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The efficient treatment of long-range interactions (LRIs) for point clouds is a challenging 
problem in many scientific machine learning applications. To extract global information, 
one usually needs a large window size, a large number of layers, and/or a large number of 
channels. This can often significantly increase the computational cost. In this work, we 
present a novel neural network layer that directly incorporates long-range information 
for a point cloud. This layer, dubbed the long-range convolutional (LRC)-layer, leverages 
the convolutional theorem coupled with the non-uniform Fourier transform. In a nutshell, 
the LRC-layer mollifies the point cloud to an adequately sized regular grid, computes its 
Fourier transform, multiplies the result by a set of trainable Fourier multipliers, computes 
the inverse Fourier transform, and finally interpolates the result back to the point cloud. 
The resulting global all-to-all convolution operation can be performed in nearly-linear time 
asymptotically with respect to the number of input points. The LRC-layer is a particularly 
powerful tool when combined with local convolution as together they offer efficient 
and seamless treatment of both short- and long-range interactions. We showcase this 
framework by introducing a neural network architecture that combines LRC-layers with 
short-range convolutional layers to accurately learn the energy and force associated with 
a N-body potential. We also exploit the induced two-level decomposition and propose an 
efficient strategy to train the combined architecture with a reduced number of samples.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Point cloud representations provide detailed information of objects and environments. The development of novel ac-
quisition techniques, such as laser scanning, digital photogrammetry, light detection and ranging (LIDAR), 3D scanners, 
structure-from-motion (SFM), among others, has increased the interest of using point cloud representation in various appli-
cations such as digital preservation, surveying, autonomous driving [8], 3D gaming, robotics [38], and virtual reality [39]. In 
return, this new interest has fueled the development of machine learning frameworks that use point clouds as input. His-
torically, early methods used a preprocessing stage that extracted meticulously hand-crafted features from the point cloud, 
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which were subsequently fed to a neural network [7,47,48,2], or they relied on voxelization of the geometry [49,52,43,36]. 
The PointNet architecture [41] was the first to handle raw point cloud data directly and learn features on the fly. This 
work has spawned several related approaches, aiming to attenuate drawbacks from the original methodology, such as Point-
Net++ [42], or to increase the accuracy and range of application [51,61,33,35].

Even though such methods have been quite successful for machine learning problems, they rely on an assumption of 
locality, which may produce large errors when the underlying task at hand exhibits long-range interactions (LRIs). To capture 
such interactions using standard convolutional layers, one can use wider window sizes, deeper networks, and/or a large 
number of features, which may increase the computational cost significantly. Several approaches have been proposed to 
efficiently capture such interactions in tasks such as semantic segmentation, of which the ideas we briefly summarize 
below. In the multi-scale type of approaches, features are progressively processed and merged. Within this family, there exist 
several variants, where the underlying neural networks can be either recursive neural networks [57], convolutional layers 
[53,54] or autoencoders [55,12]. Some works have proposed skip connections, following an U-net [44] type architecture [68,
42], while others have focused on using a tree structure for the clustering of the points [30,59,19], or using an reference 
permutohedral lattices to compute convolutions [26] whose results are interpolated back to the point cloud [50]. Although 
these methods have been shown to be successful in a range of applications, when the task at hand presents symmetries, 
such as rotation, translation, and permutation invariance, there is no systematic framework to embed those symmetries 
into the algorithmic pipelines. Another line of work, relies on interpreting the point cloud as a graph and use spectral 
convolutions [6,11], whose cost can scale super-linearly when dealing with LRIs.

In applications of machine learning to scientific computing, several classical multilevel matrix factorizations have been 
rewritten in the context of machine learning [32], which have been adapted to handle LRIs in the context of end-to-end 
maps using voxelized geometries in [16,15,28,17] resulting in architectures similar to U-nets [44], which have been recently 
extended to point clouds in [34]. Note that due to underlying voxelization of the geometry, it may be difficult for these 
networks to generalize when the resolution of the voxelization changes.

The efficient treatment of LRI for point clouds is also a prominent problem in many physical applications such as molec-
ular modeling and molecular dynamics simulation. While long-range electrostatic interactions are omnipresent, it has been 
found that effectively short-ranged models can already describe the N-body potential and the associated force field [4,64,65]
for a wide range of physical systems. There have also been a number of recent works aiming at more general systems be-
yond this regime of effective short-range interactions, such as the work of Ceriotti and co-workers [22,23,37,45], as well as 
the works of [56,31,24,46,25,13,5,63]. The general strategy is to build parameterized LRIs into the kernel methods or neural 
network models, so that the resulting model can characterize both short-range, as well as long-range electrostatic interac-
tions. In the neural network context, the computational cost of treating the LRIs using these methods can grow superlinearly 
with the system size.

The idea of this work is more closely aligned with the approaches in the molecular modeling community, which 
constructs a neural network layer to directly describe the LRI. In particular, we present a new long-range convolutional
(LRC)-layer, which performs a global convolutional operation in nearly-linear time with respect to number of units in the 
layer. By leveraging the non-uniform Fourier transform (NUFFT) [14,20,3] technique, the LRC-layer implements a convolution 
with a point-wise multiplication in the frequency domain with trainable weights known as Fourier multipliers. The NUFFT 
is based on the regular fast Fourier transform (FFT) [10] with a fast gridding algorithms, to allow for fast convolution on 
unstructured data. This new LRC-layer provides a new set of descriptors that can seamlessly satisfy relevant symmetries. For 
instance, when the kernel of the LRI is rotationally invariant, such symmetry can be directly built into the parameterization 
of the Fourier kernel. Such descriptors can be used in tandem with the descriptors provided by short-range convolutional 
layers to improve the performance of the neural network.

