2 stand for the wavenumbers evaluated in a rotated
coordinate system aligned with the symmetry axis:

k̂1 = k1 cos θ + k2 sin θ

k̂2 = −k1 sin θ + k2 cos θ, (19)

where θ is the tilt angle measured with respect to vertical.
Using these definitions, we develop a version of the LFD scheme

for 2-D TTI media.

2.4 Lowrank Fourier Finite Differences

Song & Fomel (2011) proposed FFD approach to solve the two-way
wave equation. The FFD operator is a chain operator that combines
FFT and FD, analogous to the concept introduced previously for
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Figure 1. (a) Wavefield extrapolation matrix for 1-D linearly increasing velocity model. Error of wavefield extrapolation matrix by: (b) lowrank approximation,
(c) the 10th-order lowrank FD, (d) the 10th-order FD.

Figure 2. Middle column of the error matrix. Solid line: the 10th-order
LFD. Dash line: the 10th-order FD.

one-way wave extrapolation by Ristow & Ruhl (1994). The FFD
method adopts the pseudo-analytical solution of the acoustic wave
equation, shown in eq. (5). It first extrapolates the current wavefield
with some constant reference velocity and then applies FD to correct
the wavefield according to local model parameter variations. In the
TTI case, the FD scheme in FFD is typically a 4th-order operator,
derived from Taylor’s expansion around k = 0. However, it may
exhibit some dispersion caused by the inaccuracy of the FD part.
We propose to replace the original FD operator with lowrank FD to
increase the accuracy of FFD in isotropic and anisotropic media. We
call the new operator lowrank Fourier Finite Differences (LFFD).

3 N U M E R I C A L E X A M P L E S

Our first example is wave extrapolation in a 2-D, smoothly variable
velocity model. The velocity ranges between 500 and 1300 m s−1,
and is formulated as

v(x, z) = 500 + 1.2 × 10−4(x − 800)2 + 10−4(z − 500)2; (20)

0 ≤ x ≤ 2560, 0 ≤ z ≤ 2560. A Ricker-wavelet source with a
20 Hz dominant frequency (fd) is located at the center of the

 at Stanford U
niversity on A

ugust 18, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
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Figure 3. Plot of 1-D dispersion curves for different velocities, v = 2500 (red), 3000 (pink), 3500 (green), 4000 (blue) m s−1, �t = 1 ms, �x = 10 m by: (a)
the 10th-order LFD, (b) the 10th-order conventional FD.

Figure 4. Wavefield snapshot in a variable velocity field by: (a) conventional 4th-order FD method, (b) Lowrank method.

model. The maximum frequency (fmax) is around 60 Hz. The am-
plitude corresponding to fmax is about 10−5 of that of fd. For
numerical simulations based on this model, we use the same
grid size: �x = 5 m and �t = 2 ms. We use α = vmax �t/�x
to specify the stability condition and β = vmin/(fmax�x) as the
dispersion factor, where vmax and vmin are the maximum and
minimum velocities of the model. The dispersion factor β in-
dicates the number of sampling points for the minimum wave-
length. For simulations with the above parameters, α ≈ 0.52 and
β ≈ 1.67.

It is easy to observe obvious numerical dispersions on the
snapshot computed by the 4th-order FD method (Fig. 4a). The
lowrank FD method with the same order exhibits higher accuracy
and fewer dispersion artefacts (Fig. 5a). The approximation rank

decomposition in this case is N = 3 M = 4, with the expected error
of less than 10−4. Fig. 5(b) displays the snapshot by the 10th-order
LFD method with a larger time step: �t = 2.5 ms, α ≈ 0.65. Note
that the result is still accurate. However, the regular FD method
becomes unstable in this case. For comparison, Fig. 4(b) displays
the snapshot by the lowrank method with the same time step. The
approximation rank decomposition in this case is N = M = 3, with
the expected error of less than 10−4. Thanks to the spectral nature
of the algorithm, the result appears accurate and free of dispersion
artefacts.

Next, we test the lowrank FD method in a complex velocity
model. Fig. 6 shows a part of the BP velocity model (Billette &
Brandsberg-Dahl 2004), which is a complicated model containing a
salt body and sharp velocity contrasts on the flanks of the salt body.
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Figure 5. Wavefield snapshot in a variable velocity field by: (a) the 4th-order lowrank FD method, (b) the 10th-order lowrank FD method. Note that the time
step is 2.5 ms and the LFD result is still accurate. However, the FD method is unstable in this case.

Figure 6. Portion of BP 2004 synthetic velocity model.

We use a Ricker-wavelet at a point source. The dominant frequency
is 17 Hz ( fmax ≈ 54). The horizontal grid size �x is 12.5 m, the
vertical grid size �z is 12.5 m, and the time step is 1.5 ms. Thus
α ≈ 0.57 and β ≈ 2.2. The approximation rank decomposition in
this case is N = 4 M = 5, with the expected error of less than 10−4.
In this case, we adopt a disk-shaped compact scheme (8th-order)
for LFD with a four-point radius (|ξ | ≤ 4, L = 25). Fig. 7 displays
a wavefield snapshot in the above velocity model. The snapshot
is almost free of dispersions. This experiment confirms that the
lowrank FD method is able to handle sharp velocity variations.

