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This note proposes new algorithms for estimating spectral distribution from limited noisy 
Matsubara data. We consider both the cases of the spectral distribution with a sparse or 
a continuous support. In both cases, the proposed algorithm first constructs an accurate 
approximation of the Matsubara data, uses a novel conformal map to transform the 
domain, and applies Prony’s method to estimate the spectral distribution. Numerical results 
are provided to demonstrate the performance of the algorithms.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

For a real non-negative spectral distribution A(x) defined on R, the Green’s function G(z) for z ∈C associated with A(x)
is defined as

G(z) =
∫
R

1

z − x
A(x)dx.

In this note, we are interested in the analytic continuation problem of recovering A(x) from G(z). This is known to be an 
ill-posed inverse problem [26].

In many-body quantum mechanics, for a fixed inverse temperature β , the fermionic Matsubara grid is defined as {zn =
(2n+1)π

β
i}n∈Z . A particular important instance of the analytic continuation problem is to estimate A(x) from potentially 

noisy values of G(zn) at a finite Matsubara grid z−N , . . . , zN−1 for some integer N .
In most quantum mechanics computations, we are faced with two typical cases.

• The sparse case, where the support of A(x) consists of a small number of points in R. This is often the situation when 
one works with a small molecular system.

• The continuous case, where A(x) is a positive continuous function over R. This case often appears when working with 
a large condensed matter system.

1.1. Related work

In computational physics and chemistry, the Matsubara Green’s function data can be obtained from finite temperature 
simulations using for example GW theory or quantum Monte Carlo. The spectral function A(x) describes the single-particle 
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excitation spectrum [7]. Many methods have been proposed for this analytic continuation problem, including Pade approx-
imation [2,25,28], maximum entropy methods [1,15,16,18,23], stochastic analytic continuation [12,17,24,27], and the more 
recent development based on Nevanlinna functions [9,10].

This problem is also highly related to several other well-studied problems, including rational function approximation and 
interpolation [3,4,6,11,14,20,29], approximation with exponential sums [5,21], and hybridization fitting [19].

1.2. Contributions

This note proposes new algorithms for both the sparse and the continuous support cases. Since the problem is ill-
conditioned, some regularization or prior information is needed for the problem to be well-posed.

In the sparse support case, the fact that A(x) is a supported at a sum number of real points provides a strong prior. The 
actual implementation depends on whether the support of A(x) is well-separated from origin. By well-separated, we mean 
that the support of A(x) does not overlap with an interval [−ε, ε] where ε is larger than or at least comparable to π/β .

• If the support of A(x) is well-separated from the origin, G(z) is analytic in the strip [−ε, ε] × [− (2N−1)π
β

i, (2N−1)π
β

i]
in the complex plane. The proposed algorithm proceeds by (1) constructing an analytic approximation of G(z) over 
[− (2N−1)π

β
i, (2N−1)π

β
i], (2) using a conformal map to unzip this interval into a unit circle, (3) applying Prony’s method 

to identify the poles in the transformed domain, and (4) finally recovering pole locations the original domain and 
computing the weights.

• If the support of A(x) is not well-separated from the origin, the algorithm replaces the first step by constructing instead 
an analytic approximation of G(z) over (−∞, −π i

β
] ∪ [π i

β
, ∞) (an arc on the Riemann sphere) and the second step by 

unzipping this arc. The remaining steps are similar.

In the continuous support case, G(z) is only analytic in the upper half plane. Motivated by the concept of scattering 
resonances [8], one physically meaningful prior is that the Green function G(z) associated with A(x) can be well approxi-
mated by a Green function induced by a small number of pseudo poles located in the lower half plane. Under this prior, the 
algorithm proceeds by (1) constructing an accurate approximation of G(z) over the interval [π

β
i, (2N−1)π

β
i] of the positive 

imaginary axis, (2) using a conformal map to unzip this interval into a disk, (3) applying Prony’s method to identify the 
poles in the transformed domain, and (4) identifying the pseudo poles in the lower half plane plus evaluating the spectral 
function A(x).

The rest of the note is organized as follows. Section 2 describes the algorithm for the sparse support case and presents 
some numerical results. Section 3 is concerned with the continuous support case.

