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Abstract

This note considers the problem of minimizing interacting free energy. Motivated by the
mirror descent algorithm, for a given interacting free energy, we propose a descent dynamics
with a novel metric that takes into consideration the reference measure and the interacting
term. This metric naturally suggests a monotone reparameterization of the probability mea-
sure. By discretizing the reparameterized descent dynamics with the explicit Euler method,
we arrive at a new mirror-descent-type algorithm for minimizing interacting free energy.
Numerical results are included to demonstrate the efficiency of the proposed algorithms.

Keywords Mirror descent algorithms - Interacting free energy - Kullback—Leibler
divergence - Reverse Kullback—Leibler divergence - Hellinger divergence

1 Introduction

This paper considers the problem of minimizing free energies of the following form

1
F(p) = D(pllu)+/9p(X)V(X)dX+ 5// p)W(x, y)p(y)dxdy €Y

for a probability density p over domain Q2. D(p||n) is a divergence function between
p and a reference density w and typically examples are Kullback-Leibler divergence,
reverse Kullback—Leibler divergence, and Hellinger divergence. In the interacting term
Jf pWpdxdy, W is symmetric and can either be positive-definite or not. Non-positive-
definite interacting terms appear in Keller—Segel models in mathematical biology and granular
flows in kinetic theory. Recently, positive-definite interacting terms appear in the mean field
modeling of neural network training [9,15,19,21].

The work of L.Y. is partially supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC)
program and also by the National Science Foundation under award DMS-1818449. The author thanks
Wauchen Li and Wotao Yin for comments and suggestions. Data sharing not applicable to this article as no
datasets were generated or analyzed during the current study.

Bd Lexing Ying
lexing @stanford.edu

1 Department of Mathematics and ICME, Stanford University, Stanford, CA 94305, USA

Published online: 12 September 2020 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-020-01303-z&domain=pdf
http://orcid.org/0000-0003-1547-1457

51 Page2of14 Journal of Scientific Computing (2020) 84:51

The goal of this paper is to develop fast first-order algorithms for identifying minimums
of (1). When F is convex (for example, when W is positive-definite), there exists a unique
global minimizer and the goal is to compute this global minimizer efficiently. When F is
non-convex, there are typically many local minimums and the more moderate goal is to find
one such local minimum.

There are several difficulties for computing local minima for (1). First, this is an optimiza-
tion problem over probability simplex, hence one needs to deal with the constraints p(x) > 0
and f p(x)dx = 1. Second, when the reference measure p(x) varies drastically for different
x € Q, the optimization problem can be quite ill-conditioned. Third, we aim to avoid costly
second-order Newton or quasi-Newton methods that involve matrix inversions or solves.

1.1 Motivations and Approach

Our approach is motivated by the mirror descent algorithm [16] popularized recently in the
machine learning community. Because of several nice computational and analytical features,
the mirror descent algorithm has played a significant role in online learning and optimization.
For an objective function E(p) over the space of probability densities, it finds a minimizer
of E(p) as follows. Given a current density p¥, each step solves for

= : Ky OE & ky o 1L k
p = argmin, E(p )+5(p ) (p—p )"‘EDKL(P”P ) 2)

and then projects p back to the space of probability densities. Taking derivative of (2) in p
results in

SE & 5k
ng(p )+In(p/p")+1=0,

with p proportional to p* exp (—n ‘;—I; (p* )). Projecting it back to the probability simplex via
rescaling gives

1 SE SE
P =—prexp(—n—0H ). Z=/p" exp ( —n— (p") ) dx. 3)
Z 3p Sp

Let us now give a different derivation of the mirror descent algorithm from a more numer-
ical analysis perspective. The starting point is the natural gradient flow of E(p) with the
Fisher—Rao metric diag(1/p):

. 1 <8E+) (8E+>
p=——7—|—+c|]=-p|—+c),
I/p \ép dp

where ’g—E is Frechet derivative and c is the Lagrange multiplier associated with | q P(x)dx =
1. Moving p to the left hand side gives rise to an equation of In p.

. SE
(1np):—<—+c).
Sp

Using the explicit Euler method in the new variable In p with step size n results in
SE
Inp*l=mpk—y (8—(191‘) + c) ;
p
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where ¢ is determined from the condition [ p*tldx = 1 and this is equivalent to (3). This
derivation shows that mirror descent can be viewed as the explicit Euler discretization of the
natural gradient flow in the reparameterization ¢ (p) = In p.

