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A MULTISCALE NEURAL NETWORK BASED ON HIERARCHICAL
MATRICES\ast 
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Abstract. In this work we introduce a new multiscale artificial neural network based on the
structure of \scrH -matrices. This network generalizes the latter to the nonlinear case by introducing
a local deep neural network at each spatial scale. Numerical results indicate that the network is
able to efficiently approximate discrete nonlinear maps obtained from discretized nonlinear partial
differential equations, such as those arising from nonlinear Schr\"odinger equations and the Kohn--Sham
density functional theory.
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tional neural network
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1. Introduction. In the past decades, there has been a great combined effort
in developing efficient algorithms to solve linear problems issued from discretization
of integral equations (IEs), and partial differential equations (PDEs). In particu-
lar, multiscale methods such as multigrid methods [10], the fast multipole method
[22], wavelets [46], and hierarchical matrices [9, 24] have been strikingly successful
in reducing the complexity for solving such systems. In several cases, for operators
of pseudo-differential type, these algorithms can achieve linear or quasi-linear com-
plexity. In a nutshell, these methods aim to use the inherent multiscale structure of
the underlying physical problem to build efficient representations at each scale, thus
compressing the information contained in the system. The gains in complexity stem
mainly from processing information at each scale, and merging it in a hierarchical
fashion.

Even though these techniques have been extensively applied to linear problems
with outstanding success, their application to nonlinear problems has been, to the best
of our knowledge, very limited. This is due to the high complexity of the solution
maps. In particular, building a global approximation of such maps would normally re-
quire an extremely large amount of parameters, which, in return, is often translated to
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algorithms with a prohibitive computational cost. The development of algorithms and
heuristics to reduce the cost is an area of active research [6, 19, 18, 23, 45]. However,
in general, each method is application-dependent and requires a deep understanding
of the underlying physics.

On the other hand, the surge of interest in machine learning methods, in partic-
ular, deep neural networks, has dramatically improved speech recognition [31], visual
object recognition [38], object detection, etc. This has fueled breakthroughs in many
domains such as drug discovery [44], genomics [40], and automatic translation [58],
among many others [39, 56]. Deep neural networks have empirically shown that it is
possible to obtain efficient representations of very high-dimensional functions. Even
though the universality theorem holds for neural networks [15, 33, 35, 48], i.e., they
can approximate arbitrarily well any function with mild regularity conditions, how
to efficiently build such approximations remains an open question. In particular, the
degree of approximation depends dramatically on the architecture of the neural net-
work, i.e., how the different layers are connected. In addition, there is a fine balance
between the number of parameters, the architecture, and the degree of approximation
[28, 29, 48].

This paper aims to combine the tools developed in deep neural networks with ideas
from multiscale methods. In particular, we extend hierarchical matrices (\scrH -matrices)
to nonlinear problems within the framework of neural networks. Let

(1.1) u = \scrM (v), u, v \in \Omega \subset \BbbR n,

be a nonlinear generalization of pseudo-differential operators, issued from an underly-
ing physical problem, described by either an IE or a PDE, where v can be considered
as a parameter in the equation, u is either the solution of the equation or a function
of it, and n is the number of variables.

We build a neural network with a novel multiscale structure inspired by hier-
archical matrices. We interpret the application of an \scrH -matrix to a vector using a
neural network structure as follows. We first reduce the dimensionality of the vec-
tor, or restrict it, by multiplying it by a short and wide structured matrix. Then we
process the encoded vector by multiplying it by a structured square matrix. Then we
return the vector to its original size, or interpolate it, by multiplying it by a structured
tall and skinny matrix. Such operations are performed separately at different spatial
scales. The final approximation to the matrix-vector multiplication is obtained by
adding the contributions from all spatial scales, including the near-field contribution,
which is represented by a near-diagonal matrix. Since every step is linear, the overall
operation is also a linear mapping. This interpretation allows us to directly generalize
the \scrH -matrix to nonlinear problems by replacing the structured square matrix in the
processing stage by a structured nonlinear network with several layers. The result-
ing artificial neural network, which we call multiscale neural network, only requires a
relatively modest number of parameters even for large problems.