2. Sparse support

In the sparse support case, A(x) takes the form

A(x) =
∑

j

A jδξ j (x),

where {ξ j} are the pole locations on the real axis and {A j} are the weights. G(z) can then be written as

G(z) =
∑

j

1

z − ξ j
A j.

The actual algorithm depends on whether A(x) is supported near the origin. When the support of A(x) is well-separated 
from the origin, we refer to it the gapped case. When the support of A(x) is close to or even overlaps with the origin, we 
refer to it as the gapless case.

2.1. Gapped case

In the gapped case, the support of A(x) is assumed to be bounded away from the interval [−ε, ε], where ε is larger than 
or at least comparable to β/π . Due to this gap, G(z) is analytic in the strip [−ε, ε] × [− (2N−1)π

β
i, (2N−1)π

β
i].

Step 1. We first construct an analytic approximation of G(z) for z ∈ [− (2N−1)π
β

i, (2N−1)π
β

i]. The approximation adopted 
here is of the form

G(z) ≈
∑

k

1

z − xk
Xk,

where {xk} is a set of real locations in (−∞, −ε] ⋃[ε, ∞). To motivate the choice of {xk}, instead of viewing 
(−∞, −ε] ⋃[ε, ∞) as the union of two semi-infinite intervals, we can consider the Riemann sphere and regard it as 
2
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Fig. 1. Sparse support, gapped case. (a) Problem configuration where the blue dots are the fermionic Matsubara grid and the red dots are the unknown 
support of A(x). (b) G̃(z) approximates G(z) over [− (2N−1)π

β
i, (2N−1)π

β
i] and allows for random access. (c) Use a conformal map to unzip the interval 

[− (2N−1)π
β

i, (2N−1)π
β

i] into a unit disk. The mapped poles are denoted as {τ j}.

an arc passing the point of infinity. In order to place an approximation grid on this arc, it is convenient to map it first to a 
finite interval. To achieve this, we use the conformal map

z ↔ ε/z : (−∞,−ε]
⋃

[ε,∞) ↔ [−1,1].
For a finite interval, it is well-known that the Chebyshev grid is a good choice for approximation and interpolation. There-

fore, we first pick the Chebyshev grid 
{

cos
(

kπ
Nx−1

)}
0≤k<Nx

of [−1, 1] with Nx equal to a constant multiple of N . This grid 

is then mapped back with z ↔ ε/z to obtain

xk = ε

cos
(

kπ
Nx−1

) .

Given {xk}0≤k<Nx , we solve for the real positive weights {Xk}0≤k<Nx from the constrained least-squares problem

min
Xk>0

∑
−N≤n<N

∣∣∣∣∣∣G(zn) −
∑

0≤k<Nx

1

zn − xk
Xk

∣∣∣∣∣∣
2

. (1)

With {xk}0≤k<Nx and {Xk}0≤k<Nx available, the function

G̃(z) ≡
∑

0≤k<Nx

1

z − xk
Xk (2)

is an accurate approximation to G(z) over [− (2N−1)π
β

i, (2N−1)π
β

i] that allows for random access (see Fig. 1(b)).
Step 2. Introduce the following conformal map

z(t) = (2N − 1)π

β
· t − t−1

2
(3)

that unzips the interval [− (2N−1)π
β

i, (2N−1)π
β

i] in the z plane to the unit disk D in the t plane (see Fig. 1(c)).
In the t plane, the push-forward G(t) ≡ G(z(t)) of G(z) is analytic outside D except at the images of {ξ j}. Therefore, it 

takes the form

G(t) =
∑

j

T j

t − τ j
+ analytic,

where {τ j} are the images of {ξ j} and {T j} are the new weights. In addition, the push-forward G̃(t) ≡ G̃(z(t)) of G̃(z) is an 
approximation of G(t) over the unit circle that allows for random access.

A key observation is that if one can identify the poles {τ j} in the t plane, we can map them back to the z plane to obtain 
the poles {ξ j} of G(z).