The mirror descent is effective when the Hessian of the energy function E(p) is close to
the Fisher—Rao metric 1/ p, up to a constant scaling. This is the case for

E(p) = / p(x)In p(x)dx + / V(x)p(x)dx,
where the Hessian is exactly the Fisher—Rao metric. In this case, the natural gradient is
(Inp)=—(np+V+o).

This is a linear system of ordinary differential equations with coefficient 1 in the new variable
In p. The stiffness is gone and one can take large steps.

Coming back to the free energy (1), the mirror descent algorithm described above is not
particularly effective, due to the existence of the reference measure p (in the reverse KL and
Hellinger cases) as well as the extra interacting term W. In fact, for general © and W, the
Fisher—Rao metric 1/p in the natural gradient algorithm is quite far away from the Hessian
matrix of the Newton method. Therefore, there is no reason to expect the standard mirror
descent algorithm to be efficient. Our approach consists of the following steps:

e Choose an appropriate diagonal metric based on ; and W

e Design a reparameterization function ¢ based on the chosen metric;
e Derive the algorithm by performing the explicit Euler discretization;
e Work out the renormalization step.

1.2 Related Work

The mirror descent algorithm [3,16] was proposed as an effective first-order method for
convex optimization by taking into consideration the geometry of the problem. For certain
types of constraint sets, the mirror descent algorithm is nearly optimal among first order
methods [6], offering an almost dimensional independent convergence rate. In the setting
of online optimization, mirror descent also allows one to obtain a bound for the cumulative
regret [2,5]. There is a vast literature on mirror descent and related algorithms and we refer
to [6,20] for further discussions.

The interacting free energy of form (1) appear in several applications, such as Keller—
Segel models [18] in mathematical biology, as well as the granular flow in kinetic theory
[7,22]. In these applications, the evolution of the probability density is governed by the
Wasserstein gradient flow [11,17] of the free energy, i.e., the gradient flow with respect to
the Wasserstein metric —V - (pV(-)). The main computational task in these applications is
to compute the evolution of the Wasserstein gradient flow and several numerical methods
based on finite element, finite volume, and particle methods [4,8,12—14] have been proposed
for this. Compared with these algorithms, the goal of this paper is different as we only care
about the minimizers. Therefore, we have the freedom to pick any descent dynamics that
leads to the minimizer. As we have seen, our flow is closer to the natural gradient rather than
the Wasserstein gradient.
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1.3 Contents

The paper considers three common cases of the divergence term D(p||x) and is organized
as follows. Section 2 addresses the Kullback—Leibler divergence, Sect. 3 is about the reverse
Kullback-Leibler case, and finally Sect. 4 discusses the Hellinger distance case. In each
case, we address both the case of positive-definite W term as well as the general situation of
non-positive-definite W.

As the metric adopted here is of the Fisher—Rao type as opposed to the Wasserstein type,
there is no derivative involved in the computation. To simplify the presentation and also to
make connection with the numerical implementation, we work with a probability density
{p1, ..., pn} over adiscrete set of n points {x1, ..., x,} rather than over a continuous space.
The interacting free energy can be written as

1
F(p) = D(pllw) + Zini +5 ZPiWiij-
i ij
This is indeed the setup when (1) is discretized with a numerical treatment.
1.4 Data Availability Statement
Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

2 Kullback-Leibler Divergence

For the KL divergence case,

n n n

DL(pllw) =Y pilnpi/wi =y pilnpi— Y pilnp.
i=1 i=1 i=1

Since the last term involving p can be absorbed into the potential V, it is convenient to

assume u to be the uniform measure and consider equivalently

1
FxL(p) = E pilnp; + E Vipi + 5 E piWijpj.
i i i,j

The Hessian is given by

When W is non-positive-definite, the safe way is to just use diag(1/p) as the gradient metric.
When W is positive-definite, we extract the diagonal « = diag(W) € R” of W and use
diag(1/p + o) as the gradient metric.

2.1 Non-positive-Definite Case

Using diag(1/p) as the metric, the gradient flow is

p=—pnp+V+Wp+o).
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Fig. 1 KL divergence, non-positive-definite case with a Keller—Segel free energy. Left: free energy versus
iteration. Middle: free energy error versus iteration. Right: density p at the final iteration (solid curve) compared
with the uniform density (dashed curve)

Moving the metric to the left hand side gives

(Inp)=—(np+V+Wp+o).

If we introduce a reparameterization from p € R” to g € R” with g; = ¢;(p;) = In p; and
pi = ¢ (2i) = exp(gi)

¢ :pi — g, (0,1) = (—00,0),
o7 g — pi, (—00,0) = (0, 1),

the gradient flow becomes
g=—(g+V+Wp+o.

