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AN EFFICIENT DYNAMICAL LOW-RANK ALGORITHM FOR THE
BOLTZMANN-BGK EQUATION CLOSE TO THE COMPRESSIBLE

VISCOUS FLOW REGIME∗
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Abstract. It has recently been demonstrated that dynamical low-rank algorithms can pro-
vide robust and efficient approximations to a range of kinetic equations. This is true especially if
the solution is close to some asymptotic limit where it is known that the solution is low-rank. A
particularly interesting case is the fluid dynamic limit that is commonly obtained in the limit of
small Knudsen number. However, in this case the Maxwellian which describes the corresponding
equilibrium distribution is not necessarily low-rank; because of this, the methods known in the lit-
erature are only applicable to the weakly compressible case. In this paper, we propose an efficient
dynamical low-rank integrator that can capture the fluid limit—the Navier–Stokes equations—of the
Boltzmann-Bhatnagar–Gross–Krook (Boltzmann-BGK) model even in the compressible regime. This
is accomplished by writing the solution as f = Mg, where M is the Maxwellian and the low-rank
approximation is only applied to g. To efficiently implement this decomposition within a low-rank
framework requires, in the isothermal case, that certain coefficients are evaluated using convolutions,
for which fast algorithms are known. Using the proposed decomposition also has the advantage that
the rank required to obtain accurate results is significantly reduced compared to the previous state
of the art. We demonstrate this by performing a number of numerical experiments and also show
that our method is able to capture sharp gradients/shock waves.
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Stokes equations, Chapman–Enskog expansion, convolution, Fourier spectral methods
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1. Introduction. The Navier–Stokes (NS) equations are widely used in many
scientific and engineering disciplines and its fundamental importance cannot be un-
derestimated. Nevertheless, it is increasingly realized that the NS equations may not
provide an accurate description when the underlying system is not dense enough to
be in thermodynamic equilibrium (i.e., when there is a significant deviation from the
Maxwellian distribution). This is especially true when the mean free path is compara-
ble to the characteristic length, a situation that occurs, e.g., in the atmosphere at high
altitudes or in microdevices. To accurately describe such rarefied or transitional flows,
the kinetic Boltzmann equation should be used [6]. However, this comes at the price
of solving a six-dimensional equation in phase space. Although significant progress
has been made in the past decades to solve Boltzmann type kinetic equations more
accurately and efficiently (see for instance [9]), the high-dimensional nature of such
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equations still poses a challenging problem in scientific computing. It is therefore the
goal of this paper to introduce an efficient method for the kinetic Bhatnagar, Gross,
and Krook (BGK) equation in a wide range of flow regimes whose computational cost
is comparable to solving the macroscopic fluid equations.

The BGK equation, initially proposed by Bhatnagar, Gross, and Krook [5], is
one of the widely used kinetic models as it is much simpler than the full Boltzmann
equation yet possesses most of its key properties. In dimensionless form, the equation
reads

(1.1) ∂tf + v · ∇xf =
ν

ε
(M − f), t > 0, x ∈ Ω ⊂ Rdx , v ∈ Rdv ,

where f = f(t, x, v) is the one-particle probability density function depending on time
t, position x, and velocity v. The so-called Maxwellian M is defined as

(1.2) M(t, x, v) =
ρ(t, x)

(2πT (t, x))dv/2
exp

(
−|v − u(t, x)|2

2T (t, x)

)
with the density ρ, bulk velocity u, and temperature T given by the moments of f :

(1.3) ρ =

∫
Rdv

f dv, u =
1

ρ

∫
Rdv

vf dv, T =
1

dvρ

∫
Rdv

|v − u|2f dv.

The viscosity ν is a function of ρ and T ; typically, one assumes ν = ρT 1−ω with
0.5 ≤ ω ≤ 1. Finally, ε is the Knudsen number, defined as the ratio of the mean
free path and the chosen characteristic length scale. The value of ε indicates the
flow regime [37] (see section 2 for more details): (1) ε → 0, the Euler regime (the
flow is well described by the compressible Euler equations; (2) 0 < ε ≲ 0.01, the
NS regime (the flow is well described by the compressible NS equations); and (3)
0.01 ≲ ε ≲ 1, the transition regime (the NS equations fail, and one has to resort to
extended macroscopic models or the original kinetic equation (1.1)).

In practical applications we often have dx = dv = 3, hence the computational cost
of solving (1.1) would be at least O(N6), where N is the number of mesh points in
each dimension of the physical and velocity space. To reduce this cost, we are going
to adopt the basic framework of so-called dynamical low-rank projection, which has a
long history in quantum dynamics; see, for example, [33, 32] for the multiconfiguration
time-dependent (MCTDH) Hartree approach to molecular quantum dynamics in the
chemical physics literature and [27, 28, 7] for a mathematical point of view. In a
general mathematical setting, the dynamical low-rank approximation has been studied
in [21, 22, 30, 2]. A major algorithmic advance for the time integration was achieved
with the projector-splitting method first proposed in [29]. In contrast to standard
time-stepping methods, the projector-splitting method is robust to the presence of
small singular values in the low-rank approximation [20]. Recently, this method has
been applied to several kinetic equations including the Vlasov equation [13, 14, 15],
the BGK equation (in the weakly compressible regime) [11], and radiative transport
equations [35, 10, 12].

Though the details vary for each of the aforementioned equations, the common
idea is to seek a low-rank approximation of the unknown function f as

(1.4) f(t, x, v) ≈
r∑

i,j=1

Xi(t, x)Sij(t)Vj(t, v),
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where r is the rank, {Xi} and {Vj} are the orthonormal bases in the physical space
and velocity space, respectively. The dynamics of Xi, Sij , and Vj are determined
by projecting the equation onto the tangent space of the low-rank solution manifold.
Upon a further operator splitting, the original six-dimensional problem can be reduced
to a few three-dimensional problems. It is also clear that the efficiency of this low-rank
method depends on the intrinsic rank of the underlying problem. If the solution f
has no low-rank structure, a large value of r would be needed in (1.4) and hence the
gain of the method would be marginal. For a number of linear and weakly nonlinear
problems it is known that the solution is low-rank in some asymptotic limit. This
is the case, for instance, in the radiative transfer/linear transport equations wherein
one obtains a rank-1 solution in the diffusion limit. The asymptotic-preserving (AP)
dynamical low-rank methods that can capture this behavior have been considered in
[10, 12]. A similar approach was undertaken in [11] for the BGK equation, where the
method is limited to the weakly compressible flows since the Maxwellian (1.2) is not
necessarily low-rank.