Step 3. In order to find {τ j}, consider the integrals

1

2π i

∫
γ

G(t)

tk

dt

t
(4)

with k ≥ 1, where the contour γ is the unit circle in the t plane in the counterclockwise orientation. For any k ≥ 1,
3
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1

2π i

∫
γ

G(t)

tk

dt

t
= −

∑
j

1

2π i

∫
γ j

G(t)

tk

dt

t
= −

∑
j

T jτ
−(k+1)
j , (5)

where each γ j is an infinitesimal circle around the pole τ j . Here, the first equality comes from the facts that G(t)/tk+1 is 
analytic in the region outside γ and {γ j} and that G(t)/tk+1 decays rapidly at infinity. The second equality holds because the 
residue of G(t)/tk+1 at τ j is T jτ

−(k+1)
j . This shows that the integrals (4) for k ≥ 1 contain information about the poles {τ j}.

Since the integral (4) is over the unit circle, it is closely related to the Fourier transform of G(eiθ ), the restriction of G(t)
to the unit circle

1

2π i

∫
γ

G(t)

tk

dt

t
= 1

2π i

2π∫
0

G(eiθ )e−ikθ idθ = 1

2π

2π∫
0

G(eiθ )e−ikθ dθ ≡ Ĝk. (6)

As we can approximate G(t) along the unit circle with G̃(t), Ĝk can be approximated. Putting (5) and (6) together, we have 
for k ≥ 1

Ĝk = 1

2π i

∫
γ

G(t)

tk

dt

t
= −

∑
j

T jτ
−(k+1)
j . (7)

To recover {τ j} outside D, we apply Prony’s method [22] to these Fourier coefficients of the positive frequencies. Follow-
ing [30], define the semi-infinite vector

Ĝ+ ≡
⎡
⎢⎣

Ĝ1

Ĝ2
...

⎤
⎥⎦ ≡ 1

2π i

∫
γ

G(t)

⎡
⎢⎣

t−2

t−3

...

⎤
⎥⎦dt ≡

⎡
⎢⎢⎣

−∑
j T jτ

−2
j

−∑
j T jτ

−3
j

...

⎤
⎥⎥⎦ ,

where these identities follow from (7). Let S be the operator that shifts the semi-infinite vector upward (and drops the first 
element). For any τ j

S

⎡
⎢⎢⎣

τ−2
j

τ−3
j
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

τ−3
j

τ−4
j
...

⎤
⎥⎥⎦ , i.e., (S − τ−1

j )

⎡
⎢⎢⎣

τ−2
j

τ−3
j
...

⎤
⎥⎥⎦ = 0.

Since the operators S − τ−1
j commute with each other,

∏



(S − τ−1

 )

⎡
⎢⎢⎣

τ−2
j

τ−3
j
...

⎤
⎥⎥⎦ = 0. (8)

Since the product 
∏


(S −τ−1

 ) is independent of any specific j and Ĝ+ is a linear combination of these semi-infinite vectors 

with weights −T j , we hold∏



(S − τ−1

 )Ĝ+ = 0. (9)

Let us introduce the polynomial∏



(t − τ−1

 ) ≡ p(t) ≡ p0t0 + · · · + pdtd,

where the degree d is equal to the number of poles outside D. Then (9) becomes

p(S)Ĝ+ ≡ p0(S0Ĝ+) + · · · + pd(SdĜ+) = 0, i.e.,

⎡
⎢⎣

Ĝ1 Ĝ2 · · · Ĝd+1

Ĝ2 Ĝ3 · · · Ĝd+2
...

...
. . .

...

⎤
⎥⎦

⎡
⎣ p0

. . .

pd

⎤
⎦ = 0. (10)

This implies that the number of poles {τ j} is equal to the smallest value d such that the matrix in (10) is rank deficient. 
[p0, . . . , pd]T can be computed as a non-zero vector in the null-space of this matrix and the roots of p(t) ≡ p0t0 + . . .+ pdtd

are {τ−1}. Taking inverse of these roots gives the poles {τ j}.
j

4
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Step 4. Applying the map (3) to {τ j} leads to the poles {ξ j}, i.e., the support of A(x) in the z plane. With {ξ j} identified, 
we solve the constrained convex optimization problem

min
A j≥0

∑
−N≤n<N

∣∣∣∣∣∣G(zn) −
∑

j

A j

zn − ξ j

∣∣∣∣∣∣
2

(11)

for the weights {A j}.
Implementation details. To implement this algorithm, we need to address several numerical issues.

• The computation of the weights {Xk} in (1) is solved with CVX [13].
• The semi-infinite matrix in (10). In the implementation, pick a value dmax that is believed to be the upper bound of the 

number of poles and form the matrix

H =

⎡
⎢⎢⎢⎣

Ĝ1 Ĝ2 · · · Ĝdmax

Ĝ2 Ĝ3 · · · Ĝ(dmax+1)

...
...