Efficient training of a neural network with the LRC-layer for capturing the information of LRIs is another challenging 
problem. Short-range models can often be trained with data generated with a relatively small computational box (called the 
small-scale data), and they can be seamlessly deployed in large-scale systems without significantly increasing the general-
ization error. On the other hand, long-range models need to be trained directly with data generated in a large computational 
box (called the large-scale data), and the generation process of such large-scale data can be very expensive. For instance, in 
molecular modeling, the training data is often generated with highly accurate quantum mechanical methods, of which the 
cost can scale steeply as O(Nα), where N is the system size and α ≥ 3. Therefore it is desirable to minimize the number 
of samples with a large system size. In many applications, the error of the effective short-range model is already modestly 
small. This motivates us to propose a two-scale training strategy as follows. We first generate many small-scale data (cheaply 
and possibly in parallel), and train the network without the LRC-layer. Then we use a small number of large-scale data, and 
perform training with both the short- and long-range convolutional layers.

In order to demonstrate the effectiveness of the LRC-layer and the two-scale training procedure, we apply our method to 
evaluate the energy and force associated with a model N-body potential that exhibit tunable short- and long-range interac-
tions in one, two and three dimensions. The input point cloud consists of the atomic positions, and the output data include 
the N-body potential, local potential, and the force (derivative of the N-body potential with respect to atomic positions). 
In particular, the local potential and the force can be viewed as point clouds associated with the atomic positions. The 
evaluation of the N-body potential is a foundational component in molecular modeling, and LRI plays an important role 
in the description of ionic systems, macroscopically polarized interfaces, electrode surfaces, and many other problems in 
nanosciences [18]. Our result verifies that the computational cost of the long-range layer can be reduced from O(N2) using 
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a direct implementation, to O(N + NFFT log NFFT), where NFFT is the number of points of a reference grid. The value of 
NFFT depends on the separation between the particles in the point cloud. When the particles in the point cloud are approx-
imately uniformly distributed, we have NFFT =O(N). Furthermore, we demonstrate that the force, i.e. the derivatives of the 
potential with respect to all inputs can be also evaluated with O(N + NFFT log NFFT) cost. In terms of sample efficiency, 
we find that for the model problem under study here, the two-scale training strategy can effectively reduce the number 
of large-scale samples by over an order of magnitude to reach the target accuracy. This can be particularly valuable in the 
context of molecular modeling, where accurate data are often obtained from first principle electronic structure calculations. 
Such calculations are often very expensive for large scale systems, and the number of large-scale samples is thus limited.

This manuscript is organized as follows: Section 2 provides the algorithmic details of the LRC-layer. Section 3 provides the 
setting for the objective function that we seek to learn. Section 4 details of the architectures we benchmark, and we provide 
a complexity analysis of the LRC-layer showing the complexity reduction from quadratic to nearly-linear. Finally, Section 5
presents the numerical experiments showcasing the properties followed by Section 6, which provides the conclusions.

2. Long-range convolutional layer

Convolutional layers are perhaps the most important building-block in machine learning, due to their great success in 
image processing and computer vision. A convolutional layer convolves the input, usually an array, with a rectangular mask 
containing the trainable parameters. When the mask can be kept small (for example while extracting localized features), the 
convolution layer is highly efficient and effective. A different way for computing a convolution is to use the convolutional 
theorem as follows: (1) compute the Fourier transform of the input, (2) multiply with the Fourier transform of the mask, 
i.e., the Fourier multiplier, and (3) inverse Fourier transform back. In this case, the trainable parameters are the DOFs of 
the Fourier multipliers and the Fourier transforms are computed using the fast Fourier transform (FFT). This alternative 
approach is particularly attractive for smooth kernels with large support (i.e., smooth LRIs) because the computational cost 
does not increase with the size of the mask. To the best of our knowledge, this direction has not been explored for LRIs and 
below we detail now to apply this to point clouds.

Given a point cloud {xi}N
i=1 ⊂ Rd and scalar weights { f i}N

i=1, we consider the problem of computing the quantity ui :=∑N
j=1 φθ (xi − x j) f j at each xi . Here the function φθ (·) is the kernel with a generic trainable parameter θ . At first glance the 

cost of this operation scales as O(N2): we need to evaluate ui for each point xi , which requires O(N) work per evaluation. 
By introducing a generalized function f (y) = ∑

i f i · δ(y − xi) and defining a function u(x) = ∫
φθ (x − y) f (y)dy, one notices 

that ui is the value of u(x) at x = xi . The advantage of this viewpoint is that one can now invoke the connection between 
convolution and Fourier transform

û(k) = φ̂θ (k) · f̂ (k), (1)

where φ̂θ (k) is a trainable Fourier multiplier. This approach is suitable for point clouds since the trainable parameters are 
decoupled from the geometry of the point cloud. To make this approach practical, one needs to address two issues: (1) the 
non-uniform distribution of the point cloud and (2) how to represent the multiplier φ̂θ (k).

2.1. Non-uniform distribution of the point cloud

Equation (1) suggests that one can compute the convolution directly using the convolution theorem, which typically 
relies on the FFT to obtain a low-complexity algorithm. Unfortunately, {xi}N

i=1 do not form a regular grid, thus FFT can not 
be directly used. We overcome this difficulty by invoking the NUFFT [14] (see Appendix B for further details), which serves 
as the corner-stone of our instance of the LRC-layer.3

The LRC-layer is summarized in Algorithm 1, where τ is chosen following [14]. The inputs of this layer are the point 
cloud {xi}N

i=1 and the corresponding weights { f i}N
i=1. The outputs are ui ≡ u(xi) for i = 1, ..., N . The number of elements in 

the underlying grid NFFT = Ld
FFT is chosen such that the kernel is adequately sampled and the complexity remains low. As 

is will be shown in Section 5, one only needs a relatively small LFFT . Even though the precise number is problem-specific, 
given that the goal is to approximate LRIs that are supposedly smooth, it can be captured with a relatively small number of 
Fourier modes.

The LRC-layer is composed of three steps as depicted in Fig. 1: (1) It computes the Fourier transform from the point 
cloud to a regular grid using the NUFFT algorithm (lines 2 − 5 in Algorithm 1 and showcased in Fig. 2). (2) It multiplies the 
result by a set of trainable Fourier multipliers (line 6 in Algorithm 1). (3) It computes the inverse Fourier transform from 
the regular grid back to the point cloud (lines 7 − 9 in Algorithm 1).

