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Abstract

Training deep neural networks with stochastic gra-
dient descent (SGD) can often achieve zero train-
ing loss on real-world tasks although the optimiza-
tion landscape is known to be highly non-convex.
To understand the success of SGD for training
deep neural networks, this work presents a mean-
field analysis of deep residual networks, based on
a line of works that interpret the continuum limit
of the deep residual network as an ordinary differ-
ential equation when the network capacity tends
to infinity. Specifically, we propose a new con-
tinuum limit of deep residual networks, which
enjoys a good landscape in the sense that every
local minimizer is global. This characterization
enables us to derive the first global convergence
result for multilayer neural networks in the mean-
field regime. Furthermore, without assuming the
convexity of the loss landscape, our proof relies
on a zero-loss assumption at the global minimizer
that can be achieved when the model shares a uni-
versal approximation property. Key to our result
is the observation that a deep residual network re-
sembles a shallow network ensemble (Veit et al.,
2016), i.e. a two-layer network. We bound the
difference between the shallow network and our
ResNet model via the adjoint sensitivity method,
which enables us to apply existing mean-field
analyses of two-layer networks to deep networks.
Furthermore, we propose several novel training
schemes based on the new continuous model, in-
cluding one training procedure that switches the
order of the residual blocks and results in strong
empirical performance on the benchmark datasets.
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1. Introduction
Neural networks have become state-of-the-art models in
numerous machine learning tasks and strong empirical per-
formance is often achieved by deeper networks. One land-
mark example is the residual network (ResNet) (He et al.,
2016a;b), which can be efficiently optimized even at ex-
tremely large depth such as 1000 layers. However, there
exists a gap between this empirical success and the theoret-
ical understanding: ResNets can be trained to almost zero
loss with standard stochastic gradient descent(Zhang et al.,
2016; Ishida et al., 2020), yet it is known that larger depth
leads to increasingly non-convex landscape even the the
presence of residual connections (Yun et al., 2019). While
global convergence can be obtained in the so-called “lazy”
regime e.g. (Jacot et al., 2018; Du et al., 2018), such ker-
nel models cannot capture fully-trained neural networks
(Suzuki, 2018; Chizat et al., 2019; Ghorbani et al., 2019).

In this work, we aim to demonstrate the provable optimiza-
tion of ResNet beyond the restrictive “lazy” regime. To
do so, we build upon recent works that connect ordinary
differential equation (ODE) models to infinite-depth neu-
ral networks (E, 2017; Lu et al., 2017; Sonoda & Murata,
2017; Haber & Ruthotto, 2017; Chen et al., 2018; Dupont
et al., 2019; Zhang et al., 2019c; Thorpe & van Gennip,
2018; Sonoda & Murata, 2019; Lu et al., 2019). Specif-
ically, each residual block of a ResNet can be written as
xn+1 = xn + ∆tf(xn, θn), which can be seen as the Euler
discretization of the ODE ẋt = f(x, t). This turns training
the neural network into solving an optimal control prob-
lem (Li et al., 2017; E et al., 2019a; Liu & Theodorou,
2019), under which backpropagation can be understood as
simulating the adjoint equation (Chen et al., 2018; Li et al.,
2017; Li & Hao, 2018; Zhang et al., 2019a; Li et al., 2020).
However, this analogy does not directly provide guarantees
of global convergence even in the continuum limit.

To address the problem of global convergence, we propose a
new limiting ODE model of ResNets. Formally, we model
deep ResNets via a mean-field ODE model

Ẋρ(x, t) =

∫
θ

f(Xρ(x, t), θ)ρ(θ, t)dθ

This model considers every residual block f(·, θi) as a parti-
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Figure 1. Illustration that ResNet behaves like shallow network
ensemble, i.e. a two-layer overparameterized neural network. The
high-level intuition is to show that the gradient of the two models
are at the same scale when the loss are comparable.

cle and optimizes over the empirical distribution of particles
ρ(θ, t), where θ denotes the weight of the residual block
and t denotes the layer index of the residual block. Similar
limiting objective function is proposed in (Hu et al., 2019;
Jabir et al., 2019; Ma et al., 2019; E et al., 2019b). (Hu et al.,
2019; Jabir et al., 2019) have introduce a further convex
condition on the Hamiltonian function which is generally
not true for the realistic setting. (Ma et al., 2019) is mainly
discussing the statistical property of the objective which is
out of the scope of the discussing of this paper. We con-
sider properties of the loss landscape with respect to the
distribution of weights, an approach similar to Bengio et al.
(2006); Bach (2017). Inspired by (Veit et al., 2016) that a
deep ResNet behaves like an ensemble of shallow models,
we compare a deep ResNet with its counterpart two-layer
network and show that the gradients of the two models are
close to each other. This leads us to conclude that, although
the loss landscape may not be convex, every local minimizer
is a global one.