In this work we introduce a robust dynamical low-rank integrator for the BGK
equation (1.1) that is able to capture the fluid limit—the NS equations—in the com-
pressible (isothermal) case. We do this by writing the solution as f = Mg, where only
g is subjected to a low-rank approximation. Note that this is a drastically different de-
composition compared to (1.4) due to the nonlinearity of M . To efficiently implement
this decomposition within the low-rank framework requires the evaluation of certain
integrals involving the Maxwellian. If this is done naively the numerical method would
suffer from excessive computational cost that scales as O(N6). We demonstrate that,
in the isothermal case, this difficulty can be overcome by interpreting the correspond-
ing integrals as convolutions and using an FFT based fast convolution algorithm.

The proposed approach has several advantages. First, from the Chapman–Enskog
expansion [3] we can guarantee that g is low-rank for small values of ε (in both the
Euler and NS regimes) for compressible problems. Second, for weakly compressible
problems, the rank r needed to obtain an accurate approximation is much smaller
than that in [11] (because we only assume that g = f/M is low-rank and do not
need to perform the expansion of M in small velocities as was done in [11]). Third,
the fluid moments, such as density ρ and momentum ρu, are integrated as part of
the numerical scheme. Thus, using an appropriate discretization, as will be done
here, conservation of mass and momentum is ensured. The algorithm is also able to
handle problems with sharp gradients/shock waves. In addition, since the proposed
low-rank algorithm automatically takes care of regions close to the fluid regime (the
scheme becomes a consistent discretization to the NS equations when ε is small), it
can be used to perform simulations in a wide range of flow regimes without the need
to explicitly couple a kinetic solver with a fluid one (which is potentially complicated
in a hybrid approach; see, e.g., [17, 8]). In that context the present scheme would
be used in a similar way as the Hermite expansion in [38], with the added advantage
that the computational cost of the kinetic solver is reduced dramatically.

The rest of this paper is organized as follows. In section 2 we describe the fluid
dynamic limits of the BGK equation. We then motivate the low-rank approximation
used (section 3) and derive the corresponding numerical algorithm in a semidiscrete
setting (section 4). The full discretization is discussed in section 5. A formal analysis
is performed in section 6 to show that our numerical scheme can indeed capture the
NS limit when ε is small. Finally we present the results of a range of numerical
experiments in section 7.
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2. Fluid limits of the BGK equation. In this section, we derive the fluid
dynamic limits of the BGK equation (1.1) using the Chapman–Enskog expansion [3].
We will see that the compressible Euler equations can be obtained when ε → 0, while
the compressible NS equations can be obtained when retaining O(ε) information.
Although the procedure is quite standard in the kinetic literature, we have decided
to include it here because our following low-rank approximation is strongly motivated
by this analysis.

When ε is small, from (1.1), formally one has

(2.1) f = M +O(ε).

Hence it makes sense to assume that

(2.2) f = M + εf1,

where f1 is an O(1) function. We then substitute (2.2) into (1.1) to obtain

(2.3) f1 = −1

ν
(∂tf + v · ∇xf) = −1

ν
(∂tM + v · ∇xM) +O(ε).

On the other hand, taking the first dv+2 moments of (1.1), i.e., multiplying (1.1)
by ϕ(v) := (1, v, |v|2/2)T and integrating in v, yields

(2.4) ∂t⟨fϕ⟩v +∇x · ⟨vϕf⟩v = 0, ⟨ · ⟩v :=

∫
Rdv

· dv.

By substituting (2.2) into (2.4) we obtain

(2.5) ∂t⟨fϕ⟩v +∇x · ⟨vϕM⟩v = −ε∇x · ⟨vϕf1⟩v.

Using the macroscopic quantities defined in (1.3) and

(2.6) P1 := −
∫
Rdv

(v − u)⊗ (v − u)f1 dv, q1 := −1

2

∫
Rdv

(v − u)|v − u|2f1 dv,

we can write (2.5) as
∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ pId) = ε∇x · P1,

∂tE +∇x · ((E + p)u) = ε∇x · (P1u+ q1),

(2.7)

where p = ρT is the pressure, Id is the identity matrix, and E = dv

2 ρT + 1
2ρu

2 is
the total energy. Neglecting the O(ε) terms, (2.7) become the compressible Euler
equations.

To further derive the right-hand side of (2.7), we first note that for the Maxwellian
function defined in (1.2) one has

1

M
(∂tM + v · ∇xM) =

1

ρ
(∂tρ+ v · ∇xρ) +

(v − u)

T
· (∂tu+ v · ∇xu)

+

(
|v − u|2

2T 2
− dv

2T

)
(∂tT + v · ∇xT ).

(2.8)
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Since we already knew that ρ, u, and T satisfy the compressible Euler equations to
leading order, we can use the spatial derivatives of these functions to replace the time
derivatives. This yields

1

M
(∂tM + v · ∇xM) =

(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T

+

(
(v − u)⊗ (v − u)

T
− |v − u|2

dvT
Id

)
: ∇xu+O(ε),

(2.9)

where

(2.10) σ(u) := ∇xu+ (∇xu)
T − 2

dv
(∇x · u) Id.

Note that ∇xu is a matrix with the ijth component given by ∂xj
ui and the operation

: between two matrices is defined as A : B =
∑

ij aijbij .
Plugging (2.9) into (2.3) gives

f1 = −M

ν

[(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T

+

(
(v − u)⊗ (v − u)

T
− |v − u|2

dvT
Id

)
: ∇xu

]
+O(ε).

(2.11)

One can verify by direct integration that

P1 =
1

ν
ρTσ(u) +O(ε) = Tωσ(u) +O(ε),

q1 =
1

ν

dv + 2

2
ρT∇xT +O(ε) =

dv + 2

2
Tω∇xT +O(ε).

(2.12)

Substituting the above P1 and q1 into (2.7), we finally obtain
∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ pId) = ε∇x · (µσ(u)) +O(ε2),

∂tE +∇x · ((E + p)u) = ε∇x

· (µσ(u)u+ κ∇xT ) +O(ε2),

(2.13)

where µ := Tω and κ := dv+2
2 µ are, respectively, the coefficients of viscosity and heat

conductivity. Ignoring O(ε2) terms, (2.13) are the compressible NS equations.

Remark 2.1. It is well known that the BGK model (1.1) cannot produce the
correct Prandtl number (Pr := dv+2

2
µ
κ ≡ 1 in the BGK model while for most gases

Pr < 1). To correct this defect, various models have been proposed such as the
ellipsoidal-statistical BGK model [1] or the Shakhov model [36]. Since our main focus
in this paper is isothermal flow, this defect is irrelevant.