We demonstrate the performance of the multiscale neural network by approx-
imating the solution to the nonlinear Schr\"odinger equation [2, 51], as well as the
Kohn--Sham map [32, 37]. These mappings are highly nonlinear, and are still well
approximated by the proposed neural network, with a relative accuracy on the order
of 10 - 4 \sim 10 - 3. Furthermore, we do not observe overfitting even in the presence of a
relatively small set of training samples.

1.1. Related work. Although machine learning and deep learning literature
is vast, the application of deep learning to numerical analysis problems is relatively

D
ow

nl
oa

de
d 

08
/0

3/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE NEURAL NETWORK 1191

new, though that is rapidly changing. Research using deep neural networks with
multiscale architectures has primarily focused on image [4, 11, 13, 43, 54, 60] and
video [47] processing.

Deep neural networks have been recently used to solve PDEs [7, 8, 12, 17, 27, 41,
52, 55, 57] and classical inverse problems [3, 49]. For general applications of machine
learning to nonlinear numerical analysis problems, the work of Raissi and Karnidiakis
used machine learning, in particular, Gaussian processes, to find parameters in non-
linear equations [53]; Chan and Elsheikh predicted the basis function on the coarse
grid in a multiscale finite volume method by neural networks (NNs); Khoo, Lu, and
Ying used neural network (NN) in the context of uncertainty quantification [34]; and
Zhang et al. used NN in the context of generating high-quality interatomic poten-
tials for molecular dynamics [64, 65]. Wang et al. applied nonlocal multicontinuum
NN on time-dependent nonlinear problems [61]. Khrulkov, Novikov, and Oseledets
[35] and Cohen, Sharir, and Shashua [15] developed deep NN architectures based on
tensor-train decomposition. In addition, we note that deep NNs with related mul-
tiscale structures [54, 50] have been proposed mainly for applications such as image
processing. However, we are not aware of any applications of such architectures to
solving nonlinear differential or integral equations.

1.2. Organization. The reminder of the paper is organized as follows. Sec-
tion 2 reviews the \scrH -matrices and interprets the \scrH -matrices using the framework of
NNs. Section 3 extends the NN representation of \scrH -matrices to the nonlinear case.
Section 4 discusses the implementation details and demonstrates the accuracy of the
architecture in representing nonlinear maps, followed by the conclusion and future
directions in section 5.

2. Neural network architecture for \bfscrH -matrices. In this section, we aim
to represent the matrix-vector multiplication of \scrH -matrices within the framework of
NNs. For the sake of clarity, we succinctly review the structure of \scrH -matrices for
the one-dimensional (1D) case in subsection 2.1. We interpret \scrH -matrices using the
framework of NNs in subsection 2.2, and then extend it to the multidimensional case
in subsection 2.3.

2.1. \bfscrH -matrices. Hierarchical matrices (\scrH -matrices) were first introduced by
Hackbusch et al. in a series of papers [24, 26, 25] as an algebraic framework for repre-
senting matrices with a hierarchically off-diagonal low-rank structure. This framework
provides efficient numerical methods for solving linear systems arising from IEs and
PDEs [9]. In what follows, we follow the notation in [42] to provide a brief introduc-
tion to the framework of \scrH -matrices in a simple uniform and Cartesian setting. The
interested reader is referred to [24, 9, 42] for further details.

Consider the IE

(2.1) u(x) =

\int 
\Omega 

g(x, y)v(y) dy, \Omega = [0, 1),

where u and v are periodic in \Omega and g(x, y) is smooth and numerically low-rank away
from the diagonal. A discretization with a uniform grid with N = 2Lm discretization
points yields the linear system given by

(2.2) u = Av,

where A \in \BbbR N\times N , and u, v \in \BbbR N are the discrete analogues of u(x) and v(x), respec-
tively.
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We introduce a hierarchical dyadic decomposition of the grid in L + 1 levels as
follows. We start by the 0th level of the decomposition, which corresponds to the set
of all grid points defined as

(2.3) \scrI (0) = \{ k/N : k = 0, . . . , N  - 1\} .

At each level \ell (0 \leq \ell \leq L), we decompose the grid in 2\ell disjoint segments.

Each segment is defined by \scrI (\ell )
i = \scrI (0) \cap [(i  - 1)/2\ell , i/2\ell ) for i = 1, . . . , 2\ell .