1.1. Contribution

Our contributions can be summarized as follows:

• We derive a new continuous depth limit of deep
ResNets. In this new model, each residual block is
regarded as a particle and the training dynamics is cap-
tured by the gradient flow on the distribution of the
particles ρ.

• We analyze the loss landscape with respect to ρ and
show that all local minima have zero loss, which in-
dicates that every local optima is global. This prop-
erty leads to the conclusion that a full support station-
ary point of the Wasserstein gradient flow is a global
optimum. To the best of our knowledge, this is the
first global convergence result for multi-layer neu-
ral networks in the mean-field regime without the
convexity assumption on the loss landscape.

• We propose novel numerical schemes to approximate

the mean-field limit of the deep ResNets and demon-
strate that they achieves superior empirical results on
real-world datasets.

1.2. Related Work

Mean-Field Limit and Global Convergence. Recent
works have explored the global convergence of two-layer
neural networks by studying suitable scaling limits of the
stochastic gradient descent of two-layer neural network
when the width is sent to infinity and the second layer
scaled by one over the width of the neural network (Ni-
tanda & Suzuki, 2017; Mei et al., 2018; Rotskoff & Vanden-
Eijnden, 2018; Chizat & Bach, 2018; Sirignano & Spiliopou-
los, 2019). Though global convergence can be obtained
under certain conditions for two-layer networks, it is highly
nontrivial to extend this framework to multi-layer neural
networks: recent attempts (Araújo et al., 2019; Sirignano
& Spiliopoulos, 2019; Nguyen, 2019; Fang et al., 2019) do
not address realistic neural architectures directly or provide
conditions for global convergence.

Parallel to the mean-field regime, Jacot et al. (2018); Du
et al. (2018); Allen-Zhu et al. (2018); Zou et al. (2018); Oy-
mak & Soltanolkotabi (2019) provided global convergence
results for multi-layer networks in the so-called ”lazy” or
kernel regime. However, this description of deep neural net-
works is rather limited: the scaling of initialization forces
the distance traveled by each parameter to vanish asymp-
totically (Chizat et al., 2019), and thus training becomes
equivalent to kernel regression with respect to neural tan-
gent kernel (Arora et al., 2019; Jacot et al., 2018). On the
other hand, it is well-known that properly trained neural
networks can outperform kernel models in learning various
target functions (Wei et al., 2019; Suzuki, 2018; Ghorbani
et al., 2019; Ba et al., 2020; Allen-Zhu & Li, 2019). In
contrast, the mean-field regime considered in this work does
not reduce training into kernel regression; in other words,
the mean-field setting allows neurons to travel further and
learn adaptive features.

Landscape of ResNets. Li & Yuan (2017); Liu et al.
(2019) provided convergence results of gradient descent
on two-layer residual neural networks and showed that the
global minimum is unique. In parallel, Shamir (2018);
Kawaguchi & Bengio (2019) showed that when the net-
work consists of one residual block the gradient descent
solution is provably better than a linear classifier. How-
ever, recent work also pointed out that these positive results
may not hold true for deep ResNets composed of multi-
ple residual blocks. Regarding deeper models, Hardt &
Ma (2016); Bartlett et al. (2019); Wu et al. (2019) proved
the global convergence of the gradient descent for train-
ing deep linear ResNets. Yet it is known that even mild
nonlinear activation functions can destroy these good land-
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scape properties (Yun et al., 2018). In addition, (Bartlett
et al., 2018) considered a ResNet model with compositions
of close-to-identity functions, and provided convergence
result regarding the Fréchet gradient. However, (Bartlett
et al., 2018) also pointed out that such conclusion may no
longer hold for a realistic ResNet model. Our paper fills
this gap by introducing a new continuous model and pro-
viding conditions for the global convergence beyond the
previously considered kernel regime (Du et al., 2018; Zhang
et al., 2019b; Allen-Zhu et al., 2018; Zhang et al., 2019b).

1.3. Notations and Preliminaries

Notations. Let δ(·) denote the Dirac mass and 1Ω be
the indicator function on Ω. We denote by P2 the set
of probability measures endowed with the Wasserstein-2
distance (see below for definition). Let µ be the popula-
tion distribution of the input data and the induced norm by
‖f‖µ =

√
Ex∼µ[f(x)>f(x)].

Fréchet Derivative. We extend the notion of the gradient
to infinite dimensional space. For a functional f : X → R
defined on a Banach space X , the Fréchet derivative is an
element in the dual space df ∈ X∗ that satisfies

lim
δ∈X,δ→0

f(x+ δ)− f(x)− df(δ)

‖δ‖
= 0, for all x ∈ X.