Within the LRC-layer in Algorithm 1, the only trainable component is the parameter θ of the Fourier multiplier φ̂θ (k). 
The remaining components, including the mollifier gτ (·) and the Cartesian grid size, are taken to be fixed. One can, in 

3 We point out, that one could in practice use an fast summation algorithm, such as the fast multipole method (FMM) introduced by [21], to evaluate ui . 
This would results in similar complexities if the kernel is fixed. However, the algorithm contains many different branches (e.g., if-statements) that depend 
on the kernel, which itself is trainable and therefore will evolve during the training stage. This would render the implementation much more cumbersome, 
particularly when computing derivatives.
3
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Algorithm 1 Long-range convolutional layer.
Input: {xi}N

i=1, { f i}N
i=1

Output: {xi}N
i=1, {ui}N

i=1, where ui = ∑N
j=1 f jφθ (xi − x j).

1: Define the generalized function: f (x) = ∑N
j=1 f jδ(x − x j)

2: Mollify the Dirac deltas: fτ (x) = ∑N
j=1 f j gτ (x − x j), where gτ is defined in Appendix B

3: Sample in a regular grid: fτ (x�) = ∑N
j=1 gτ (x� − x j) for x� in grid of size LFFT in each dim

4: Compute FFT: Fτ (k) = FFT( fτ )(k)

5: Re-scale the signal: F (k) =
√

π
τ ek2τ Fτ (k)

6: Multiply by Fourier multipliers: v̂(k) = φ̂θ (k) · F (k)

7: Re-scale the signal: v̂−τ (k) =
√

π
τ ek2τ v̂(k)

8: Compute IFFT: u−τ (x�) = IFFT(v̂−τ )(x) for x� on the regular grid
9: Interpolate to the point cloud: ui = u(xi) = u−τ ∗ gτ (xi)

Fig. 1. Diagram of the LRC-layer. Starting from the cloud point {xi}N
i=1 with the scalar values { f i}N

i=1, we apply the NUFFT, to obtain the Fourier transform 
of f on a grid, we multiply it with the trainable Fourier multiplier, φ̂, and the use the inverse NUFFT to compute the values back to the point cloud.

Fig. 2. Diagram of the NUFFT. Starting from the cloud point {xi}N
i=1, we form the mollified function fτ , sample it in a regular grid, compute the Fourier 

transform Fτ (k) of the sampled function. Finally in order to obtain F (k), we rescale the signal to undo the spatial convolution.

principle, train them as well, but it comes with a much higher cost. Among the steps of Algorithm 1, the sampling operator, 
the rescaling operator, the interpolation operator, and the Fourier transforms, are all linear and non-trainable. Therefore, 
derivative computations of backpropagation just go through them directly.

Algorithm 1 is presented in terms of only one single channel or feature dimension, i.e., f j ∈ R and ui ∈ R. However, it 
can be easily generalized to multiple channels, for example f j ∈Rd1 and ui ∈Rd2 . In this case, the Fourier multiplier φ̂θ (k)

at each point k is a d2 × d1 matrix, and all Fourier transforms are applied component-wise.

2.2. Representation of the Fourier multiplier

A useful feature of the LRC-layer is that it is quite easy to impose symmetries on the Fourier multipliers. In fact, many 
recent research efforts have sought to incorporate symmetries in the neural network representation (see e.g., [62,60,65,
58,9]). By restricting the model to satisfy these symmetries, the neural network model can often be more accurate and 
4
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require fewer training data. Symmetry-preserving neural networks have found applications in quantum chemistry [40], 
image processing [47,48], molecular dynamics [66], among many other.

In the case of the LRC-layer, if the convolution kernel φθ (·) is constrained to have parity symmetry, rotational symmetry, 
smoothness or decay properties, these constraints can be imposed accordingly on the coefficients of the Fourier multipliers 
φ̂θ (k). When the size of the training data is limited, it is often necessary to reduce the number of trainable parameters in 
order to regularize the kernel. For example, we may parameterize the Fourier multiplier as a linear combination of several 
predetermined functions on the Fourier grid. This is the procedure used in molecular modeling [22,56,31], and also in our 
numerical examples in equation (23). We also remark that the LRC-layer described here can be applied to point clouds a 
way similar to a standard convolution layer applied to images and multiple LRC-layers can be composed on top of each 
other.

3. Learning the N-body potential

To demonstrate the effectiveness of the LRC-layer, we consider the problem of learning the energy and force associated 
with a model N-body potential in the context of molecular modeling. As mentioned in Section 1, the potential evaluation 
often invokes expensive ab-initio calculations that one would like to bypass for efficiency reasons.

In general, the cost of evaluating the N-body potential scales quadratically with respect to the number of particles in the 
system. One usual technique to reduce the complexity is to leverage the nearsightedness principle, which postulates that 
the most relevant interactions tend to be localized, thus one can neglect the long-range interactions while only incurring 
on a negligible loss in accuracy. In several cases, however, long range interactions are needed to obtain the bulk properties 
of interest [67]. Due to the difficulty of tuning such systems, we use an analytical model which allows us to seamlessly 
transition form short- to long-range interactions.

The setup of this learning problem is as follows. First, we assume access to a black-box model potential, which consists of 
both short- and long-range interactions. However, we assume that the internal parameters of the potential are inaccessible to 
the training architecture and algorithm. A set of training samples are generated by the model, where each sample consists 
of a configuration of the points {xi} along with the potential and force. Second, we set up a deep neural network that 
includes (among other components) the LRC-layer for addressing the long-range interaction. This network is then trained 
with stochastic gradient type of algorithms using the collected dataset. The trained network can then be used for predicting 
the potential and forces for new point cloud configurations. These first component is described below, whereas the second 
component is described in detail in Section 4.

3.1. Black-box model problem

Model We suppose that 	 = [0, L]d , and we denote the point cloud by x = {xi}N
i=1 ⊂ 	 ⊂Rd , for d = 1, 2, or 3. We define 

the total energy, the local potential and the forces acting on particle j by

U =
∑

1≤i< j≤N

ψ(xi − x j), U j(x) =
∑
i �= j

ψ(xi − x), and F j = −∂xU j(x)|x=x j , (2)

respectively, where the interaction kernel ψ(r) is a smooth function, besides a possible singularity at the origin and de-
creases as ‖r‖ → ∞. In this case we use two different kernels, the exponential and screened-Coulomb kernel, which are 
described in what follows.