. . .
...

Ĝl Ĝl+1 · · · Ĝ(dmax+l−1)

⎤
⎥⎥⎥⎦ (12)

with l ≥ dmax. In practice, l = dmax is enough.
• The numerical estimation of the rank d in (10). Let s1, s2, . . . , sdmax be the singular values of the matrix H . The numerical 

rank d is set to be the index with the largest singular value drop in the logarithmic scale (before reaching the noise 
level).

• The computation of the vector [p0, . . . , pd]T . We first compute the singular value decomposition (SVD) of⎡
⎢⎢⎢⎣

Ĝ1 Ĝ2 · · · Ĝd+1

Ĝ2 Ĝ3 · · · Ĝd+2
...

...
. . .

...

Ĝl Ĝl+1 · · · Ĝd+l

⎤
⎥⎥⎥⎦ ,

a submatrix of (12). [p0, . . . , pd]T is then chosen to be the last column of the V matrix of the SVD.
• The matrix H in (12) requires the Fourier coefficients Ĝk for k = 1, . . . , (dmax + l − 1). Since the push-forward G̃(t) of 

G̃(z) is an approximation of G(t) over the unit circle, we have

Ĝk ≈ 1

2π

2π∫
0

G̃(eiθ )e−ikθ dθ.

To approximate this integral, define θn = 2πn
Nθ

for n = 0, . . . , Nθ − 1, where Nθ is chosen to be a constant multiple of N . 
With the trapezoidal quadrature rule,

Ĝk ≈ 1

Nθ

Nθ −1∑
n=0

G̃(eiθn )e−ikθn .

The trapezoidal rule is exponentially convergent for smooth functions when the step size 2π
Nθ

is sufficient small. In the 
current setting, this corresponds to Nθ 
 (2N−1)π/β

ε . Our choice of Nθ satisfies this condition because ε is larger than 
π/β . Therefore, the error due to the numerical quadrature is exponentially small and does not affect the accuracy of 
Ĝk .

• The constrained optimization problem (11) is solved with CVX [13].

Numerical results. The inverse temperature is β = 100 and the number of Matsubara points is N = 128. For fixed values 
of β and N , the smaller the gap the harder the problem.

The noise model in G(zn) is additive

G(zn) ← G(zn) + σ · M · NC(0,1), (13)

where M = (∑
n |G(zn)|2/N

)1/2
is the average magnitude and NC(0, 1) is the standard complex normal distribution. The 

noise levels in the experiments are σ = 10−4, 10−3, and 10−2.
5
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Fig. 2. Sparse support and gapped case. Results with gap ε = 0.1 at different noise levels.

Fig. 3. Sparse support and gapped case. Results with gap ε = 0.05 at different noise levels.

In the first example, the gap is ε = 0.1 and the results are summarized in Fig. 2. For σ = 10−4, the algorithm results in 
an accurate reconstruction in terms of both the pole locations and the weights. At σ = 10−3, the reconstruction is still quite 
accurate. At σ = 10−2, there are noticeable errors in the pole locations, while the weights are still quite accurate.

In the second example, the gap is ε = 0.05 and the results are presented in Fig. 3. The numerical behaviors are similar 
to the ε = 0.1 case, though the errors are larger due to the smaller gap ε .

2.2. Gapless case

When the support of A(x) contains the origin, G(z) fails to be analytic there. Even when the support of A(x) is only close 
to the origin, G(z) can become too oscillatory for accurate numerical approximations. Therefore, instead of approximating 
G(z) over the interval [− (2N−1)π

β
i, (2N−1)π

β
i], we consider approximating G(z) over z ∈ (−∞, −π i

β
] ∪ [π i

β
, ∞). This is in fact 

an arc on the Riemman sphere and G(z) is analytic in a neighborhood of it.
Step 1. We first construct an analytic approximation of G(z) over (−∞, −π i

β
] ∪ [π i

β
, ∞). The approximation is again of 

the form G(z) ≈ ∑
k

1
z−xk

Xk , where {xk} is a set of points on the real axis. To motivate the choice of {xk}, consider the 
conformal map

w = z − q

z + q
, z = −q · w + 1

w − 1
,

where q =
√

2N−1π
β

i. This map makes the upper half plane in z to the unit disk in w , the real axis in z to the unit circle in 
w , and the point q in z to the origin in w . Motivated by the trapezoidal quadrature rule, we choose an equally spaced grid 
of size Nx on the unit circle in w with Nx equal to a constant multiple of N . This grid is then mapped back to the z plane 
to give {xk}0≤k<Nx .