In this paper, δf
δX is used to denote the Fréchet derivative.

Wasserstein Space. The Wasserstein-2 distance between
two probability measures µ, ν ∈ P(Rd) is defined as

W2(µ, ν) :=

(
inf

γ∈T (µ,ν)

∫
|y − x|2dγ(x, y)

)1/2

.

Here T (µ, ν) denotes the set of all couplings between µ
and ν, i.e., all probability measures γ ∈ P(Rd × Rd) with
marginals µ on the first factor and ν on the second.

Bounded Lipschitz norm. We say that a sequence of
measures µn ∈ (Rd) weakly (or narrowly) converges to
µ if, for all continuous and bounded function ϕ : Rd → R
it holds

∫
ϕµ. n →

∫
ϕµ. . For sequences which are bounded

in total variation norm, this is equivalent to the conver-
gence in Bounded Lipschitz norm. The latter is defined, for
µ ∈ (Rd), as

‖µ‖: = sup

{∫
ϕµ. ; ϕ : Rd → R, (ϕ) ≤ 1, ‖ϕ‖∞ ≤ 1

}
(1)

where (ϕ) is the smallest Lipschitz constant of ϕ and ‖ · ‖∞
the supremum norm.

2. Limiting Model
Following the observation that each residual block of a
ResNet un+1 = un + ∆tf(un, θn) can be considered as
one step of the forward Euler approximation of the ODE
ut = f(u, t) (E, 2017; Lu et al., 2017; Sonoda & Murata,
2017; Haber & Ruthotto, 2017), a series of recent papers
(Zhang et al., 2019c;a; Chen et al., 2018; Li et al., 2020;
2017; 2020) analyzed the deep neural networks in the con-
tinuous limit. Thorpe & van Gennip (2018) proved the
Gamma-convergence of ResNets in the asymptotic limit.
However, there are two points of that approach that require
further investigation. First, Thorpe & van Gennip (2018) in-
troduced a regularization term n

∑n
i=1 ‖θi − θi−1‖2, where

n is the depth of the network. This regularization becomes
stronger as the network gets deeper, which implies a more
constrained space of functions that the network can repre-
sent.

Second, while the Gamma-convergence result is concerned
with the convergence of the global minima of a sequence of
energy functionals, it gives rather little information about
the landscape of the limiting functional, which can be quite
complicated for non-convex objective functions. Later work
(Avelin & Nyström, 2019) proved that stochastic gradient
descent of a deep ResNet with constant weight across lay-
ers converges to the gradient flow of loss using the ODE
model. However, letting the weights of the ResNet be the
same across all layers weakens the approximation power
and makes optimization landscape more complicated. To
address the reason behind the global convergence of the
gradient flow, in this section, we propose a new continuous
limiting model of the deep residual network.

2.1. A New Continuous Model

The goal is to minimize the l2 loss function

E(ρ) = Ex∼µ
[1

2
(〈w1, Xρ(x, 1)〉 − y(x))

2
]
. (2)

over parameter distributions ρ(θ, t) for θ in a compact set Ω
and t ∈ [0, 1]. Here Xρ(x, t) is the solution of the ODE

Ẋρ(x, t) =

∫
θ

f(Xρ(x, t), θ)ρ(θ, t)dθ,Xρ(x, 0) = 〈w2, x〉
(3)

The ODE (3) is understood in the integrated sense, i.e., for
fixed distribution ρ(·, ·) and input x ∈ Rd1 , the solution
path Xρ(x, t), t ∈ [0, 1] satisfies

Xρ(x, t) = Xρ(x, 0) +

∫ t

0

∫
Ω

f(Xρ(x, s), θ)ρ(θ, s)dθds.

Here y(x) = E[y|x] ∈ R is the function to be estimated.
The parameter w2 ∈ Rd1×d2 represents the first convolu-
tion layer in the ResNet (He et al., 2016a;b), which ex-
tracts feature before sending them to the residual blocks.
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To simplify the analysis, we let w2 to a predefined linear
transformation (i.e. not training the first layer parameters
w2) with the technical assumption that min{σ(w2)} ≥ σ1

and max{σ(w2)} ≤ σ2, where σ(w2) denotes the set of
singular values. We remark that this assumption is not un-
realistic, for example (Oyallon et al., 2017) let w2 be a
predefined wavelet transform and still achieved the state-of-
the-art result on several benchmark datasets. Here f(·, θ)
is the residual block with parameter θ that aims to learn a
feature transformation from Rd2 to Rd2 . For simplicity, we
assume that the residual block is a two layer neural network,
thus f(x, θ) = σ(θx), θ ∈ Ω ⊂ Rd2×d2 and σ : R → R is
an activation function, such as sigmoid and relu. Note that
in our notation σ(θx) the activation function σ is applied
separately to each component of the vector.