Exponential kernel: Suppose 	 be the torus [0, L]d and that x = {xi}N
i=1 ⊂ 	 ⊂ Rd for d = 1, 2, or 3. The exponential 

kernel is defined as

ψμ(x − y) = e−μ‖x−y‖, (3)

where ‖ · ‖ is the Euclidean norm over the torus. We define the total energy and the potential as

U =
N∑

i< j

e−μ‖xi−x j‖ and U j(x) =
N∑

i �= j

e−μ‖xi−x‖, (4)

respectively. The forces are given by

F j = −∂x j U j(x j) = −
N∑

i �= j

xi − x j

‖xi − x j‖μe−μ‖xi−x j‖. (5)

Due to the exponential decay in the kernel only particles that are at O(μ−1) distance will interact. For particles that are 
farther away we can effectively neglect them.

Screened-Coulomb kernel: In 3D, the screened-Coulomb potential with free space boundary condition is given by

ψμ(x − y) = 1
e−μ‖x−y‖. (6)
4π‖x − y‖
5
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Fig. 3. The force contribution to particle x100 from other particles. Results are shown for two different characteristic interaction lengths.

Over the torus [0, L]d , the kernel ψμ(x − y) is the Green’s function Gμ(x, y) defined via

�Gμ(x, y) − μ2Gμ(x, y) = −δy(x), (7)

with the periodic boundary condition. In contrast with the exponential kernel, which is smooth up to a weak singularity at 
the origin, the screened-Coulomb potential exhibits an essential singularity at the origin. This type of singularities is found 
in many classical potentials [27], and it increases the impact of short-range interactions, while allowing the parameter μ to 
tune the LRIs. In order to compute the screened-Coulomb potential numerically, a spectral method is used: in particular,

ψμ(x − y) = Gμ(x, y) = F−1

(
eik·y

‖k‖2 + μ2
χε(k)

)
, (8)

where F−1 stands for the inverse Fourier transform and χε(k) is a smoothing factor, usually Gaussian, to numerically 
avoid the Gibbs phenomenon. Similar to the exponential case, the parameter μ controls the localization of the potential. In 
addition, the derivatives are taken numerically in the Fourier domain.

Visualization: To visualize the relation between μ and the characteristic interaction length in 1D, consider a given 
particle, e.g., x100 and compute the force contribution from the other particles. Fig. 3 shows that force contribution is 
extremely small outside a small interaction region for μ = 5.0 while the interaction region for μ = 0.5 is much larger.

Sampling We define a snapshot as one configuration of particles, x� = {x[�]
j }N

j=1, together with the global energy U [�]

and the forces F [�] , where � is the index representing the number in the training/testing set. For simplicity, we suppose 
that the number of particles at each configuration is the same. We sample the configuration of particles x� randomly, with 
the restriction that two particles can not be closer than a predetermined value δmin in order to avoid the singularity. After 
an admissible configuration is computed we generate the energy and forces following the procedure above. This process is 
repeated until obtaining Nsample snapshots.

4. Architecture

Our network architecture consists of separate descriptors for the short- interactions and long-range interactions, respec-
tively. To capture the short-range interaction, we compute a local convolution using for each point only its neighboring 
points within a ball of predetermined radius. For the LRIs, we compute an all-to-all convolution using the LRC-layer in-
troduced in Section 2, whose output is distributed to each particle and then fed to a sequence of subsequent layers. In 
this section we provide all relevant details corresponding to the architecture. We discuss the different building blocks, in 
particular, the descriptors, and how they are used to build the different networks. In addition, we provide details of how 
the derivatives can be taken in quasi-linear time in the case of the full-range network, and provide the complexity of the 
different operations.

4.1. Descriptors

Short-range descriptor For a given particle xi , and an interaction radius R , we define Ii , the interaction list of xi , as the 
indices j such that ‖xi − x j‖ < R where ‖ · ‖ stands for the distance over the torus [0, L]d . I.e., Ii contains the indices of 
the particles that are inside a ball of radius R centered at xi . Thus for each particle xi we build the generalized coordinates 
si, j = xi − x j , and the short-range descriptor

Di
sr =

∑
j∈Ii

fθ (si, j), (9)

where fθ : Rd → Rmsr is a function represented by a neural network specified in what follows, where msr is the number 
of short-range features. By construction fθ (s) is smooth and it satisfies fθ (s) = 0 for ‖s‖ > R .
6
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Fig. 4. The structure of short-range network for 1D case.

To simplify the discussion, we assume that there exists a maximal number of neighbors NmaxNeigh for each xi . We stack 
the neighbors in a tensor whose dimensions are constant across different particles. This value is chosen to be sufficiently 
large to cover the number of elements in the interaction list. If the cardinality of Ii is less than NmaxNeigh , we pad the 
tensor with dummy values.

In the 1D case the generalized coordinates are defined as

si, j = ‖xi − x j‖, and ri, j = 1

‖xi − x j‖ (10)

for j ∈ Ii .
To characterize fθ in equation (9) we introduce two fully-connected neural networks fθ1 , fθ2 : R+ → Rmsr/2. Each net-

work consists of five layers with the number of units doubling at each layer and ranging from 2 to 32. The activation 
function after each layer is tanh and the initialization follows Glorot normal distribution.

For particle xi the short-range descriptor is defined as the concatenation of

Di
1,sr =

∑
j∈Ii

fθ1(ŝi, j)r̂i, j and Di
2,sr =

∑
j∈Ii

fθ2(r̂i, j)r̂i, j, (11)

where r̂i, j, ̂si, j are the normalized copies of ri, j and si, j with mean zero and standard deviation equals to one. The mean 
and standard deviation are estimated by using a small number of snapshots. We multiply the network’s output fθ by r̂i, j
(which is zero if j is a dummy particle). This procedure enforces a zero output for particles not in the interaction list. The 
construction satisfies the condition fθ (s) = 0 for ‖s‖ > R .