The explicit Euler discretization gives

The constant ¢ is determined by the normalization condition

Yoo G t+o=1,

which leads to ¢ = —1In (}_; exp(g;)) .

We illustrate the efficiency of the algorithm with a Keller—Segel model. Consider the
domain [0, 1] discretized with n = 1024 points {x; = ,lli}. The potential V is zero and the
Interacting term 1S

3
Wij = Ell‘l(|xi —)Cj| +8)

with & = 107°. The step size At is taken to be 1. Starting from a random initial condition,
we run the descent algorithm for 100 steps. The results are summarized in Fig. 1. At the
end of the 100 iterations, the free energy error is of order 10~ 1%, The final density shows the
concentration property of the Keller—Segel free energy.
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2.2 Positive-Definite Case
Using diag(1/p) + « as the metric, the gradient flow is

)=————(np+V+Wp+o).
p 1/p+a( p p+o)

Moving the metric to the left hand side gives
(lnpii-otp) =—(np+ap+V+W-—-a)p-+c).

If we introduce a reparameterization from p € R” to g € R” with g; = ¢;(p;) = In(p;) +
A pi

¢i 2 pi ~> &, (0,1) = (—00, &),

¢ g = pi. (—00,@) > (0. 1),
the gradient flow becomes

§=-@+V+W-a)p+o).

The explicit Euler discretization gives

g=g" — A +V+ W —a)ph),
Fth=g+c
The constant ¢ is determined by the normalization condition

Yo7 Gi+o =1

Let us observe that ) ; ¢~ 1(gi + ¢) is an increasing function in ¢ as each o !is increasing.
The correct value ¢ can be shown to be in

. 1o L . -
min|(In—+ — —g |, min(e; — &) | -
no n

Plugging the two endpoints of the interval shows that at the left endpoint ) ; ¢, "Gi+o) <1
and at the right endpoint ), ¢i_1 (g + ¢) > 1. Therefore, there is a unique ¢ value satisfies
M o ! (gi + ¢) = 1 within this interval. This can be easily found using Newton, bisection,
or interpolation methods [10].

To illustrate the efficiency of this algorithm, we consider the periodic domain [0, 1] dis-
cretized with n = 1024 points. The potential V is chosen to be V; = sin(4mwx;) and the
interacting term is

o, i=7,
Wij = Ja/2, i=j+£1,
0, otherwise,

with @ = 103, leading to «;; = 103 for each i. The step size At is taken to be 1. Starting from
a random initial condition, we run the algorithm for 100 steps with the results summarized
in Fig. 2. Within 20 iterations, it reaches within 10~!3 accuracy. The final probability den-
sity shows that the interacting term in the free energy further suppresses oscillations in the
minimizing density.
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Fig. 2 KL divergence, positive-definite case. Left: free energy versus iteration. Middle: free energy error
versus iteration. Right: density p at the final iteration (solid curve) compared with the minimizing density
exp(—V;)/Z if W is set to zero (dashed curve)

3 Reverse Kullback-Leibler Divergence

For the reverse KL divergence

Der(pllp) =Y pilnpi/pi =Y pilnpi — Y pilnp;.
[ i i

L

The free energy is now
1
Fxr(p) = — Zui In p; + Z Vipi + 3 ZpiWiij~
i 1 tJ

The Hessian is given by

8%F,
5 rgL = diag (%) + W
p p

and it can be quite far from the mirror descent choice diag (1 / pz) even when W is zero, since
1 can be drastically different for different i. When W is non-positive-definite, it is safe to
continue using diag (u / pz) as the gradient metric. When W is positive-definite, we extract
the diagonal o = diag(W) of W and use diag (i/p> + ) as the gradient metric.

3.1 Non-positive-Definite Case

Using diag (11/p?) as the metric, the gradient flow is

1
n/p?
Moving the metric to the left hand side gives

p= <—%+V+Wp+c>.

(—1/p) = —(—=u/p+V + Wp+o).