Finally, w1 ∈ Rd2×1 is a pooling operator that transfers the
final feature Xρ(x, 1) to the classification result and an l2
loss function is used for example. We also assume that w1

is a predefined linear transform with satisfies ‖w1‖2 = 1,
which can be easily achieved via an operator used in realistic
architecture such as the global average pooling (Lin et al.,
2013). Before starting the analysis, we first list the necessary
regularity assumptions.
Assumption 1. 1. (Boundedness of data and target

distribution) The input data x lies µ-almost surely
in a compact ball, i.e. ‖x‖ ≤ R1 for some constant
R1 > 0. At the same time the target function is also
bounded ‖y(·)‖∞ ≤ R2 for some constant R2 > 0.

2. (Lipschitz continuity of distribution with respect to
depth) There exists a constant Cρ such that

‖ρ(·, t1)− ρ(·, t2)‖BL ≤ Cρ|t1 − t2|

for all t1, t2 ∈ [0, 1].
3. The kernel k(x1, x2) := g(x1, x2) = σ(xᵀ1x2) is a
universal kernel (Micchelli et al., 2006), i.e. the span
of {k(x, ·) : x ∈ Rd2} is dense in L2.

4. (Locally Lipschitz derivative with sub-linear
growth (Chizat & Bach, 2018)) There exists a family
{Qr}r>0 of nested nonempty closed convex subsets of
Ω that satisfies:
• {u ∈ Ω | dist(u,Qr) ≤ r′} ⊂ Qr+r′ for all
r, r′ > 0.
• There exist constants C1, C2 > 0 such that

sup
θ∈Qr,x

‖∇xf(x, θ)‖ ≤ C1 + C2r

holds for all r > 0. Also the gradient of f(x, θ)
with respect to x is a Lipschitz function with Lips-
chitz constant Lr > 0.
• For each r, the gradient respect to the parameter
θ is also bounded

sup
‖x‖≤R1,θ∈Qr

‖∇θf(x, θ)‖ ≤ C3,r

for some constant C3,r.
Remark. Let us elaborate on these assumptions in the neu-
ral network setting. For Assumption 1.4, k(x1, x2) :=
g(x1, x2) = σ(xᵀ1x2) is a universal kernel holds for the
sigmoid and ReLU activation function. The local regular-
ity Assumption 1.5 concerning function f(x, θ) can easily
be satisfied, for ∇θσ(θᵀx) = σ′(θᵀx)x and ∇xσ(θᵀx) =
σ′(θᵀx)θ. Hence, in order to satisfy the local regularity
condition, one possible solution is that we utlize a Lipschitz
gradient activation function and set the local set Qr to be a
ball with radius r centered at origin.

Under these assumptions, we can establish the existence,
uniqueness, stability, and well-posedness of our forward
model.
Theorem 1. Under Assumption 1 and we further assume
that there exist an r > 0 such that µ is concentrated on one
of the nested sets Qr. Then the ODE in (3) has a unique
solution in t ∈ [0, 1] for any initial condition x ∈ Rd1 with
‖x‖ ≤ R1. Moreover, for any pair of distributions ρ1 and
ρ2, there exists a constant C such that

‖Xρ1(x, 1)−Xρ2(x, 1)‖ < CW2(ρ1, ρ2), (4)

for any ‖x‖ ≤ R1.

2.2. Deep Residual Network Behaves Like an Ensemble
Of Shallow Models

In this section, we briefly explain the intuition behind our
analysis, i.e. deep residual network can be approximated by
a two-layer neural network. Veit et al. (2016) introduced
an unraveled view of the ResNets and showed that deep
ResNets behave like ensembles of shallow models. First, we
offer a formal derivation to reveal how to make connection
between a deep ResNet and a two-layer neural network. The
first residual block is formulated as

X1 = X0 +
1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0.

By Taylor expansion, the second layer output is given by

X2 = X1 +
1

L

∫
θ1
σ(θ1X1)ρ1(θ1)dθ1

= X0 +
1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0

+

∫
θ1
σ(θ1(X0 +

1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0))ρ1(θ1)dθ1

= X0 +
1

L

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0

+X0 +
1

L

∫
θ1
σ(θ1X0)ρ1(θ1)dθ1

+
1

L2

∫
θ1

∇σ(θ1X0)θ1(

∫
θ0
σ(θ0X0)ρ0(θ0)dθ0)ρ1(θ1)dθ1

+ h.o.t.
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Iterating this expansion gives rise to

XL ≈ X0 +
1

L

L−1∑
a=0

∫
σ(θX0)ρa(θ)dθ

+
1

L2

∑
b>a

∫ ∫
∇σ(θbX0)θbσ(θaX0)ρb(θb)ρa(θa)dθbθa

+ h.o.t.