Given {xk}0≤k<Nx , we solve for the real positive weights {Xk} from the constrained least-squares problem

min
Xk>0

∑
n

∣∣∣∣∣G(zn) −
∑

k

1

zn − xk
Xk

∣∣∣∣∣
2

.

With {xk} and {Xk} available now, the function
6
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Fig. 4. Sparse support, gapless case. (a) Problem configuration where the blue dots are the fermionic Matsubara grid and the red dots are the unknown 
support of A(x). (b) G̃(z) approximates G(z) over (−∞, − π i

β
] ∪ [ π i

β
, ∞) and allows for random access. (c) Use a conformal map to unzip (−∞, − π i

β
] ∪

[ π i
β

, ∞) into a unit disk. The mapped poles are denoted as {τ j}.

G̃(z) ≡
∑

k

1

z − xk
Xk

serves as an accurate approximation to G(z) over (−∞, −π i
β

] ∪ [π i
β

, ∞) that allows for random access (see Fig. 4(b)).
Step 2. Introduce the conformal map

z = −π

β
· 2

t − t−1 , (14)

that unzips (−∞, −π i
β

] ∪ [π i
β

, ∞) in the z plane to the unit disk D in the t plane (see Fig. 4(c)). The z plane is mapped 
into the interior of the unit disk.

In the t plane, the push-forward G(t) ≡ G(z(t)) of G(z) is analytic inside D except at the images of {ξ j}. Therefore, it 
takes the form

G(t) =
∑

j

T j

t − τ j
+ analytic,

where the poles {τ j} are the images of {ξ j}. The push-forward G̃(t) ≡ G̃(z(t)) of G̃(z) is an approximation of G(t) over the 
unit circle that allows for random access. If one can identify the poles {τ j} in the t plane, we can map them back to the z
plane to obtain the poles {ξ j} of G(z).

Step 3. To find {τ j}, consider the integrals

1

2π i

∫
γ

G(t)

tk

dt

t

with k ≤ −1 instead, where the contour γ is again the unit circle in the counterclockwise orientation. For any k ≤ −1,

1

2π i

∫
γ

G(t)

tk

dt

t
=

∑
j

1

2π i

∫
γ j

G(t)

tk

dt

t
=

∑
j

T jτ
−(k+1)
j ,

where each γ j is an infinitesimal circle around the pole τ j . Here, the first equality comes from the facts that G(t)/tk+1

is analytic inside γ but outside {γ j}. The second equality holds because the residue of G(t)/tk+1 at τ j is T jτ
−(k+1)
j . This 

demonstrates that the integrals for k ≤ −1 contain information about the poles {τ j}.
Since the integral is over the unit circle, it is equal to the Fourier coefficients of negative frequencies. In summary, we 

have for k ≤ −1

Ĝk = 1

2π i

∫
γ

G(t)

tk

dt

t
=

∑
j

T jτ
−(k+1)
j .

To recover the poles {τ j} inside D, we apply Prony’s method to these Fourier coefficients of the negative frequencies. 
Define the semi-infinite vector

Ĝ− ≡
⎡
⎢⎣

Ĝ−1

Ĝ−2
...

⎤
⎥⎦ ≡ 1

2π i

∫
γ

G(t)

⎡
⎢⎣

t0

t1

...

⎤
⎥⎦dt ≡

⎡
⎢⎢⎣

∑
j T jτ

0
j∑

j T jτ
1
j

...

⎤
⎥⎥⎦ .
7
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Fig. 5. Sparse support and gapless case. The support of A(x) contains the origin. Results at different noise levels.

For any τ j

S

⎡
⎢⎢⎣

τ 0
j

τ 1
j
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

τ 1
j

τ 2
j
...

⎤
⎥⎥⎦ , i.e., (S − τ j)

⎡
⎢⎢⎣

τ 0
j

τ 1
j
...

⎤
⎥⎥⎦ = 0.