If we introduce a reparameterization from p € R” to g € R" with g; = ¢;(p;)
and p; = ¢ (g1) = —11i/8i

— Wi/ pi

¢i :pi =~ gi, (0,1) = (—o0, —u;),
o7 g — pi. (=00, —pmi) = (0, 1),
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Fig. 3 Reverse KL divergence, non-positive-definite case with a Keller—Segel free energy. Left: free energy
versus iteration. Middle: free energy error versus iteration. Right: density p at the final iteration (solid curve)
and the reference measure p (dashed curve)

the gradient flow becomes
g=—(@+V+Wp+o).
The explicit Euler discretization gives
g=g" — A + v+ wph,
=gt

The constant ¢ is determined by the normalization condition

Yoo Git+o=1,

Since each ¢, Uis increasing, »; o ! (gi + ¢) is an increasing function in ¢. We claim that
the correct value ¢ can be shown to be in
(min (—=g; —np;), min(—g — @;)) .
Plugging the two endpoints of the interval shows that at the left endpoint ), ¢i_1 (gi+c) <1
and at the right endpoint ), ¢, Y(&i + ¢) > 1. Therefore, there is a unique ¢ value satisfies
> #7 (& +¢) = 1 within this interval.
As a numerical example, we consider a Keller—Segel model. Consider the domain [0, 1]

discretized withn = 1024 points {x; = %}. The potential V is equal to zero and the interacting
term W;; is given by

2
Wij = gln(|xi —xjl+¢)
with ¢ = 107°. The reference measure y is taken to be p; ~ x;‘, leading to a ratio of 10'2
between the largest and the smallest w; values. The step size At is taken to be 1. Starting

from a random initial condition, we run the descent algorithm for 100 steps and the results
are summarized in Fig. 3. Within 30 iterations, the algorithm reaches within 10~!3 accuracy.

3.2 Positive-Definite Case
Using diag (,u /p*+ a) as the metric, the gradient flow is

p=- O((lnp—i—V—i—Wp—i—c).

n/p* +
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Moving the metric to the left hand side gives

(—u/p +ap)=—(=p/p+ap+V+ W —a)p+o).
If we introduce a reparameterization from p € R" to g € R” with g; = ¢; (p;) = —ui/pi +
a;pi and p; = ¢ (g1) = W
¢i:pi > &, (0,1) > (—o0, —ui + ),
¢ g = pin (=00, —pi +ap) = (0, 1),
the gradient flow becomes
g=—(@g+V+W-—-a)p+o).

The Explicit Euler discretization gives

The constant ¢ is determined by the normalization condition
—1,~
Yoo G +o=1,
i

which can be solved since it is monotone. The correct value ¢ can be shown to be in
. ~ o . -
(mm <_gi —np; + ;) ,min(—g; — u; + ai)) .

Plugging the two endpoints of the interval shows that the left endpoint ), ¢>l._1 gi+o) <l
and at the right endpoint ), ¢, ! (g + ¢) > 1. Therefore, there is a unique ¢ value satisfies
> #7 (& +¢) = 1 within this interval.

As a numerical example, consider the periodic domain [0, 1] discretized with n = 1024
points. The potential V is chosen to be zero and the interacting term is

o, i=7,
Wij=3a/2, i=j=%x1,
0, otherwise,
with @ = 107, leading to o; = 10? for each i. The reference measure p is taken to be

Wi ~ x? The step size At is taken to be 1. Starting from a random initial condition, we run
the descent algorithm for 100 steps with the results summarized in Fig. 4. After about only
10 iterations, the free energy error is reduced to about 1013 .

4 Hellinger Divergence

For the Hellinger divergence

Du(pllw) = Y (Vpi = Vi) = =2 Jwipi +cst
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Fig. 4 Reverse KL divergence, positive-definite case. Left: free energy versus iteration. Middle: free energy
error versus iteration. Right: density p at the final iteration (solid curve) and the reference measure p (dashed
curve)

The free energy up to a constant is
1
Fu(p)=-2)_ Jwmipi+ Y Vipi + 3 > piWip;.
i i i,

The Hessian is given by

L T T

8p2 = dlag (2])73/2> =+ W.

Notice that the Hessian can be quite far from the mirror descent choice diag(1/(2p3/2)) even
when W is zero, since p can be drastically different for different i. When W is non-positive-
definite, it is safe to continue using diag (ul/ 2/@2p3/ 2)) as the gradient metric. When W is

positive-definite, we extract the diagonal « = diag(W) and use diag (,ul/z/(2p3/2) + a) as
the gradient metric.

4.1 Non-positive-Definite Case

Using diag (11'/2/(2p*/?)) as the metric, the gradient flow is

) 1 w )
= (- /S V+Wp+c).
b u1/2/<2p3/2>< \fp b

Moving the metric to the left hand side gives

(—M) =—(=Ju/p+V+Wp+o.