Here we only keep the terms that are at most quadratic in ρ.
A similar derivation shows that at order k in ρ there are

(
L
k

)
terms with coefficient 1

Lk
each. This implies that the k-th

order term in ρ decays as O( 1
k! ), suggesting that one can

approximate a deep network by the keeping a few leading
orders.

3. Landscape Analysis of the Mean-Field
Model

In the following, we show that the landscape of a deep
residual network enjoys the extraordinary property that any
local optima is global, by comparing the gradient of deep
residual network with the mean-field model of two-layer
neural network (Mei et al., 2018; Chizat et al., 2019; Nitanda
& Suzuki, 2017). To estimate the accuracy of the first order
approximation (i.e. linearization), we apply the adjoint
sensitivity analysis (Boltyanskiy et al., 1962) and show that
the difference between the gradient of two models can be
bounded via the stability constant of the backward adjoint
equation. More precisely, the goal is to show the backward
adjoint equation will only affect the gradient in a bounded
constant.

3.1. Gradient via the Adjoint Sensitivity Method

Adjoint Equation. To optimize the objective (2), we cal-
culate the gradient δE

δρ via the adjoint sensitivity method
(Boltyanskiy et al., 1962). To derive the adjoint equation,
we first view our generative models where ρ is treated as a
parameter as

Ẋ(x, t) = F (X(x, t); ρ), (5)

with

F (X(x, t); ρ) =

∫
f(X(x, t); θ)ρ(θ, t) dθ. (6)

The loss function can be written as

Ex∼µE(x; ρ) := Ex∼µ
1

2

∣∣〈w1, Xρ(x, 1)〉 − y(x)
∣∣2 (7)

Define

pρ(x, 1) :=
∂E(x; ρ)

∂Xρ(x, 1)
=
(
〈w1, Xρ(x, 1)〉 − y(x)

)
w1

(8)

The derivative of X(x, 1) with respect to X(x, s), denoted
by the Jacobian Jρ(x, s), satisfies at any previous time s ≤ 1
the adjoint equation of the ODE

J̇ρ(x, s) = −Jρ(x, s)∇XF (Xρ(x, s); ρ). (9)

Next, the perturbation of E by ρ is given by chain rule as

δE

δρ(s)
=

∂E

∂Xρ(X, 1)

δXρ(x, 1)

δρ(s)

=
∂E

∂Xρ(X, 1)
Jρ(x, s)

δF (Xρ(x, s); ρ)

δρ(s)

= pρ(x, s) f(Xρ(x, has), ·),

(10)

where pρ(x, s) (the derivative of E(x; ρ) with respect to
Xρ(x, s)) satisfies the adjoint equation

ṗρ(x, t) = −δXHρ(pρ, x, t)

= −pρ(x, t)
∫
∇Xf(Xρ(x, t), θ)ρ(θ, t)dθ,

which represents the gradient as a second backwards-in-
time augmented ODE. Here the Hamiltonian is defined as
Hρ(p, x, t) = p(x, t) ·

∫
f(x, θ)ρ(θ, t)dθ.

Utilizing the adjoint equation, we can characterize the gra-
dient of our model with respect to the distribution ρ. More
precisely, we may characterize the variation of the loss func-
tion with respect to the distribution as the following theorem.
A detailed proof is presented in Appendix.

Theorem 2. (Gradient of the parameter) For ρ ∈ P2 let

δE

δρ
(θ, t) = Ex∼µf(Xρ(x, t), θ))pρ(x, t).

Then for every ν ∈ P2, we have

E(ρ+ λ(ν − ρ)) = E(ρ) + λ

〈
δE

δρ
, (ν − ρ)

〉
+ o(λ)

for the convex combination (1− λ)ρ+ λν ∈ P2 with λ ∈
[0, 1].

Remark. The adjoint equation, i.e., the backward dynami-
cal system, can be understood as a continuum limit of the
back-propagation algorithm (LeCun et al., 1988; Li et al.,
2017; Zhang et al., 2019a).