Since the operators S − τ j all commute,

∏



(S − τ
)

⎡
⎢⎢⎣

τ 0
j

τ 1
j
...

⎤
⎥⎥⎦ = 0. (15)

Since Ĝ− is a linear combination of such semi-infinite vectors with weights T j ,∏



(S − τ
)Ĝ− = 0.

Introduce the polynomial 
∏


(t − τ
) ≡ p(t) ≡ p0t0 + · · · + pdtd , where the degree d is equal to the number of poles inside 
D. Then (15) becomes

p(S)Ĝ− ≡ p0(S0Ĝ−) + · · · + pd(SdĜ−) = 0, i.e.,

⎡
⎢⎣

Ĝ−1 Ĝ−2 · · · Ĝ−(d+1)

Ĝ−2 Ĝ−3 · · · Ĝ−(d+2)

...
...

. . .
...

⎤
⎥⎦

⎡
⎣ p0

. . .

pd

⎤
⎦ = 0. (16)

This implies that the number of poles {τ j} is equal to the smallest value d such that the matrix in (16) is rank deficient. 
[p0, . . . , pd]T can be computed as a non-zero vector in the null-space of this matrix and the roots of p(t) = p0t0 + . . .+ pdtd

are the poles {τ j} in D.
Step 4. Applying the map (14) to {τ j} leads to the poles {ξ j}, i.e., the support of A(x) in the z plane. With {ξ j} located, 

we solve the constrained convex optimization problem

min
A j≥0

∑
i

∣∣∣∣∣∣G(zi) −
∑

j

A j

zi − ξ j

∣∣∣∣∣∣
2

(17)

for {A j}.
Numerical results. The inverse temperature is β = 100 and the number of Matsubara points is N = 128. The noise in 

G(zn) is still additive as in (13). We comment that the gapless case is more difficult, since one can always regard the gapped 
case as a special instance of the gapless case. Due to the increased difficulty, the noise levels in this experiment are smaller: 
σ = 10−6, 10−5, and 10−4.

In the first example, the support of the spectral distribution A(x) includes the origin. The numerical results are summa-
rized in Fig. 5. At σ = 10−6, the algorithm gives an accurate reconstruction for both the pole locations and the weights. At 
σ = 10−5, the reconstruction is still quite accurate. At σ = 10−4, we observe some noticeable errors in the locations and 
weights.

In the second example, the support of A(x) includes the point 0.01 but not the origin. The numerical results are sum-
marized in Fig. 6. Notice that the reconstruction splits the pole at 0.01 into two poles. Except this issue, the rest of the 
reconstruction is quite accurate across different noise levels.
8
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Fig. 6. Sparse support and gapless case. The support of A(x) avoids the origin but contains a nearby point 0.01. Results at different noise levels.

3. Continuous support

In the continuous support case, A(x) > 0 on the real axis. The prior is that G(z) can be well-approximated by a small 
number of pseudo poles in the lower half complex plane, i.e.,

G(z) ≈
∑

j

1

z − ξ j
A j

where {ξ j} are the poles in the lower half plane and {A j} are the weights.
Step 1. Construct an accurate approximation of G(z) for z ∈ [π

β
i, (2N−1)π

β
i]. To motivate the construction, consider the 

case of a pole located at −ηi for η > 0, i.e., G(z) ≈ 1
z+ηi . When η is close to zero, G(z) becomes quite steep when z

approaches the origin from the positive imaginary axis, making it difficult for standard interpolation and approximation 
schemes. The key idea is to consider instead 1/G(z) ≈ z + ηi, which is easy for approximation.

Let us define H(z) ≡ 1/G(z). At the Matsubara points {zn}, we have access to H(zn) = 1/G(zn). Based on the data 
{(zn, H(zn)}, construct a high-order spline interpolant H̃(z) ≈ H(z) over the interval [π

β
i, (2N−1)π

β
i]. Once this is ready, the 

function

G̃(z) ≡ 1/H̃(z) (18)

is an accurate approximation to G(z) over [π
β

i, (2N−1)π
β

i] that allows for random access (see Fig. 7(b)).