If we introduce a reparameterization from p € R" to g € R" with g; = ¢; (p;) = —/ i/ pi
and p; = ¢ (¢1) = i/ g}

¢i : Pi — gl'ﬂ (07 1) — (_OO, _\/E),
o7 g — pis (=00, —J/I) — (0,1),

the gradient flow becomes

g=—-(@g+V+Wp+o.
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Fig. 5 Hellinger divergence, non-positive-definite case with a Keller—Segel free energy. Left: free energy
versus iteration. Middle: free energy error versus iteration. Right: density p at the final iteration (solid curve)
and the reference measure p (dashed line)

The explicit Euler discretization gives

g =g"— At + vV +wph),
g

The constant ¢ is determined by the normalization condition
Yoo G to=1,
i
which can be solved since it is monotone. The correct value ¢ can be shown to be in
(min (—g; — /Api) , min(—g; — /7)) -

Plugging the two endpoints of the interval shows that at the left endpoint ), ¢, I gito) <1
and at the right endpoint ), ¢i_1 (g + ¢) > 1. Therefore, there is a unique ¢ value satisfies
Yo '(: + ¢) = 1 within this interval.

We illustrate the efficiency of the algorithm using a Keller—Segel model. Consider the
domain [0, 1] discretized with n = 1024 points {x; = ,’li}. The potential V is zero and the
interacting term W;; is given by

1
Wij = gln(|xi —xjl+¢)
with & = 1070, The reference measure 4 is taken to be j; ~ x;‘ . The step size At is taken to

be 1. Starting from a random initial condition, we run the descent algorithm for 100 steps and
the results are summarized in Fig. 5. Within 30 iterations, it reaches within 1071 accuracy.

4.2 Positive-Definite Case

Using diag (,ul/z/(2p3/2) + a) as the metric, the gradient flow is

. 1 m
= (- /= +V4+Wp+c].
P M‘/z/(2p3/2)+a< Vo b )

Moving the metric to the left hand side gives
(—WL/p +06p) =—(=vu/ptap+V+W-ap+o).
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Fig.6 Hellinger divergence, positive-definite case. Left: free energy versus iteration. Middle: free energy error
versus iteration. Right: density p at the final iteration (solid curve) and the reference measure p (dashed curve)

If we introduce a reparameterization from p € R"tog € R" with g; = ¢;(p;) = —/ i/ pi+

o pi:
®i i pi —> gi» (0, 1) = (=00, =/l + o),
¢ g = piv (00, =/l +ai) > (0, 1),
the gradient flow becomes
g=—@g@+V+W-—-a)p+o).
An explicit Euler discretization gives

g=g"— Atg +V + (W —a)ph),
gk+1 — g +e.
The constant c is determined by the normalization condition

Yoo G to=1,

which can be solved since it is monotone. The correct value ¢ can be shown to be in
. ~ o . ~
(mln (—gi — /i + ;’) ,min(—g; — /1ti + ai)) .

Plugging the two endpoints of the interval shows that the left endpoint ", ¢, ! (gi+o) <1
and at the right endpoint ), ¢, Y(&i + ¢) > 1. Therefore, there is a unique ¢ value satisfies
> #7 (& +¢) = 1 within this interval.

In the numerical test, we consider the periodic domain [0, 1] discretized with n = 1024
points. The potential V is chosen to be zero and the interacting term is

o, i=7j,
W,'j: 0(/2, i:j:l:l,
0, otherwise,
with @ = 102, This leads to o = 10% for each i = 1, ..., n. The reference measure uis

chosen such that pu; ~ x? The step size At is taken to be 1. Starting from a random initial
condition, we run the descent algorithm for 100 steps. The results are summarized in Fig. 6.
Within about 15 iterations, it converges to an accuracy of order 10~1.
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5 Discussions

This paper proposes mirror-descent-type algorithms for minimizing interacting free energies.
Below we point out a few questions for future work. First, the proposed algorithms are
obtained from discretizing the continuous-time gradient flow with a new metric based on
n and W. One can also derive the algorithm in a more traditional mirror descent form by
starting from the corresponding Bregman divergences.

Second, this paper considers three cases: KL divergence, reverse KL divergence, and
Hellinger divergence. In fact, the same procedure can be extended to most a-divergences [1].

When we treat the non-positive-definite case, W is simply dropped in the design of the
new metric. A more accurate, but potentially more computationally intensive, alternative is
to find a positive-definite approximation to W and then combine it with the Hessian from the
divergence term.

This interacting term of the free energy considered in this paper is only of quadratic form.
It is plausible that a similar procedure can be developed for non-quadratic interacting terms,
as long as there is an efficient way to approximate the diagonal of the Hessian.
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