Our next example is wave propagation in a TTI model with a tilt of
45◦ and smooth velocity variation (vx: 800–1225.41 m s−1, vz : 700–
883.6 m s−1). Fig. 8(a) shows wavefield snapshots at different time
steps by a 16th-order LFD operator in the TTI model. The space grid
size is 5 m and the time step size is 2 ms. So α ≈ 0.49 and β ≈ 2.3.
The approximation rank decomposition in this case is N = 6 M = 6,
with the expected error of less than 10−4. For TTI model, we adopt
a high-order (16th order) LFD operator to reduce dispersions. The
scheme is compact and shaped as a disk with a radius of eight points
(L = 99).
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Figure 7. Wavefield snapshot by the 8th-order lowrank FD (compact
scheme) in the BP Model shown in Fig. 6.

Song & Fomel (2011) showed an application of FFD method
for TTI media. However, the example wavefield snapshot by FFD
method still had some dispersion caused by the fact that the FD
scheme in the FFD operator is derived from Taylor’s expansion
around zero wavenumber. It was apparent that 4th-order FD scheme
is not accurate enough for TTI case and requires denser sam-
pling per wavelength (β ≈ 4.6). We first apply lowrank approx-
imation to the mixed-domain velocity correction term in FFD.
The rank is N = 9 M = 9, with the expected error of less than
10−6. Then we propose to replace that 4th-order FD operator with
an 8th-order LFD compact scheme. The scheme has the shape

of a disk with a radius of 4 points (L = 25), the same as the
one for LFD in the above BP model. Fig. 8(b) shows wavefield
snapshots by the proposed LFFD operator. The time step size is
1.5 ms (α ≈ 0.37). Note that the wavefront is clean and almost free
of dispersion with β ≈ 2.3. Because we use the exact dispersion
relation, eq. (17) for TTI computation, there is no coupling of
q-SV wave and q-P wave (Grechka et al. 2004; Duveneck et al.
2008; Zhang et al. 2009) in our snapshots by either LFD or LFFD
methods.

Next we test the LFD and LFFD methods in a complex TTI
model. Figs 9(a)–(d) shows parameters for part of the BP 2D TTI
model (Shah 2007). The dominant frequency is 15 Hz (fmax ≈ 50).
The space grid size is 12.5 m and the time step is 1 ms. Thus
α ≈ 0.42 and β ≈ 2.4. The approximation rank decomposition for
LFD method is N = 22, M = 22, with the expected error of
less than 10−6. For FFD, N = 24 M = 30, with the expected
error of less than 10−6. Both methods are able to simulate an
accurate qP-wave field in this model as shown in Figs 10(a)
and (b).

It is difficult to provide analytical stability analysis for LFD and
LFFD operators. In our experience, the values of α are around 0.5
for 2-D LFD and LFD methods appear to allow for a larger time step
size than that of the LFFD method. In TTI case, the conventional FD
method for acoustic TTI has known issues of instability caused by
shear wave numerical artefacts or sharp changes in the symmetry-
axis tilting (Grechka et al. 2004; Duveneck et al. 2008; Zhang et al.
2009). Conventional methods may place limits on anisotropic pa-
rameters, smooth parameter models or include a finite shear wave
velocity to alleviate the instability problem(Zhang & Zhang 2008;
Fletcher et al. 2009; Yoon et al. 2010). Both LFD and LFFD meth-
ods are free of shear wave artefacts. They require no particular

Figure 8. Wavefield snapshots in a TTI medium with a tilt of 45◦ by: (a) Lowrank FD method; (b) Lowrank FFD method.vx(x, z) = 800 + 10−4(x − 1000)2 +
10−4(z − 1200)2; vz (x, z) = 700 + 10−4(z − 1200)2; η = 0.3; θ = 45◦.
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Figure 9. Partial region of the 2D BP TTI model. a: vz . b: vx. c: η. d:θ .

bounds for anisotropic parameters and can also handle sharp tilt
changes.

4 C O N C LU S I O N S

Explicit finite difference (FD) methods are the most popular and
straightforward methods for seismic modelling and seismic imag-
ing, particularly for reverse-time migration. Traditionally the coef-
ficients of FD schemes are derived from a Taylor series expansion
around the zero wavenumber. We present a novel FD scheme: LFD,
which is based on the lowrank approximation of the mixed-domain
space-wavenumber propagator. LFD uses compact FD schemes,

which are more suitable for parallelization on multi-core computers
than spectral methods that require FFT operations. This technique
promises higher accuracy and better stability than those of the con-
ventional, explicit FD method. We also propose to replace the 4th-
order FD operator based on Taylor’s expansion in Fourier Finite
Differences (FFD) with an 8th-order LFD operator to reduce dis-
persion, particularly in the TTI case. Results from synthetic experi-
ments illustrate the stability of the proposed methods in complicated
velocity models. In TTI media, there is no coupling of qP-waves and
qSv-waves by either method. Both methods can be incorporated in
seismic imaging by reverse-time migration to enhance its accuracy
and stability.
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Figure 10. Scalar wavefield snapshots by LFD and LFFD methods in the 2-D BP TTI model.
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