In the short-range network, one concatenates the two descriptor above and feeds them particle-wise to the short-range 
fitting network. The fitting network Fsr : Rmsr → R is a residual neural network (ResNet) with six layers, each with 32
units. The activation function and initialization strategy are the same as the ones for the short-range descriptors. Fig. 4
shows the detailed architecture of the short-range network.

UNN
sr =

N∑
i=1

F(Di
sr) =

N∑
i=1

F(Di
1,sr,Di

2,sr) (12)

In 2D and 3D, there is a slight difference in the generalized coordinates: we compute

si, j = xi − x j

‖xi − x j‖ and ri, j = 1

‖xi − x j‖ , (13)

where si, j is a vector now. The local descriptors are defined in the following forms:

Di
1,sr =

∑
j∈Ii

fθ1(si, j)r̂i, j and Di
2,sr =

∑
j∈Ii

fθ2(r̂i, j)r̂i, j (14)

Long-range descriptor We feed the LRC-layer with the raw point cloud represented by {xi}N
i=1 with weights { f i}N

i=1, 
which for simplicity can be assumed to be equal to one here, i.e., f i = 1 for i = 1, ..., N . The output of the layer is a two-
dimensional tensor uk(xi) with i = 1, . . . , N and k = 1, . . . , Kchnls . Then for each xi , its corresponding slice given by the 
vector [u1(xi), u2(xi), · · · , uKchnls (xi)], is fed to a function gθ : RKchnls → Rmlr , which is represented by a neural network 
7
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Fig. 5. (left) The short-range network architecture. (right) The full-range network architecture.

with non-linear activation functions. Here θ is a generic set of trainable parameters and mlr is the number of long-range 
features. The descriptor for particle xi , which depends on all the other particles thanks to the LRC-layer, is defined by

Di
lr = gθ (u1(xi), u2(xi), · · · , uKchnls(xi)) (15)

4.2. Networks

Short-range Network When only the short-range interaction is present, the short-range descriptor for each particle is 
fed particle-wise to a fitting network Fsr :Rmsr →R. In this case Fsr(Di

sr) only depends on particle xi and its neighbors. 
Finally, the contributions from each particle are accumulated so the short-range neural network (NN) energy and forces are 
given by

UNN
sr =

N∑
i=1

Fsr(Di
sr) and

(
FNNsr

)
j = −∂x j U

NN
sr (16)

respectively (see Fig. 5(left)). The derivatives are computed using Tensorflow [1] directly. This network as shown by [65] is 
rotation, translation, and permutation invariant [58].

We point out that this architecture can be understood as a non-linear local convolution: for each particle i one applies 
the same function fθ to each of its neighbors. The result is then pooled into the descriptor Di

sr , then processed locally by 
Fsr (akin to a non-linear convolution with a filter of width one), and finally pooled globally into UNN

sr .
Full-range network When both the short-range and long-range interactions are present, the long range descriptor and 

the local descriptor are combined and fed particle-wise to a fitting network F : Rmsr+mlr → R to produce the overall 
neural network (NN) energy and forces

UNN =
N∑

i=1

F(Di
sr,Di

lr), and
(

FNN
)

j = −∂x j U
NN (17)

respectively (see Fig. 5(right)). Following Section 2, the long-range descriptor is translation invariant by design and can be 
easily made rotation invariant. Furthermore, it is well known [58] that this construction is permutation invariant. From the 
structures shown in Fig. 5 (we provide more detailed schematics in Fig. 4 and Fig. 6), it is clear that we can recover the first 
architecture from the second, by zeroing some entries at the fitting network, and removing the LRC-layer.

4.3. Derivatives

For the computation of the forces in equation (16) one needs to compute the derivatives of the total energy UNN with 
respect to the inputs, in nearly-linear time. The main obstacle is how to compute the derivatives of the LRC-layer with 
respect to the point cloud efficiently. To simplify the notation, we only discuss the one-dimensional case, i.e., d = 1, but the 
argument can be seamlessly extended to higher dimensional cases, d > 1.

Recall that ui = ∑N
j=1 φθ (xi − x j) f j , then the Jacobian of the vector u with respect to the inputs is given by

(∇u)i, j := ∂ui

∂x j
=

{ − f jφ
′
θ (xi − x j), if j �= i,∑

k �=i fkφ
′
θ (xi − xk), if j = i. (18)

As it will be explained in the sequel, for the computation of the forces in equation (16) one needs to compute the application 
of the Jacobian of u to a vector. For a fixed vector v ∈RN , the product (∇u) · v can be written component-wise as

((∇u) · v)i = −
∑
j �=i

v j f jφ
′
θ (xi − x j) + vi

∑
j �=i

f jφ
′
θ (xi − x j),

= −
N∑

j=1

v j f jφ
′
θ (xi − x j) + vi

N∑
j=1

f jφ
′
θ (xi − x j),
8
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where we have added ±vi f iφ
′(0) in the last equation and then distributed it within both sums. Let us define the following 

two long-range convolutions

wi = −
N∑

j=1

v j f jφ
′
θ (xi − x j), and pi =

N∑
j=1

f jφ
′
θ (xi − x j), (19)

each of which can be performed in O(N + NFFT log NFFT) steps using the NUFFT algorithm combined with the convolution 
theorem. In this case the derivative of φ can be computed numerically in the Fourier domain to a very high accuracy. Now 
one can leverage the expression above to rewrite (∇u) · v as

((∇u) · v)i = wi + vi pi, (20)

which can then be computed in nearly-linear time. The same is also true for v · (∇u).

4.4. Complexity

It is clear that the energy can be evaluated in nearly-linear complexity. In what follows we show that the force com-
putation is also of nearly-linear. For simplicity we focus on the one-dimensional network and assume that Kchnls = 1, 
O(msr) =O(mlr) =O(1) and that the depth of the neural networks is O(1). As defined in the prequel the forces are given 
by FNN = −∇xUNN , which can be written component wise as

FNNj = −∂x j U
NN = −

N∑
i=1

[
∂1F(Di

sr,Di
lr)∂x jD

i
sr + ∂2F(Di

sr,Di
lr)g′

θ (ui)∂x j ui

]
, (21)

or in a more compact fashion as

FNN = −∇UNN = − (vsr · Dsr + vlr · ∇u) . (22)

Here vsr , and vlr are vectors defined component-wise as (vsr)i = ∂1F(Di
sr, Di

lr), and (vlr)i = ∂2F(Di
sr, Di

lr)g′
θ (ui). In 

addition (Dsr)i, j = ∂x jDi
sr and ∇u is defined above.