3. The low-rank approximation. From the previous section we can see that
when ε is small, f can be expanded as (see (2.2) and (2.11))

f = M − ε
M

ν

[(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T

+

(
(v − u)⊗ (v − u)

T
− |v − u|2

dvT
Id

)
: ∇xu

]
+O(ε2).

(3.1)
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Note that the Maxwellian M is a normal distribution with (time and spatially depen-
dent) mean u(t, x) and variance T (t, x), so M is generally not a low-rank or separable
function in x and v. Because of this, we do not directly use the low-rank approxima-
tion (1.4) for f . Instead, we consider

(3.2) f = Mg,

then

g = 1− ε
1

ν

[(
|v − u|2

2T
− dv + 2

2

)
(v − u) · ∇xT

T

+

(
(v − u)⊗ (v − u)

T
− |v − u|2

dvT
Id

)
: ∇xu

]
+O(ε2),

(3.3)

which is a low-rank function in x and v even at O(ε). This can be most easily seen
by recognizing that the O(ε) term can be written as a sum of products of functions
that depend only on x (such as u, 1/T , and ∇xu) and functions that only depend on
v (such as v, v2, and v ⊗ v).

This motivates us to seek an expansion of g in the following form:

(3.4) g =

r∑
i,j=1

Xi(t, x)Sij(t)Vj(t, v),

where {Xi} and {Vj} are the orthonormal bases in x and v, respectively. Before
proceeding, let us note that a multiplicative deviation from equilibrium to improve
compression has been used in the context of sparse grids and the Vlasov equation [24],
albeit in the somewhat simpler setting where u = 0.

To track the evolution of M , one can consider the moment equation (2.4) which
we rewrite using a slightly different notation:

(3.5) ∂tU +∇x · ⟨vϕMg⟩v = 0,

where U := (ρ, ρu,E)T and ϕ(v) := (1, v, |v|2/2)T .
To track the dynamics of Xi, Sij , and Vj , we proceed as follows. Substituting

f = Mg into (1.1) yields

(3.6) ∂tg = −v · ∇xg −
1

M
(∂tM + v · ∇xM)g +

ν

ε
(1− g) := h.

We now apply the projector-splitting based dynamical low-rank algorithm [29] to
(3.6). That is, constraining g to lie on the low-rank manifold,

(3.7) ∂tg =
∑
j

⟨Vj , h⟩vVj −
∑
i,j

Xi⟨XiVj , h⟩x,vVj +
∑
i

Xi⟨Xi, h⟩x

and then performing the operator splitting yields the following numerical algorithm:
– Let Kj =

∑
i XiSij , then g =

∑
j KjVj . Update Kj by solving

(3.8) ∂tKj = ⟨Vj , h⟩v,

then perform an orthonormalization of Kj to generate new Xi and Sij (using a QR
decomposition).
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– Update Sij by solving

(3.9) ∂tSij = −⟨XiVj , h⟩x,v.

– Let Li =
∑

j SijVj , then g =
∑

i XiLi. Update Li by solving

(3.10) ∂tLi = ⟨Xi, h⟩x,

then perform an orthonormalization on Li to generate new Sij and Vj (using a QR
decomposition).

For the derivation of the above algorithm we refer the readers to [13] and the
references contained therein. The algorithm described is robust in the sense that over
approximation, i.e., small singular values in S, do not cause any numerical issues.
Furthermore, the order of the subflows (3.8)–(3.10) can be chosen freely. Any order
results in a numerical method that is first order accurate (in time). For higher order
methods this can be exploited to lower the overall computational cost (see, e.g., [13]).

4. The dynamical low-rank algorithm. In this section we present the pro-
posed algorithm in detail. This includes the low-rank integrator for g as well as the
necessary numerical scheme to advance the moments in time. The present section
describes a semidiscrete version where time is discretized but space is left continuous.
We will consider possible spatial discretizations in more detail in section 5.

From this point onward, we will assume that the temperature is constant in order
to simplify the presentation. Without loss of generality we can then choose T ≡ 1.
Assuming that the ideal gas law holds true, this simply means that we measure the
velocity u in fractions of the speed of sound. The rationale for this assumption lies
in the fact that isothermal flows represent an interesting nontrivial compressible case
that we propose to efficiently treat using fast convolution algorithms. We will discuss
the nonconstant temperature case in more detail in Remark 4.3 given at the end of
this section.

First, if T = 1 in (1.1), we have ν = ρ and the Maxwellian becomes

(4.1) M =
ρ

(2π)dv/2
exp

(
−|v − u|2

2

)
.

The equations of motion for the moments (3.5) can then be written as

∂tρ = −∇x ·

∑
i,j

XiSij⟨vVjM⟩v

 := I1,(4.2)

∂t(ρu) = −∇x ·

∑
i,j

XiSij⟨v ⊗ vVjM⟩v

 := I2(4.3)

from which we can easily derive the following expression

(4.4) ∂tu =
1

ρ
(I2 − I1u).

Furthermore, h in (3.6) becomes

(4.5) h = −v · ∇xg −Mg +
ρ

ε
(1− g),
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where

M :=
1

M
(∂tM + v · ∇xM) =

1

ρ
(∂tρ+ v · ∇xρ) + (v − u) · (∂tu+ v · ∇xu)

=
1

ρ
(I1 − u · (I2 − I1u)) + v ·

(
1

ρ
(∇xρ+ I2 − I1u)−

1

2
∇x(u

2)

)
+ (v ⊗ v) : ∇xu

:= M1 + v · M2 + (v ⊗ v) : M3,

(4.6)

where

(4.7) M1 =
1

ρ
(I1−u·(I2−I1u)), M2 =

1

ρ
(∇xρ+I2−I1u)−

1

2
∇x(u

2), M3 = ∇xu.

We now plug (4.5) into (3.8) to obtain

∂tKj = ⟨Vj , h⟩v
= −

∑
kl

⟨Vj , v · (∇xXk)SklVl⟩v −
∑
kl

XkSkl⟨Vj , VlM⟩v

+
ρ

ε

(
⟨Vj⟩v −

∑
kl

XkSkl⟨Vj , Vl⟩v

)
= −

∑
l

(∇xKl) · ⟨vVjVl⟩v −
∑
l

Kl⟨VjVlM⟩v +
ρ

ε
(⟨Vj⟩v −Kj) ,

(4.8)

where

(4.9) ⟨VjVlM⟩v = δjlM1 + ⟨vVjVl⟩v · M2 + ⟨v ⊗ vVjVl⟩v : M3.