3.2. Landscape Analysis

In this section we aim to show that the proposed model
enjoys a good landscape in the L2 geometry. Specifically,
we can always find a descent direction around a point whose
loss is strictly larger than 0, which means that all local
minimum is a global one. We list here a proof sketch and
the details are given in the Appendix.
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Theorem 3. If E(ρ) > 0 for distribution ρ ∈ P2 that is
supported on one of the nested sets Qr, we can always
construct a descend direction ν ∈ P2, i.e.

inf
ν∈P2

〈
δE

δρ
, (ν − ρ)

〉
< 0

Proof. First we lower bound the gradient with respect to the
feature mapXρ(·, t) by the loss function to show that chang-
ing feature map can always leads to a lower loss. This is
also observed by Bartlett et al. (2018; 2019), where they pro-
posed a functional derivative analysis of the compositional
model of near-identity functions.

The next lemma aims to show that the backward adjoint
process will not lose most of the information during prop-
agating the gradient, which is the reason why we claim a
ResNet’s gradient is similar to a two-layer one.

Lemma 1. The norm of the solution to the adjoint equation
can be bounded by the loss

‖pρ(·, t)‖µ ≥ e−(C1+C2r)E(ρ),∀t ∈ [0, 1]

where C1 and C2 are some constants and r is the same as
in Theorem 3.

Then we follow the idea that the neural network is a linear
model in P2 respect to the distribution of the weight(Bengio
et al., 2006; Bach, 2017; Mei et al., 2018). Thanks to the
existence and uniqueness of the solution of the ODE model
as stated in Theorem 1, the solution map of the ODE is
invertible so that there exists an inverse map X−1

ρ,t such that
we can construct an inversion function X−1

ρ,t (Xρ(x, t)) = x.
With X−1

ρ,t , we define p̂ρ(x, t) = pρ(X
−1
ρ,t (x), t).

Since ρ(θ, t) is a probability density, i.e.,
∫ ∫

ρ(θ, t)dθdt =
1, there exists t∗ ∈ (0, 1) such that

∫
θ
ρ(θ, t∗)dθ >

1
2 . Since

k(x1, x2) = f(x1, x2) is a universal kernel (Micchelli et al.,
2006), for any g(x) satisfying that ‖g‖µ̂ < ∞ for some
probability measure µ̂ and for any fixed ε > 0, there exists
a probability distribution δν̂ ∈ P2(Rd2) such that

‖g(x)−
∫
θ

f(x, θ)δν̂(θ)dθ‖µ̂ ≤ ε, (11)

In particular, in what follows we consider the function g(x)
and the measure µ̂ given by

g(x) := −p̂(x, t∗) +
1∫

θ
ρ(θ, t∗)dθ

∫
θ

f(x, θ)ρ(θ, t∗)dθ

where µ̂ = µ̂ρ,t∗ := Xρ(·, t∗)#µ. The value of ε will be
chosen later in the proof. Moreover, we also define the
perturbed measure

δν =

(
δµ̂(θ)− ρ(θ, t∗)∫

θ
ρ(θ, t∗)dθ

)
φ(t), (12)

where φ(t) is a smooth non-negative function integrates to
1 and compactly supported in the interval (0, 1), so that it is
clear that δν satisfies the regularity assumptions. We will
consider the perturbed probability density ν defined as

ν = ρ+ δrδν for some δr > 0.

Lemma 2. The constructed ν with ε sufficiently small gives
a descent direction of our model with the estimate〈

δE

δρ
, (ν − ρ)

〉
≤ −δr

2
e−2(C1+C2r)E(ρ) < 0. (13)

As Lemma 2 illustrated, if the loss E(ρ) is not equal to zero,
then we can always find a direction to decrease the loss,
which proves Theorem 3.

3.3. Discussion of the Wasserstein gradient flow

As described in the introduction, we consider each residual
block as a particle and trace the evolution of the empirical
distribution ρs of the particles during the training (here the
variable s denotes the training time). While using gradient
descent or stochastic gradient descent with small time steps,
we move each particle through a velocity field {vs}s≥0 and
the evolution can be expressed by a PDE ∂sρs = div(ρsvs),
where div is the divergence operator. Several recent papers
(Mei et al., 2018; Chizat & Bach, 2018; Rotskoff & Vanden-
Eijnden, 2018) have shown that when the gradient field
is gained from a (stochastic) gradient descent algorithm
for training a particle realization of the mean-field model,
the PDE is the Wasserstein gradient flow of the objective
function. Thus in this section, we consider the gradient
flow of the the objective function in the Wasserstein space,
given by a McKean–Vlasov type equation (Carrillo et al.,
2003; Ambrosio et al., 2008; Jordan et al., 1998; Otto, 2001;
Nitanda & Suzuki, 2017)

∂(θ,t)ρ

∂s
= div(θ,t)

(
ρ∇(θ,,t)

δE

δρ

)
. (14)

We consider the stationary point of such flow, i.e., distri-
bution ρ such that the right hand side is 0. Our next result
shows that such stationary points are global minimum of
the loss function under the homogeneous assumption of the
residual block and a separation property of the support of
the stationary distribution.