The first term in the right-hand side is easy to compute, given that Dsr is sparse: the i, j entry is non-zero only if the 
particle xi is in the interaction list of x j . Given that the cardinality of the interaction list is bounded, Dsr has O(N) non-zero 
entries in which each entry requires O(1) work, thus the first term in the right-hand side of equation (22) can be computed 
in O(N). At first glance the complexity of second term seems to be much higher. However, as discussed above, by using 
equation (20), we can apply the matrix (or its transpose) to a vector in O(N + NFFT log NFFT) time and the computation of 
vector vlr requires O(1) work per entry, thus resulting in a complexity of O(N + NFFT log NFFT) for computing the second 
term in equation (22). Finally, adding both contributions together results in an overall O(N + NFFT log NFFT) complexity for 
the forces.

To summarize, both the computation of the energy and the forces can be performed in O(N) time provided that the 
particles are not highly clustered, i.e., the pair-wise distance between particles is bounded from below by a constant. This 
stems from the expression for LFFT , which depends on the separation of the particles in the point cloud [14]. In addition, 
we point out that the bottleneck on the NUFFT, the spread of the Dirac deltas to the Fourier grid by mollification. For each 
particle one needs to perform a search of the nearby points and then compute distances and then evaluate the mollification 
kernel. This is a very memory-intensive operation, which is often order of magnitude slower than floating point operations 
in modern CPUs.

5. Numerical experiments

The loss function is the mean squared error of the forces

1

Nsample

Nsample∑
�=1

N∑
i=1

∥∥FNNθ (x[�]
i ) − F [�]

i

∥∥2
,

where the i-index runs on the points of each snapshot, and � runs on the test samples. We also generate 100 snapshots 
of data to test the performance of network. This particular loss could lead to shift the potential energy by up to a global 
constant, which can be subsequently fixed by including the error of the energy in the loss [65]. For the testing stage of we 
use the relative �2 error of the forces as metric, which is defined as

εrel :=
√√√√∑

�,i ‖F [�]
i − FNNθ (x[�]

i )‖2∑ ‖F [�]‖2
.

�,i i

9
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Fig. 6. The structure of full-range network.

The training parameters are listed below.
The experiments shown in the sequel are designed to provide a fair comparison with state-of-the-art methods for local-

ized interactions. They showcase that, by adding a single LRC-layer, one can outperform these methods significantly.
The kernels ψ used in the experiment typically exhibit two interaction lengths: ψ(·) ≡ α1ψ

μ1 (·) +α2ψ
μ2 (·), where each 

of ψμ1 and ψμ2 is either a simple exponential kernel or screened-Coulomb kernel (also known as the Yukawa kernel). 
For each of ψμ1 and ψμ2 , the superscripts denote the reciprocal of the interaction length, i.e., length scale ∼ μ−1

1 or 
∼ μ−1

2 . Without loss of generality, μ1 > μ2, so that μ1 corresponds to the short-range scale and μ2 the long-range scale. 
We also assume that 0 ≤ α2 ≤ α1 and α1 + α2 = 1, so that the effect of the long-range interaction can be smaller in 
magnitude compared to that of the short-range interaction. This assumption reflects the fact that in many cases, the short-
range interactions are dominant, which in return has been used by recent ML-based methods to neglect the long-range 
interactions with only a marginal loss of accuracy (see, e.g., [4,64]). In the special case of α2 = 0, the kernel exhibits only a 
single scale ∼ μ−1

1 . The precise definition of the kernel depends on the spatial dimension and boundary conditions, which 
are explained in Section 3.

For a fixed set of kernel parameters (μ1, μ2, α1, α2), we consider two types of data: large- and small-scale data, gener-
ated in the domains 	lr and 	sr respectively (details to be defined in each experiment).

The Fourier multiplier within the LRC-layer is parameterized as

φ̂β,λ(k) = 4πβ

|k|2 + λ2
, (23)

where β and λ are trainable parameters. This is a simple parameterization, and a more complex model can be used as well 
with minimal changes to the procedure. For all experiments shown below, two kernel channels are used and as a result 
there are only four trainable parameters in the LRC-layer.

The numerical results aim to show namely two properties: i) the LRC-layer is able to efficiently capture LRIs, ii) the 
two-scale training strategy can reduce the amount of large-scale data significantly, and iii) the accuracy of the LRC-layer 
depends weakly on the number of Fourier modes, provided that the multiplier is properly sampled. To demonstrate the 
first property, we gradually increase the interaction length of the kernel. The accuracy of the short-range network with a 
fixed interaction radius is supposed to decrease rapidly, while using the LRC-layer improves the accuracy significantly. To 
show the second property, we generate data with two interaction lengths and train the full-range network using the one-
and two-scale strategies. To show the third property we generate data with two interactions lengths and we train similar 
networks but with different values of NFFT . Finally, we also aim to demonstrate that the LRC-layer is competitive against a 
direct convolution in which the all-to-all computation is performed explicitly.

For the training procedure we use the Adam optimizer [29] along with an exponential scheduler. The learning rate with 
the initial learning rate taken to be 0.001 and, for every 10 epochs, it decreases by a factor of 0.95. In order to balance the 
computational time and the accuracy, a multi-stage training is adopted, where at each stage we modify the batch-size and 
the number of epochs. In particular, four stages are used: we start using a batch size of 8 snapshots and train the network 
200 epochs and then at each stage we double both the size of the batch size and the number of epochs. In the two-scale 
training strategy, the same training parameters defined above are used for each stage.
10
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Table 1
Relative testing error for trained screened-Coulomb type 1D models with α1 = 1, α2 = 0, and 
varying μ1. Notice that μ2 can be arbitrary here given that α2 = 0.