Plugging (4.5) into (3.9) gives

∂tSij = −⟨XiVj , h⟩xv
=
∑
kl

(⟨Xi∇xXk⟩x · ⟨vVjVl⟩v)Skl +
∑
kl

Skl⟨XiXkVjVlM⟩xv

− 1

ε

(
⟨ρXi⟩x⟨Vj⟩v −

∑
k

⟨ρXkXi⟩xSkj

)
,

(4.10)

where

⟨XiXkVjVlM⟩xv = ⟨Xi, Xk⟨VjVlM⟩v⟩x
= δjl⟨XiXkM1⟩x + ⟨vVjVl⟩v
· ⟨XiXkM2⟩x + ⟨v ⊗ vVjVl⟩v : ⟨XiXkM3⟩x.

(4.11)

Finally plugging (4.5) into (3.10) gives

∂tLi = ⟨Xi, h⟩x
= −

∑
kl

⟨Xi,∇xXk⟩x · vSklVl −
∑
kl

⟨Xi, XkM⟩xSklVl

+
1

ε

(
⟨ρXi⟩x −

∑
k

⟨ρXkXi⟩Lk

)

= −
∑
k

(⟨Xi∇xXk⟩x · v)Lk −
∑
k

⟨XiXkM⟩xLk +
1

ε

(
⟨ρXi⟩x −

∑
k

⟨ρXkXi⟩Lk

)
,

(4.12)
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where

(4.13) ⟨XiXkM⟩x = ⟨XiXkM1⟩x + v · ⟨XiXkM2⟩x + (v ⊗ v) : ⟨XiXkM3⟩x.

4.1. Time discretization. We are now ready to present the semidiscrete (dis-
crete in time and continuous in space) dynamical low-rank integrator. The main
ingredients of this scheme are the low-rank approximation described in the previ-
ous section (i.e., f = Mg and the low-rank expansion is applied to g), using fast
convolution algorithms to evaluate the integrals in (4.14)–(4.15) below, and using
an implicit-explicit (IMEX) scheme to capture the fluid limit. We will also provide
the computational cost for each substep to highlight the efficiency of the proposed
algorithm compared to full grid simulation that scale as O(Ndx+dv ).

Suppose that at time step tn, (ρn, un, Xn
i , V

n
j , Sn

ij) are available. In order to

obtain the solution (ρn+1, un+1, Xn+1
i , V n+1

j , Sn+1
ij ) at tn+1, we proceed as follows.

Step 1: Update ρn+1 and un+1.
1. Compute the terms

⟨vV n
j Mn⟩v =

ρn(x)

(2π)dv/2

〈
vV n

j (v) exp

(
−|v − un(x)|2

2

)〉
v

,(4.14)

⟨v ⊗ vV n
j Mn⟩v =

ρn(x)

(2π)dv/2

〈
v ⊗ vV n

j (v) exp

(
−|v − un(x)|2

2

)〉
v

.(4.15)

Note that these two quantities can be written as convolutions and hence are
computed as follows:
– Compute the convolutions

g1j = (v 7→ vV n
j ) ∗ (v 7→ exp(−v2/2)),

g2j = (v 7→ (v ⊗ v)V n
j ) ∗ (v 7→ exp(−v2/2)),

using an FFT. Cost: O(rNdv logNdv ).
– Evaluate

⟨vV n
j Mn⟩v(x) =

ρn(x)

(2π)dv/2
g1j (u

n(x)),

⟨(v ⊗ v)V n
j Mn⟩v(x) =

ρn(x)

(2π)dv/2
g2j (u

n(x)),

using cubic splines (or any other interpolation). This is done by taking the
equidistant output obtained from the FFT and constructing the correspond-
ing interpolant. Cost: O(rNdx).
Let us emphasize that using the described procedure is essential as computing
(4.14)–(4.15) in a naive way would incur a computational cost of O(rNdx+dv ),
which is clearly prohibitive.

2. Compute

In1 = −∇x ·

∑
ij

Xn
i S

n
ij⟨vV n

j Mn⟩v

 ,(4.16)

In2 = −∇x ·

∑
ij

Xn
i S

n
ij⟨v ⊗ vV n

j Mn⟩v

 .(4.17)

Cost: O(r2Ndx).
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3. Perform a forward Euler step to solve (4.2) and (4.4):

ρn+1 = ρn +∆tIn1 ,(4.18)

un+1 = un +
1

ρn
(In2 − In1 u

n).(4.19)

Cost: O(Ndx).
Step 2: Update Xn+1

i , V n+1
j , and Sn+1

ij .

K step
1. Compute

c1jl = ⟨vV n
j V n

l ⟩v, c⋆jl = ⟨v ⊗ vV n
j V n

l ⟩v, V j = ⟨V n
j ⟩v.

Cost: O(r2Ndv ).
2. Compute M1, M2, and M3 defined in (4.7) using ρn, un, In1 , and In2 . Cost:

O(Ndx).
3. Compute

c2jl = δjlM1 + c1jl · M2 + c⋆jl : M3.

Cost: O(r2Ndx).
4. Perform a first order IMEX step to solve (4.8):

Kn
j =

∑
i

Xn
i S

n
ij ,

Kn+1
j =

1

1 +∆tρn/ε
Kn

j

− ∆t

1 + ∆tρn/ε

[∑
l

c1jl · (∇xK
n
l ) +

∑
l

c2jlK
n
l

]
+

∆tρn

ε+∆tρn
V j .(4.20)

Cost: O(r2Ndx). Note: The IMEX scheme is necessary to treat the stiff term
and capture the asymptotic limit. Nevertheless, as can be seen, the update
is completely explicit. For more details we refer the readers to [12].

5. Compute a QR decomposition of Kn+1
j to obtain Xn+1

i and S1
ij .

Cost: O(r2Ndx).
S step

1. Compute

d1ik = ⟨Xn+1
i ∇xX

n+1
k ⟩x, d⋆ik = ⟨Xn+1

i Xn+1
k M1⟩x, d⋆⋆ik = ⟨Xn+1

i Xn+1
k M2⟩x,

(4.21)

d⋆⋆⋆ik = ⟨Xn+1
i Xn+1

k M3⟩x, Xi = ⟨ρnXn+1
i ⟩x, Rik = ⟨ρnXn+1

i Xn+1
k ⟩.

Cost: O(r2Ndx).
2. Compute

d2ik;jl = δjld
⋆
ik + c1jl · d⋆⋆ik + c⋆jl : d

⋆⋆⋆
ik .

Cost: O(r4). Note: We could also compute d2ik;jl = ⟨XiXkc
2
jl⟩x but the cost

would be O(r4Ndx).
3. Perform a first order IMEX step to solve (4.10):∑

k

(
I − ∆t

ε
R

)
ik

S2
kj = S1

ij+∆t

[∑
kl

(d1ik · c1jl)S1
kl +

∑
kl

d2ik;jlS
1
kl

]
−∆t

ε
XiV j .