Theorem 4. (Informal) When the residual block (X, θ)
is positively p-homogeneous respective to θ. Let (ρs)s≥0

be the solution of the the Wasserstein gradient ∂(θ,t)ρ

∂s =

div(ρ,t)(ρ∇(ρ,t)
δE
δρ ) of our mean-field model (3). If (ρs)s≥0

converge to ρ∞ inW2 and ρ∗ concentrates in a ballB(0, rb)
and separates the spheres raSd−1×[0, 1] and rbSd−1×[0, 1].
Then ρ∗ is the global minimum satisfies E(ρ∞) = 0.
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The precise statement and the proof are presented in Ap-
pendix, where we also analyze the regularity of our objective
function in the Wasserstein space. The result guarantees
that when the gradient flow converges, it has to reach the
global minimum of the loss function.

4. Deep ResNet as Numerical Scheme
In this section, following (Bengio et al., 2006; Lu et al.,
2017), we aim to design scalable deep learning algorithms
via the discretization of the continuous model. We use a set
of particles to approximate the the distribution (Nitanda &
Suzuki, 2017; Ba et al., 2019; Liu & Wang, 2016) and Euler
scheme to numerical solve the ODE model which leads to a
simple Residual Network (Lu et al., 2017).

To simulate the Wasserstein gradient flow (14) via a stochas-
tic gradient descent algorithm, we use a particle representa-
tion of the distribution ρ(x, t), commonly used in the litera-
ture, see e.g., (Liu & Wang, 2016; Nitanda & Suzuki, 2017;
Rotskoff et al., 2019; Mei et al., 2018; Chizat & Bach, 2018).
In the two-layer neural network, the particle realization be-
comes the standard training procedure of using (stochastic)
gradient descent. Our aim is to extend this approach to deep
residual networks, starting from the continuum mean-field
model presented above. Since ρ characterizes the distribu-
tion of the pairs (θ, t), each particle in our representation
would carry the parameter θ, together with information on
the activation time period of the particle. Therefore, also
different from the usual standard ResNet, we also need to
allow the particle to move in the gradient direction corre-
sponding to t. We may consider using a parametrization of
ρ with n particles as

ρn(θ, t) =

n∑
i=1

δθi(θ)1[τi,τ ′i ]
(t).

The characteristic function 1[τi,τ ′i ]
can be viewed as a re-

laxation of the Dirac delta mass δτi(t). However, this
parametrization comes with a difficulty in practice, namely,
the intervals [ti, t

′
i] may overlap significantly with each

other, and in the worst case, though unlikely, all the time
intervals of the n particles coincide, which leads to heavy
computational cost in the training process.

Therefore, for practical implementation, we constrain that
every time instance t is just contained in the time interval of
a single particle. We realize this by adding a constraint τ ′i =
τi+1 between consecutive intervals. More precisely, given a
set of parameters (θi, τ i), we first sort them according to τ i

values. Assuming τ i are ordered, we define the architecture
as

X`+1 = X` + (τ ` − τ `−1)σ(θ`X`), 0 ≤ ` < n; (15)

X0 = x. (16)

Both θ and τ parameters can be trained with SGD and n is
the depth of the network. The order of τ may change during
the training (thus to make each particle indistinguishable to
guarantee the mean-field behavior), thus after every update,
we sort the τi to get the new order of the residual blocks.
The algorithm is listed in Algorithm 1. The new algorithm
only introduces n parameters, as n is the depth which is
around 100 in practice, thus the number of extra parame-
ters is negligible comparing to the 1M+ parameter number
typically used in usual ResNet architectures. The sorting of
{τi}ni=1 also induces negligible cost per step.

We also remark that the flexibility of τ ` can be also viewed
as an adaptive time marching scheme of the ODE model for
x, as τ ` − τ `−1 can be understood as the time step in the
Euler discretization. Since the parameters {τ `} are learned
from data, as a by-product, our scheme also naturally yields
a data-adaptive discretization scheme.

Algorithm 1 Training Of Mean-Field Deep Residual Net-
work

Given: A collection of residual blocks (θi, τi)
n
i=1

while training do
Sort (θi, τi) based on τi to be (θi, τ i) where τ0 ≤
· · · ≤ τn.
Define the ResNet as X`+1 = X` + (τ ` −
τ `−1)σ(θ`X`) for 0 ≤ ` < n.
Use gradient descent to update both θi and τ i.

end while

As the number of particles n becomes large, the expected
time evolution of ρn should be close to the gradient flow
(14). The rigorous proof of this is however non-trivial,
which will be left for future works.