μ1 0.5 1.0 2.0 5.0 10.0

short-range network 0.05119 0.02919 0.00597 0.00079 0.00032
full-range network 0.00828 0.00602 0.00336 0.00077 0.00054

Table 2
Error with respect to NFFT in the 1D case.

NFFT None 63 125 251 501

Relative testing error 0.06143 0.00536 0.00546 0.00545 0.00539

Fig. 7. (left) Testing error of the trained 1D model with respect to the number of snapshots using the one- and two-scale training strategies using data 
generated with the screened-Coulomb potential and parameters μ1 = 5.0, μ2 = 0.5 (right) normalized wall-time for the LRC and the direct all-to-all 
computation.

5.1. One-dimensional examples

In the first set of experiments, the domain 	 = [0, 5], N = 20 and Nsample = 1000, where Nsample is the number 
of snapshots and N is the total number of points in each snapshot. For the kernel, we set α2 and vary μ1 to generate 
datasets at different interaction lengths. For each dataset we train both short-range and full-range networks using the 
one-scale data. The results are summarized in Table 1, where we can observe that as the characteristic interaction length 
increases, the accuracy of the short-range network decreases while using the full-range network can restore the accuracy. 
This experiment shows that local networks are often highly accurate when the interactions are localized, but the accuracy 
quickly deteriorates as the interaction length increases (i.e. as μ1 decreases).

For the second set of experiments we used two sets of kernel parameters: one heavily biased towards a localized inter-
action length, and another in which both interaction lengths are equally weighted. For each set of kernel parameters, we 
generate 10, 000 small-scale snapshots using 	sr = [0, 5] and N = 20, and a large number of large-scale snapshots using 
	lr = [0, 50] and N = 200 particles. The interaction radius R = 1.5, δmin = 0.05, and NFFT is 501. We train the network 
with the one- and two-scale training strategies described in the prequel. Fig. 7 (left) depicts the advantage of using the 
two-scale training strategy: we obtain roughly the same accuracy at a fraction of the number of large-scale training sam-
ples. We observe that when the number of large-scale training samples is sufficiently large, the resulting test accuracy is 
independent of the training strategy. We also observe that the training dynamic is stable with respect to different random 
seeds.

For the third set of experiments we measure the impact of NFFT on the approximation error. We test a screened-Coulomb 
type potential with parameters μ1 = 5.0, μ2 = 0.5, α1 = 0.5, α2 = 0.5, and Nsample = 1000. The domain 	 is [0, 50] and 
N = 200. We run the one-scale training procedure with varying NFFT (the number of Fourier multipliers), starting from 
NFFT = 63 and doubling them until NFFT = 501. Table 2 shows that the errors are relatively insensitive to the value of 
NFFT . The accuracy achieved by the architecture without the LRC-layer (denoted as None in Table 2) is added in order to 
demonstrate that the architecture is indeed capturing the LRIs.

We compare the LRC-layer with a direct all-to-all computation. We benchmark the wall time of both layers, with in-
creasingly number of particles. To account for implementation effects we normalize the wall times in Fig. 7 (right) and the 
results corroborate the complexity claims made in Section 2.
11
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Table 3
Relative testing error for trained screened-Coulomb type 2D models with α1 = 1, α2 = 0, and 
varying μ1. Again μ2 can be arbitrary given that α2 = 0.

μ1 1.0 2.0 5.0 10.0

short-range network 0.07847 0.02332 0.00433 0.00242
full-range network 0.00785 0.00526 0.00363 0.00181

Table 4
Error with respect to NFFT in the 2D case.

NFFT None 212 312 452 632

Relative testing error 0.01872 0.00202 0.00168 0.00153 0.00177

Table 5
Values of parameters λ1 and λ2 after training with respect to NFFT .

1D case 2D case

NFFT 63 125 251 501 212 312 452 632

λ1 2.697 3.689 4.181 4.599 3.608 3.664 3.096 2.955
λ2 0.522 0.525 0.517 0.519 0.926 1.039 1.088 1.082

5.2. Two-dimensional examples

We perform the same experiments as in the one-dimensional case. We fix 	 = [0, 15]2, N = 450 and Nsample = 10000. 
The results are summarized in Table 3, which shows that as μ decreases, the full-range network outperforms the short-
range one.

For the second set of experiments, R = 1.5, δmin = 0.05, and NFFT is 312. For the small-scale data, 	sr = [0, 3]2, N = 18, 
and Nsample = 10, 000. For the large-scale data, 	lr = [0, 15]2, N = 450. Similarly to the 1D case, we train the networks 
with both strategies using different amounts of large-scale data. The results summarized in Fig. 8 show that the two-scale 
strategy efficiently captures the LRIs with only a small number of the long-range training samples. Analogously to the 1D 
case, we can observe that for sufficiently large-scale training samples the resulting test accuracy is identical regardless of 
the training strategy used. Also similar to Fig. 7 (left), we find that the lowest achievable test error is larger in Fig. 8 (right, 
with a larger α2) than that in Fig. 8 (left, with a smaller α2). Nonetheless, we observe that the test error of the two-scale 
training strategy becomes less sensitive with respect to the number of training samples when α2 becomes larger, i.e. the 
LRI becomes more prominent.

For the third set of tests, we use a screened-Coulomb type potential is tested with μ1 = 10.0, μ2 = 1.0, α1 = 0.9, 
α2 = 0.1. Here 	 = [0, 5]2, N = 50 and Nsample = 1000. Starting with NFFT = 212, we steadily increase its value and repeat 
the same training procedure. The results are summarized in Table 4 where one observes the same trend as in the one-
dimensional case.

We recall that the Fourier multipliers are parametrized following

φ̂β,λ(k) = 4πβ

‖k‖2 + λ2
, (24)

where β and λ are two trainable parameters with λ providing a measure of the decay in space. Therefore, NFFT only 
determines the number of Fourier modes and not the parameters of the ansatz. As long as the Fourier kernel is properly 
sampled, the method is able to compute the correct characteristic interaction length.