Cost: O(r4).
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L step
1. Perform a first order IMEX step to solve (4.12):

Ln
i =

∑
j

S2
ijV

n
j ,

∑
j

(
I +

∆t

ε
R

)
ij

Ln+1
j

= Ln
i −∆t

[∑
k

(d1ik · v)Ln
k +

∑
k

(d⋆ik + v · d⋆⋆ik + (v ⊗ v) : d⋆⋆⋆ik )Ln
k

]

+
∆t

ε
Xi.

Cost: O(r2Ndv ).
2. Compute a QR decomposition of Ln+1

i to obtain V n+1
i and Sn+1

ij .

Cost: O(r2Ndv ).

Remark 4.1. The scheme described is first order in time. It can be generalized to
second (or higher) order as described in [12]. For simplicity we only consider the first
order method in this paper.

Remark 4.2. It is worth mentioning that when T = 1, the limiting system (2.13)
become the isothermal NS equations{

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ ρId) = ε∇x · σ(u),
(4.22)

where σ(u) is the same as before and 1/ε plays the same role as the Reynolds number.

Remark 4.3. We have made the simplifying assumption T = 1. The algorithm
can be extended easily to the case of piecewise constant temperature Tn(x) with two
changes. First, besides the equations of motions (4.2) and (4.3), there will be an
additional equation of motion for E(t, x). Second, the computation of (4.14) or (4.15)
can still be accelerated by computing an FFT for each of the constant values of Tn(x),
followed by interpolating at un(x) for each x with that constant temperature value.
For a more general temperature distribution Tn(x), the situation is less clear and we
leave this as future work.

Remark 4.4. The proposed dynamical low-rank integrator is currently the only
such scheme that can be efficiently used in the compressible case. Nevertheless, it
is instructive to compare its performance in the weakly compressible case with the
method developed in [11]. The computational and memory complexity for both meth-
ods is, up to a logarithm, the same; namely, O(r2(Ndx +Ndv )) and O(r(Ndx +Ndv )),
respectively. The proposed method for a fixed rank has a somewhat larger overhead
as the 3 (in two dimensions) and 4 (in three dimensions) moments have be integrated
and stored as well. However, since for the proposed scheme in the ε → 0 limit rank 1
is sufficient, compared to a requirement for at least rank 6/10 in two/three dimensions
for the scheme in [11], the proposed scheme is clearly more efficient. Note that com-
puting a direct solution of the Boltzmann-BGK equation has at least a computational
complexity of O(NdxNdv ), which is significantly more expensive.

5. The fully discrete scheme. The scheme described in the previous section
is still continuous in space. To provide an appropriate spatial discretization is the
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content of this section. Replacing spatial derivatives with their discrete counterpart
has to be done in multiple places, namely, when computing In1 and In2 in (4.16)–(4.17),
when computing Kn+1

j in (4.20), and when computing the coefficient d1ik in (4.21).
In this work we consider two approaches to spatial discretization. First, a method

that uses FFT techniques (i.e., the Fourier spectral method) to approximate the
derivatives is described in section 5.1. It has the advantage that it is very accurate
for smooth solutions and simple to implement. The second method, described in
section 5.2, is designed to handle solutions with sharp gradients/shock waves. This
allows us to treat problems with small ε where such features are common. This scheme
is, at most, second order accurate.

5.1. The Fourier spectral method. For the Fourier spectral method we sim-
ply compute the spatial derivatives in (4.16), (4.17), (4.20), and (4.21) by an FFT.
Let us emphasize that in place of the FFT a number of other spatial discretizations
could be used. The choice of FFT here is mainly because for smooth solutions this
results in a very accurate scheme and we further demonstrate that the dynamical
low-rank approximation can be easily combined with a spectral discretization (which
is not possible for the low-rank scheme described in [23], for instance).

5.2. The shock capturing finite difference method. It is well known that
sharp gradients (for finite viscosity) and discontinuous solutions (for vanishing viscos-
ity), so-called shock waves, are commonly encountered in fluid problems. Since our
goal is to obtain a numerical scheme that can capture the fluid limit, we need an ap-
propriate shock-capturing scheme. Such a shock-capturing scheme has to be applied
to both the Ki in the low-rank approximation (see (4.20)), and the moment equations
given in (4.2)–(4.3). In the former the structure of the dynamical low-rank approx-
imation allows us to relatively easily obtain the direction of flow and thus standard
upwind or high resolution schemes can be employed. The latter is more delicate as
the flux depends on the low-rank approximation and solving the corresponding Rie-
mann problem would be rather challenging. We use the central scheme by Nessyahu
and Tadmor to avoid having to obtain the direction of flow from the low-rank ap-
proximation. For simplicity, in this section we only consider the two-dimensional case
(i.e., dx = 2). The extension to dx = 3 is immediate, with the only major difference
being that the Ki and the moments are three-dimensional.

To discretize (4.20) which is a symmetric hyperbolic system, we adopt the fol-
lowing approach. In the two-dimensional setting, we have c1jl = [c1;1jl c1;2jl ]

T and the

matrices c1;mjl , for m ∈ {1, 2}, are symmetric. Thus, there exist orthogonal matrices

Tm such that
∑

jl T
m
ij c

1;m
jl Tm

kl = λm
i δik. We apply the transformation K̂n

i =
∑

j T
1
ijK

n
j

and obtain from (4.20)

K̂n+1
i =

1

1 +∆tρn/ε
K̂n

i − ∆t

1 + ∆tρn/ε

λ1
i ∂xK̂

n
i +

∑
jl

T 1
ijc

1;2
jl ∂yK

n
l +

∑
lj

T 1
ijc

2
jlK

n
l


+

∆tρn

ε+∆tρn

∑
j

T 1
ijV j .

Now, the direction of the flow regarding the advection in the x-direction is obvious and
we can replace λ1

i ∂xK̂
n
i by an appropriate discrete approximation, which we denote by

δx(K
n
· , λ

1
i )i. The simplest choice is to use upwinding for δx. To obtain second order

for smooth parts of the solution, we can use the Lax–Wendroff flux with the van
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Leer limiter as described in [25, Chap. 16]. Using an appropriate limiter is obviously
important for problems that have sharp gradients/shocks. Finally transforming the
system back to the original variables yields

Kn+1
j =

1

1 +∆tρn/ε
Kn

j

− ∆t

1 + ∆tρn/ε

[∑
i

T 1
ijδx(K̂

n
· , λ

1
i )i +

∑
l

c1;2jl ∂yK
n
l +

∑
l

c2jlK
n
l

]

+
∆tρn

ε+∆tρn
V j .