5. Experiment
In this section, we aim to show that our algorithm is not
only designed from theoretical consideration but also re-
alizable on practical datasets and network structures. We
implement our algorithm for ResNet/ResNeXt on CIFAR
10/100 datasets and demonstrate that our “mean-field train-
ing” method consistently outperforms the vanilla stochastic
gradient descent.

Implementation Details.

On CIFAR, we follow the simple data augmentation method
in (He et al., 2016a;b) for training: 4 pixels are padded on
each side, and a 32×32 crop is randomly sampled from the
padded image or its horizontal flip. For testing, we only
evaluate the single view of the original 32×32 image.

For the experiments of ResNet on CIFAR, we adopt the
original design of the residual block in He et al. (2016a), i.e.
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using a small two-layer neural network as the residual block,
whose layered structure is bn-relu-conv-bn-relu-conv. We
start our networks with a single 3× 3 conv layer, followed
by 3 residual blocks, a global average pooling, and a fully-
connected classifier. Parameters are initialized following
the method introduced by He et al. (2015). Mini-batch SGD
is used to optimize the parameters with a batch size of 128.
During training, we apply a weight decay of 0.0001 for
ResNet and 0.0005 for ResNeXt, and a momentum of 0.9.

For ResNet on CIFAR10 (CIFAR100), we start with the
learning rate of 0.1, divide it by 10 at 80 (150) and 120 (225)
epochs and terminate the training at 160 (300) epochs. For
ResNeXt on CIFAR100, we start with the learning rate of
0.1 and divide it by 10 at 150 and 225 epochs, and terminate
the training at 300 epochs. We would like to mention that
here the ResNeXt is a preact version which is different from
the original (Xie et al., 2017). This difference leads to a
small performance drop on the final result. For each model
and dataset, we report the average test accuracy over 3 runs
in Table 5.

6. Discussion and Conclusion
6.1. Conclusion

To better understand the reason that stochastic gradient de-
scent can optimize the complicated landscape. Our work
directly consider an infinitely deep residual network. We
proposed a new continuous model of deep ResNets and
established an asymptotic global optimality property by
bounding the difference between the gradient of the deep
residual network and an associated two-layer network. Our
analysis can be considered as a theoretical characterization
of the observation that a deep residual network looks like a
shallow model ensemble (Veit et al., 2016) by utilizing ODE
and control theory. Based on the new continuous model,
we consider the original residual network as an approxima-
tion of the continuous model and proposed a new training

Vanilla mean-field Dataset
ResNet20 8.75 8.19 CIFAR10
ResNet32 7.51 7.15 CIFAR10
ResNet44 7.17 6.91 CIFAR10
ResNet56 6.97 6.72 CIFAR10
ResNet110 6.37 6.10 CIFAR10
ResNet164 5.46 5.19 CIFAR10
ResNeXt29(864d) 17.92 17.53 CIFAR100
ResNeXt29(1664d) 17.65 16.81 CIFAR100

Table 1. Comparison of the stochastic gradient descent and mean-
field training (Algorithm 1.) of ResNet On CIFAR Dataset. Results
indicate that our method our performs the Vanilla SGD consis-
tently.

method. The new method involves a step of sorting residual
blocks, which introduces essentially no extra computational
effort but results in better empirical results.

6.2. Discussion and Future Work

Our work gives qualitative analysis of the loss landscape of
a deep residual network and shows that its gradient differs
from the gradient of a two-layer neural network by at most
a bounded factor when the loss is at the same level. This
indicates that the deep residual network’s landscape may not
be much more complicate than a two-layer network, which
inspires us to formulate a mean-field analysis framework for
deep residual network and suggests a possible framework
for the optimization of the deep networks beyond the kernel
regime. (Yun et al., 2019) has shown that deep residual
network may not be better than a linear model in terms of
optimization, but our work suggests that this is caused by
the lack of overparameterization. In the highly overparam-
eterization regime, the landscape of deep ResNet can still
be nice. Based on the initiation and framework proposed in
our paper, there are several interesting directions related to
understanding and improving the residual networks.

Firstly, to ensure the full support assumption, we can con-
sider extending the neural birth-death (Rotskoff et al., 2019;
Chizat, 2019) to deep ResNets. Neural birth-death dynamics
considers the gradient flow in the Wasserstein-Fisher-Rao
space(Chizat et al., 2018) rather than the Wasserstein space
and ensures convergence. It’s also interesting to extend the
convergence proof to other optimization algorithms like na-
trual gradient descent (Kingma & Ba, 2014; Amari et al.,
2020; Wu & Xu, 2020).

Secondly, as shown in the derivation in Section 2.2, the
two-layer network approximation is just the lowest order ap-
proximation to the deep residual network and it is interesting
to explore the higher order terms.
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