One can observe this phenomenon in the experiment above, in which we extract the terminal value after training of the 
parameters λ1 and λ2 that correspond to the two channels in the LRC-layer, as summarized in Table 5. We observe that the 
value of λ2 is very close to that of μ2 (that is equal to 0.5 for 1D and 2.0 for 2D), which is responsible for the LRIs even for 
small values of NFFT . This proves that we can accurately capture the LRIs, in particular, the learned kernel is able to match 
the representation of ψμ in Fourier domain, which is given in equation (8).

5.3. Three-dimensional examples

The domain 	 is [0, 3]3 with 2 points in each of the 27 unit cells. The other parameters are the interaction radius 
R = 1.0, δmin = 0.1, and Nsample = 1000. The Fourier domain used is of size NFFT = 253. The results in Table 6 demonstrate 
that full-range network is capable of maintaining good accuracy for a wide range of characteristic interactions lengths.
12
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Fig. 8. Testing error of the trained 2D model with respect to the number of snapshots using the one- and two-scale training strategies using both screened-
Coulomb and exponential potentials with μ1 = 10, μ2 = 1 : (left) α1 = 0.9, and α2 = 0.1; and (right) α1 = 0.5, and α2 = 0.5.

Table 6
Relative testing error for trained exponential type 3D models with α1 = 1, α2 = 0, and varying 
μ1. Again μ2 can be arbitrary given that α2 = 0.

μ1 5 7.5 10

short-range network 0.06249 0.01125 0.00175
full-range network 0.00971 0.00411 0.00151

6. Conclusion

We have presented an efficient long-range convolutional (LRC) layer, which leverages the non-uniform fast Fourier trans-
form (NUFFT) to reduce the cost from quadratic to nearly-linear with respect to the number of degrees of freedom. We 
have also introduced a two-scale training strategy to effectively reduce the number of large-scale samples. This can be par-
ticularly important when the generation of these large-scale samples dominates the computational cost. While this paper 
demonstrates the effectiveness of the LRC-layer for computing the energy and force associated with a model N-body poten-
tial, we expect the LRC-layer to become a useful component in designing neural networks for modeling real chemical and 
materials systems, where the LRI cannot be accurately captured using short ranged models.
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Appendix A. Notation

A table of notations is summarized in Table A.7.
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Table A.7
Symbols introduced in the current paper with their corresponding meaning.

Notation

Symbol Meaning

Data

d Spatial dimension of the problem
	 = [0, L]d ⊂Rd Computational Domain
{xi}N

i=1 ⊂ 	 Point cloud
N Number of points in the point cloud
Nsample Number of snapshots for training
ψμ Interaction kernel
μ Inverse characteristic interaction length
U Potential
F j Forces exerted over the j-th particle

Networks

Di Descriptor associated to xi

F Fitting Network
θ Generic trainable parameters
fθ Trainable function inside the descriptor
gθ Trainable function inside the fitting network
R Interaction radius

LRC-layer

gτ Mollifier of the Dirac deltas defined in equation (B.2)
τ Broadening factor in the mollifier
FFT, IFFT Fast Fourier transform and its inverse
φθ Kernel with trainable parameters θ

φ̂θ Fourier transform of the kernel
LFFT Number of Fourier modes per dimension
NFFT = Ld

FFT . Total number of Fourier modes

Appendix B. NUFFT

In this section we provide further details for the NUFFT implementation. Suppose that the input of the NUFFT is given 
by {xi}N

i=1 ⊂Rd , where each point has a given associated weight f i . The first step is to construct the weighted train of Dirac 
deltas as

f (x) =
N∑

j=1

f jδ
(
x − x j

)
. (B.1)

We point out that in some of the experiments f j simply equals to 1. One then defines a periodic Gaussian convolution 
kernel

gτ (x) =
∑
�∈Zd

e−‖x−�L‖2/4τ , (B.2)

where L is the length of the interval and τ determines the size of mollification. In practice a good choice is τ = 12( L
2π LFFT

)2

[14], where LFFT is the number of points in each dimension and NFFT = Ld
FFT . We define

fτ (x) = f ∗ gτ (x) =
∫

[0,L]d

f (y)gτ (x − y)dy =
N∑

j=1

f j gτ (x − x j). (B.3)

With the Fourier transform defined as

Fτ (k) = 1

Ld

∫
[0,L]d

fτ (x)e−i2πk·x/Ldx (B.4)

for k ∈Zd , we compute its discrete counterpart

Fτ (k) ≈ 1

NFFT

∑
d

fτ (Lm/LFFT) e−i2πk·m/LFFT (B.5)

m∈[0,LFFT−1]

14
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≈ 1

NFFT

∑
m∈[0,LFFT−1]d

N∑
j=1

f j gτ

(
Lm/LFFT − x j

)
e−i2πk·m/LFFT (B.6)

This operation can be done in O(NFFT log(NFFT)) steps, independently of the number of inputs. Once this is computed, one 
can compute the Fourier transform of f at each frequency point by

F (k) =
(π

τ

)d/2
e‖k‖2τ Fτ (k) (B.7)

Once the Fourier transform of the Dirac delta train is ready, we multiply it by the Fourier multiplier φ̂(k), which is the 
Fourier transform of φ:

v̂(k) = φ̂(k)F (k) (B.8)

In the next sage, one needs to compute the inverse transform, and evaluate into the target points {xi }. First we decon-
volve the signal

v̂−τ (k) =
(π

τ

)d/2
e‖k‖2τ v̂(k) (B.9)

and compute the inverse Fourier transform

u−τ (x) =
∑

k∈[0,NFFT−1]d

v̂−τ (k)eik·x. (B.10)

Next, we interpolate to the point cloud

u
(
x j

) = u−τ ∗ gτ

(
x j

) = 1

Ld

∫
[0,L]d

u−τ (x)gτ

(
x j − x

)
dx (B.11)

≈ 1

NFFT

∑
m∈[0,LFFT−1]d

u−τ (Lm/LFFT) gτ

(
x j − Lm/LFFT

)
(B.12)

Even though in the current implementation all the parameters of the NUFFT are fixed, they can in principle be trained along 
with the rest of the networks. This training, if done naively increases significantly the computational cost. How to perform 
this operation efficiently is a direction of future research.
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