(5.1)

The discretization in the y-direction is treated similarly.
We now consider the update of ρ and u according to the system of conservation

laws in (4.2)–(4.3). However, the flux depends on the Maxwellian M and is thus a
nonlinear (and rather complicated) function of ρ and u. Obtaining the corresponding
Riemann solver is, at best, a rather complicated undertaking. Another possible ap-
proach is to write down a scheme (which is typically nonlinear and involves a limiter
for the shock-capturing purpose) at the level of the kinetic equation, i.e., for (1.1),
and only after performing this spatial discretization applying the dynamical low-rank
projection. Such an approach has been used before, for example, to design AP kinetic
schemes [18]. However, this does not work in the present setting as applying a non-
linear scheme at the kinetic level will result in a function which we cannot compute
using a convolution, as has to be done in Step 1 of the algorithm (see section 4.1) in
order to obtain an efficient numerical method.

To avoid the above issues, we choose to discretize (4.16) and (4.17), which are
the fluxes of the nonlinear conservation laws (4.2)–(4.3), using the central difference
scheme by Nessyahu and Tadmor [34]. This scheme avoids solving a Riemann problem
and can be combined with a limiter to resolve sharp gradients without oscillations. In
the following we will describe this method and how it can be applied to the present
situation. For a one-dimensional conservation law

∂tU(t, x) + ∂xF (U(t, x)) = 0,

where U is the vector of moments, the Nessyahu–Tadmor scheme can be written in
predictor-corrector form

U⋆
j = Un

j − ∆t
2∆xF

′
j ,

Un+1
j+1/2 = 1

2 (U
n
j + Un

j+1) +
1
8 (U

′
j − U ′

j+1)− ∆t
∆x (F (U⋆

j+1)− F (U⋆
j )).

The choice of F ′
j and U ′

j is free as long as they satisfy F ′
j/∆x = ∂xF (U(tn, xj))+O(∆x)

and U ′
j/∆x = ∂xU(tn, xj) + O(∆x). We have to approximate these quantities in

such a way that we obtain nonoscillatory solutions that preserve sharp gradients. As
suggested in [34] we use

U ′
j = MM(Un

j+1−Un
j , U

n
j −Un

j−1), F ′
j = MM(F (Un

j+1)−F (Un
j ), F (Un

j )−F (Un
j−1)),

where MM(x, y) is the commonly used minmod limiter. We note that this is a stag-
gered scheme. That is, the output values, Un+1

j+1/2, are offset by half a grid point

compared to the input values Un
j . In the present setting we use a two-dimensional
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generalization of this method given by (see, e.g., [19])

U⋆
ij = Un

ij −
∆t

2∆x
F ′x
ij − ∆t

2∆y
G′y

ij ,

Un+1
i+1/2,j+1/2 =

1

4
(Un

ij + Un
i+1,j + Un

i,j+1 + Un
i+1,j+1)

+
1

16
(U ′x

ij − U ′x
i+1,j + U ′x

i,j+1 − U ′x
i+1,j+1)

+
1

16
(U ′y

ij − U ′y
i,j+1 + U ′y

i+1,j − U ′y
i+1,j+1)

+
∆t

∆x
(F (U⋆

i+1,j)− F (U⋆
ij)) +

∆t

∆y
(F (U⋆

i,j+1)− F (U⋆
ij)),

where

U ′x
ij = MM(Un

i+1,j − Un
i,j , U

n
ij − Un

i−1,j), U ′y
ij = MM(Un

i,j+1 − Un
ij , U

n
ij − Un

i,j−1),

and

F ′x
ij = MM(F (Un

i+1,j)− F (Un
i,j), F (Un

ij)− F (Un
i−1,j)),

F ′y
ij = MM(F (Un

i,j+1)− F (Un
ij), F (Un

ij)− F (Un
i,j−1)).

We apply this scheme to (4.2)–(4.3) which implies

U =

[
ρ
ρu

]
, F (U) =

[ ∑
ij X

n
i S

n
ij⟨vV n

j Mn⟩v∑
ij X

n
i S

n
ij⟨v ⊗ vV n

j Mn⟩v

]
.

The flux F is computed using convolutions as described above.
While the Nessyahu–Tadmor scheme is also available in a nonstaggered variant,

we have used the staggered version here as we observed it to be more accurate in
numerical simulations. Using a staggered scheme adds a small complication as we
need the values at the original grid points to continue with the low-rank integrator.
To accomplish this we do the following:

1. Apply the Nessyahu–Tadmor scheme with time step size ∆t/2 and initial

value Un
ij to obtain U

n+1/2
i+1/2,j+1/2.

2. Obtain Xn at the half-grid points (i + 1/2, j + 1/2) by computing averages
between neighboring grid points.

3. Apply the Nessyahu–Tadmor scheme with time step size ∆t/2 and initial

value U
n+1/2
i+1/2,j+1/2 and the Xn at the half-grid points to obtain Un+1

i,j .

This procedure takes the place of Step 1 in the algorithm described in section 4.1.
The only ingredient that remains is the computation of the derivative in d1ik, for

which we simply apply the one-sided first order finite difference. Since only the integral
over such quantities enters into the computation, this was found to be sufficiently
accurate. As an alternative a higher order stencil, which then would need to be
limited in an appropriate way, could also be used here.

6. Asymptotic analysis of the fully discrete scheme. In this section, we
carry out a formal asymptotic analysis for the fully discretized scheme introduced
above and show that for small values of ε, the scheme reduces to a consistent dis-
cretization of the NS equations.
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First, our numerical scheme for the moment variables (updating ρn+1 and un+1)
is equivalent to discretizing (3.5) as follows:

(6.1)
Un+1 − Un

∆t
+∇x · ⟨vϕMngn⟩v = O(∆xp),

where p is the order of the spatial discretization for ∇x · ⟨vϕMngn⟩v.
Second, our numerical scheme for the low-rank variable (updating gn+1 or Xn+1

i ,
V n+1
j , and Sn+1

ij ) is equivalent to discretizing (3.6) as

(6.2)
gn+1 − gn

∆t
= −v · ∇xg

n −M(Un)gn +
ν

ε
(1− gn+1) +O(∆t+∆xp),

provided the same order of spatial discretization is used for v ·∇xg
n. Note that M(U)

in the case of T = 1 is given in (4.6). The O(∆t) term is due to the fact that the
projector-splitting integrator has an additional first order time error.