Step 2. Let q =
√

2N−1π
β

i and introduce the following sequence of conformal map (from z to w and to t) that unzips the 
interval [π

β
i, (2N−1)π

β
i] in the z plane to the unit disk D in the t plane (see Fig. 7(c) and (d))

w = z − q

z + q
, t = w

r
+

√
w2

r2
− 1, (19)

where r = (2N−1)−√
2N−1

(2N−1)+√
2N−1

. The inverse conformal map is

z = −q · w + 1

w − 1
, w = r

2

(
t + 1

t

)
. (20)

In the t plane, the push-forward G(t) ≡ G(z(w(t))) of G(z) is analytic outside D except at the images of {ξ j}. Therefore, 
it takes the form

G(t) =
∑

j

T j

t − τ j
+ analytic,

where the poles {τ j} are the images of {ξ j}. Again, the key observation is that, if one can identify the poles {τ j} in the t
plane, we can map them back to the z plane to obtain the poles {ξ j} of G(z).

Step 3. Following the discussion in Section 2.1, use Prony’s method to identify the poles {τ j} outside D. This step again 
involves the Fourier coefficients Ĝk at the positive frequencies.

Step 4. Applying the inverse maps (20) to {τ j} gives the locations of the pseudo poles {ξ j} in the lower half z plane. 
With {ξ j} located, solve the constrained convex optimization problem
9
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Fig. 7. Continuous support. (a) Problem configuration where the blue dots are the fermionic Matsubara grid and the red dots are the locations of the pseudo 
poles. (b) G̃(z) approximation of G(z) over [ π

β
i, (2N−1)π

β
i] and allows for random access. (c) The first step of the conformal map brings the real axis to the 

unit circle and [ π
β

i, (2N−1)π
β

i] to a real interval. (d) The second step of the conformal map unzips this real interval into a unit disk. The mapped poles are 
denoted as {τ j}.

min
A j :∀x Im(

∑
j A j/(x−ξ j))≤0

∑
i

∣∣∣∣∣∣G(zi) −
∑

j

A j

zi − ξ j

∣∣∣∣∣∣
2

(21)

to compute the weights {A j}. Finally, with both {ξ j} and {A j} ready, the spectral function A(x) can be recovered by evalu-
ating

− 1

π
Im

∑
j

A j

x + i0+ − ξ j
. (22)

Notice that the constraint in (21) is included to ensure that (22) is positive.
Implementation details. To implement this algorithm, we need to take care several numerical issues.

• For the spline interpolation for H(z), a fifth order spline is used.
• To compute the Fourier coefficients {Ĝk}, we again use a uniform grid θn = 2πn

Nθ
for n = 0, . . . , Nθ − 1. Nθ is chosen to 

be a multiple of N to ensure the exponential convergence of the trapezoidal rule.
• The constrained optimization problem (21) is solved with CVX [13].

Numerical results. The inverse temperature is β = 100 and the number of Matsubara points is N = 256. The noise in 
G(zn) is again additive as in (13). The noise levels in the experiments are σ = 5 · 10−7, 5 · 10−6, 5 · 10−5.

In the first example, A(x) corresponds to a sum of pseudo poles at

{−2 − 0.03i,−1 − 0.03i,0 − 0.03i,1 − 0.03i,2 − 0.03i}
and hence the prior used by the algorithm is valid here. The results are summarized in Fig. 8, where we plot − 1

π ImG(x +
0+i) on a horizontal line immediate above the real axis. At σ = 5 · 10−7, the algorithms give an accurate reconstruction for 
the spectral function A(x). At σ = 5 · 10−6, the reconstruction is still quite good, though the magnitude shows some error. 
At σ = 5 · 10−5, the reconstructed profile shows some significant error.

In the second example, A(x) is the sum of five Gaussians centered at

{−2,−1,0,1,2},
each with variance equal to 5 · 10−3. For this example, the prior is misspecified. The results are summarized in Fig. 9. At 
σ = 5 · 10−7, the peak locations are well identified but the widths and heights are a bit off. At σ = 5 · 10−6, there is a shift 
towards the center for the two Gaussians farthest from the origin. At σ = 5 · 10−5, the reconstructed profile shows some 
significant errors.
10
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Fig. 8. Continuous support. The spectral function A(x) corresponds to a sum of pseudo poles in the lower half plane. Results at difficult noise levels.

Fig. 9. Continuous support. The spectral function A(x) is equal to a sum of five Gaussians on the real axis. Results at difficult noise levels.
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