Rearranging (6.2), we have

gn+1 = 1− ε

ν

[
gn+1 − gn

∆t
+ v · ∇xg

n +M(Un)gn
]
+O(ε∆t+ ε∆xp)

= 1− ε

ν
M(Un) +O(ε2 + ε∆t+ ε∆xp)

= 1− ε

ν
M(Un+1) +O(ε2 + ε∆t+ ε∆xp),(6.3)

where we used g = 1 + O(ε) (the first equality implies so) to derive the second line.
Finally, substituting (6.3) into (6.1) yields
(6.4)
Un+1 − Un

∆t
+∇x · ⟨vϕMn⟩v =

ε

ν
∇x · ⟨vϕMnM(Un)⟩v +O(∆xp + ε∆t+ ε∆xp + ε2),

which is a consistent first order in time and pth order in space discretization to the
NS equations (2.13).

7. Numerical results. In this section we will consider three test problems,
namely, a shear flow, an explosion, and the relaxation of a plasma beam. The first two
examples operate close to the fluid regime and thus show that our numerical method
can capture that limit. The explosion, in particular, demonstrates that using the
Nessyahu–Tadmor central scheme we can handle shock waves. The beam relaxation
problem, on the other hand, is run for larger ε and is thus fully kinetic. In this context
we will also demonstrate that our dynamical low-rank scheme works well for spatially
varying ε, i.e., in situations where ε can become extremely small in some regions and
large in others.

All simulations in this section are conducted in 2 + 2 dimensions (i.e., dx = 2
and dv = 2) and periodic boundary conditions are imposed in all spatial and velocity
directions. For the spatial discretization, we will, depending on the flow regime, use
either the Fourier spectral method (see section 5.1) or the finite difference method (see
section 5.2). The latter will be referred to as SCFD (shock-capturing finite differences)
in the following.
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7.1. Shear flow. Shear flow is a classical example in computational fluid dy-
namics. A common setup (see, e.g., [4, 26, 16]) is

ρ(0, x, y) = 1,

u1(0, x, y) = v0


tanh

(
y− 1

4
∆

)
, y ≤ 1

2 ,

tanh

(
3
4−y

∆

)
, y > 1

2 ,

u2(0, x, y) = δ sin(2πx),

(7.1)

where (x, y) ∈ [0, 1]2, v0 = 0.1, ∆ = 1/30, and δ = 5 · 10−3. Physically the problem
models a fluid that moves to the left at the top and bottom of the domain and to the
right in the middle of the domain. The small perturbation in the velocity then grows
in time and creates a dynamics dominated by vortex structures.

For our dynamical low-rank integrator the moments ρ, u1, and u2, as specified
above, are used to initialize a Maxwellian according to (1.2) in the domain (v1, v2) ∈
[−6, 6]2. The Reynolds number Re is prescribed and then ε is chosen according to
ε = v0/Re. That is, we use the flow velocity v0 as the characteristic velocity to
define the Reynolds number. Note that this is not entirely consistent with Remark
4.2, where the speed of sound is used instead. However, since the former is the usual
choice in the weakly compressible regime, this makes comparison with the literature
(e.g., [4, 26, 16]) easier.

In Figure 1 a comparison at Re = 1000 between a fluid solver based on the Mac-
Cormack method [31] and the proposed dynamical low-rank integrator is conducted.
We compare density ρ, velocity u1, u2, and vorticity ω = ∂xu2−∂yu1 and observe ex-
cellent agreement with the fluid solver, as expected. A more quantitative comparison
is conducted in Figure 2.

Next, we demonstrate that increasing the Reynolds number (i.e., decreasing ε)
presents no difficulty for our approach. In this case we have to use the SCFD imple-
mentation as the Fourier spectral method, as one would expect, produces spurious
oscillations and shows stability issues in this regime. The corresponding results are
shown in Figure 3 and agree well with the results that have been reported in the
literature.

We also remark that choosing a small rank (r = 2) is sufficient to obtain very
accurate results. Let us emphasize that this is in contrast to earlier work [11], where
the expansion of the equilibrium mandates that we use a certain rank (at least 6 in
2 dimensions and 10 in 3 dimensions). In the method proposed here no assumption
on the low-rank structure of the equilibrium needs to be made and thus even a very
small rank is sufficient to accurately represent problems which are well described by
the fluid limit. We also note that in this limit, as has already been observed in [11],
a coarse resolution in the velocity directions is sufficient. This is precisely what we
observe in Figure 3.

Finally, we investigate the convergence of the stress tensor computed by the ki-
netic integrator (i.e., the proposed dynamical low-rank algorithm) with the corre-
sponding term in the NS equation. That is, we compare

P(1) = −1

ε

∫
(v − u)⊗ (v − u)(f −M) dv

=
1

ε

[
− ρ

(2π)dv/2

∑
ij

XiSij

∫
(v − u)⊗ (v − u)e−|v−u|2/2Vj(v) dv + ρId

]
,

(7.2)D
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Fluid solver

Dynamical low-rank (Fourier spectral method)

Fig. 1. Numerical simulation of the shear flow (7.1), at time t = 6 (left) and t = 12 (right)
with Re = 103, is shown. The fluid solver (top) uses a MacCormack method, 512 grid points in
each direction, and is run using a CFL number of 0.9 (∆t ≈ 1.5 · 10−3). The dynamical low-rank
integrator (bottom) uses rank r = 3 and 256 grid points in each spatial direction and 32 grid points
in each velocity direction and time step size ∆t = 2 · 10−4.

1 2 3 4
r

10 5

10 4

10 3

10 2

10 1

er
ro

r

FFT (Ns = 16)
FFT (Ns = 32)
FFT (Ns = 64)

SCFD (Ns = 128)
SCFD (Ns = 256)
SCFD (Ns = 256)

Fig. 2. The error in the moments, i.e., max{∥ρ−ρref∥∞, ∥ρu−ρuref∥∞}, at time t = 2 is shown
as a function of the number of grid points in the x and y directions (denoted by Ns in the plot) and
the rank r. In all cases 32 grid points in the velocity direction, a time step size of ∆t = 2 ·10−5, and
Re = 1000 is used. Results are shown both for the SCFD and the FFT based methods. We note that
the error due to the low-rank approximation is below 10−2 for r = 1 and below 10−4 for r = 3. The
reference solution (ρref, ρuref) is computed using a MacCormack based fluid solver with 2048× 2048
grid points.
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Fig. 3. Numerical simulation of the shear flow (7.1) at time t = 12, Re = 105, and with rank
r = 2 (left) and r = 10 (right) is shown. The SCFD implementation with 512 grid points in each
spatial and 32 grid points in each velocity direction and a time step size of ∆t = 10−3 is used.

Re = 500

Re = 4000

Fig. 4. Comparison of σ(u), computed with the MacCormack based fluid solver, with the stress
tensor P(1), computed with the dynamical low-rank approximation, for Re = 500 and Re = 4000.
All simulations are conducted with rank r = 5, 512 grid points in each spatial direction, 64 grid
points in each velocity direction, and a time step size of ∆t = 5 · 10−5.

obtained by the dynamical low-rank integrator, with σ(u) (defined in (2.10)) obtained
from the fluid solver (here dv = 2). To evaluate (7.2), without incurring the cost of
forming the entire density function, we once again write the integral as a convolution
(as described in section 4.1). We know from theory that P(1) converges to σ(u) as
ε → 0 (see section 2). This is also observed in the numerical results shown in Figures 4
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125 250 500 1000 2000 4000
Reynolds number (Re)

0.16

0.125

0.1

0.08

0.063

m
ax

ij
(1

)
ij

ij

Fig. 5. Difference between σ(u), computed with the fluid solver, and the stress tensor P(1),
computed with the dynamical low-rank approximation, in the maximum norm and as a function of
the Reynolds number is shown. All simulations are conducted until t = 2 and with r = 5, 512 grid
points in each spatial direction, 64 grid points in each velocity direction, and a time step size of
∆t = 5 · 10−5.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.08

0.09

0.10

0.11

0.12

0.13
(t = 0.8, : , y = 0), r = 1
(t = 0.8, : , y = 0), r = 3
(t = 0.8, : , y = 0), r = 6

Fig. 6. Numerical simulation of the explosion (7.3) at time t = 0.8, ε = 10−5, and with rank
r = 6 is shown on the left. The SCFD implementation with 512 grid points in each spatial and 32
grid points in each velocity direction and a time step size of ∆t = 5 · 10−5 is used. On the right a
slice through the solution, at y = 0, is shown for r = 1, r = 3, and r = 6.

and 5. In Figure 5 we have plotted the difference between these two quantities as a
function of the Reynolds number.

7.2. Explosion. In this section we consider an initial overpressure in a small
region that expands and results in a propagating shock wave, i.e., an explosion. We
will use the following initial value,

ρ(0, x, y) =

{
1, x2 + y2 ≤ R2,
1
10 , otherwise,

u1(0, x, y) = 0, u2(0, x, y) = 0,

(7.3)

with (x, y) ∈ [−1.5, 1.5]2 and R = 10−2. As before, the specified moments are used to
initialize a Maxwellian according to (1.2) in the domain (v1, v2) ∈ [−6, 6]2. This is a
good example to demonstrate that our scheme is able to resolve sharp gradients/shocks
in a compressible flow.

The numerical results are shown in Figure 6. We clearly observe the shock front
that radially propagates outward starting from the center. Let us also emphasize that,
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Fig. 7. We plot g(0, 0, :, :) for the beam relaxation problem (7.4) at time t = 0, t = 1, and t = 2
and for ε = 0.1 (left) and ε = 0.5 (right). The SCFD implementation with r = 10, 32 grid points in
each spatial and 256 grid points in each velocity direction, and a time step size of ∆t = 10−4 is used.
On the bottom right the maximal deviation from equilibrium, i.e., the deviation in the maximum
norm (normalized to the initial value), is shown as a function of time.

for ε = 10−5, a small rank is sufficient to resolve the dynamics; in fact, starting from
r = 3 the solutions produced by the low-rank integrator are indistinguishable in the
plot.

7.3. Beam relaxation. In this section we consider a fully kinetic problem, i.e., a
problem where the dynamics is not well represented by the fluid limit. A beam with a
constant velocity and Maxwellian distribution propagates into a stationary gas. The
initial value is given by [8]

(7.4) f(0, x, y, v, w) =
1√
2π

(
e−(v2+w2)/2 + nbe

−((v−vb)
2+(w−wb)

2)/(2Tb)
)
,

where (x, y, v, w) ∈ [0, 1]2 × [−8, 8]2, nb = 10−3, vb = 4, wb = 2, Tb = 0.1. This is
a rank 1 initial value that in our framework, i.e., with f = Mg, is represented as
follows:

ρ = 1, u1 = u2 = 0,

and

g = 1 + nbe
−((v−vb)

2+(w−wb)
2)/(2Tb)+(v2+w2)/2.

The expected behavior is that the perturbation (the beam) in velocity space
diminishes over time according to exp(−t/ε). That is, the collisions thermalize the
beam until it is indistinguishable from the background gas. This problem has been
considered in the context of hybrid kinetic-fluid models in [8]. The hybrid method
proposed there, which treats fast particles kinetically and the slow particles by a fluid
model, has difficulties in capturing the physical behavior.

The numerical results using the low-rank integrator are presented in Figure 7.
Note that because the initial value is homogeneous in the x direction we can use
a relatively coarse resolution in space. For ε = 0.1/ε = 0.5 the deviation from
equilibrium reduces by approximately 10−9/10−2, which clearly demonstrates that
the low-rank algorithm accurately reproduces the expected decay rates.

7.4. Beam relaxation with spatially varying ε. One interesting application
of the proposed dynamical low-rank integrator is in applications where the Knudsen
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number ε varies over several orders of magnitude (see the discussion on hybrid ki-
netic/fluid schemes in the introduction). We explore this here in the context of the
beam relaxation problem introduced in the previous section with a spatially varying
ε given by

(7.5) ε(x, y) = ε0 + tanh(1− 11x) + tanh(1 + 11x)

with ε0 = 10−4 in the spatial domain (x, y) ∈ [−1, 1] × [0, 1]. Thus, we have ε ≈ 1
in the middle of the domain (kinetic regime) and ε ≈ 10−4 (fluid regime) as we get
closer to the boundary.

The numerical results obtained are shown in Figure 8. We investigate here the de-
viation from equilibrium as a function of velocity. We observe that the thermalization
proceeds with different speeds depending on the value of ε on that part of the domain,
as we would expect. We have also compared numerical simulations obtained with dif-
ferent ranks. For r = 3 a significant deviation from the reference solution (computed
with r = 60) can be observed. However, starting with rank r = 10 the low-rank error
is small and we observe excellent agreement with the reference solution.

D
ow

nl
oa

de
d 

07
/2

1/
22

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B1078 LUKAS EINKEMMER, JINGWEI HU, AND LEXING YING

Dynamical low-rank with r = 3

Dynamical low-rank with r = 10

Dynamical low-rank with r = 60

Fig. 8. We plot slices through g corresponding to x = 0.2, 0.3, 0, 4, 0.8 and y = 0.5, w = 2 for
the beam relaxation problem (7.4) with spatially varying ε given by (7.5). In all directions (both
space and velocity) 256 grid points are employed and the SCFD scheme (with δx in (5.1) discretized
by upwinding) and a time step size of ∆t = 5 · 10−5 is used in all simulations.
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