Throughout this manuscript, \scrI (\ell ) (or \scrJ (\ell )) denotes a generic segment of a given
level \ell , and the superscript \ell will be omitted when the level is clear from the context.
Moreover, following the usual terminology in \scrH -matrices, we say that a segment \scrJ (l)

(\ell \geq 1) is the parent of a segment \scrI (l - 1) if \scrI (l - 1) \subset \scrJ (l). Symmetrically, \scrI (l - 1) is
called a child of \scrJ (l). Clearly, each segment, except those on level L, has two child
segments.

l = 2

I(2)
2

l = 3

I(3)
3

l = 4

I(4)
5

I(2)
1

I(3)
1

I(4)
1

Box I
Adjacent

Interaction

Fig. 1. Illustration of the computational domain at level \ell = 2, 3, 4. The left and right figures
represent an interior segment and a boundary segment and their adjacent and interaction lists at
different levels.

In addition, for a segment \scrI on level \ell \geq 2, we define the following lists:
\sansN \sansL (\scrI ) neighbor list of \scrI . List of the segments on level \ell that are adjacent to \scrI 

including \scrI itself.
\sansI \sansL (\scrI ) interaction list of \scrI . If \ell = 2, \sansI \sansL (\scrI ) contains all the segments on level 2 minus

\sansN \sansL (\scrI ). If \ell > 2, \sansI \sansL (\scrI ) contains all the segments on level \ell that are children
of segments in \sansN \sansL (\scrP ) with \scrP being \scrI 's parent minus \sansN \sansL (\scrI ).

Figure 1 illustrates the dyadic partition of the computational domain and the lists
on levels \ell = 2, 3, 4. Clearly, \scrJ \in \sansN \sansL (\scrI ) if and only if \scrI \in \sansN \sansL (\scrJ ), and \scrJ \in \sansI \sansL (\scrI ) if
and only if \scrI \in \sansI \sansL (\scrJ ).

For a vector v \in \BbbR N , v\scrI denotes the elements of v indexed by \scrI , and for a matrix
A \in \BbbR N\times N , A\scrI ,\scrJ represents the submatrix given by the elements of A indexed by
\scrI \times \scrJ . The dyadic partition of the grid and the interaction lists induce a multilevel
decomposition of A as follows:
(2.4)

A =

L\sum 
\ell =2

A(\ell ) +A(ad),

A
(\ell )
\scrI ,\scrJ =

\Biggl\{ 
A\scrI ,\scrJ , \scrI \in \sansI \sansL (\scrJ );

0 otherwise,
\scrI ,\scrJ at level \ell , 2 \leq \ell \leq L,

A
(ad)
\scrI ,\scrJ =

\Biggl\{ 
A\scrI ,\scrJ , \scrI \in \sansN \sansL (\scrJ );

0 otherwise,
\scrI ,\scrJ at level L.

In a nutshell, A(\ell ) considers the interaction at level \ell between a segment and its
interaction list, and A(ad) considers all of the interactions between adjacent segments
at level L.

Figure 2 illustrates the block partition of A induced by the dyadic partition, and
the decomposition induced by the different interaction lists at each level that follows
(2.4).
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off-diagonal l = 2

A(2)

off-diagonal l = 3

A(3)

off-diagonal l = 4

A(4)

adjacent

A(ad)

partition

A

⇒ + + +

Fig. 2. Partition of the matrix A for L = 4 and nonzero blocks of A(\ell ), \ell = 2, 3, 4 (colored blue),
and A(ad) (colored orange). Nonzero blocks of A(\ell ) are approximated by low-rank approximation,
and nonzero blocks of A(ad) are retained. (Figure in color online.)

u(\ell ) U (\ell ) M (\ell ) (V (\ell ))T v

(a) u(\ell ) = A(\ell )v \approx U(\ell )M(\ell )(V (\ell ))T v

u(ad) A(ad) v

(b) u(ad) = A(ad)v

Fig. 3. Diagram of matrix-vector multiplication (2.7) of the low-rank part and the adjacent
part of \scrH -matrices. The blocks of M(\ell ) colored by pale orange are zero blocks, and if we treat these
blocks as nonzero blocks, the matrices M(\ell ) are block cyclic band matrices. (Figure in color online.)

The key idea behind \scrH -matrices is to approximate the nonzero blocks A(\ell ) by
a low-rank approximation (see [36] for a thorough review). This idea is depicted in
Figure 2, in which each nonzero block is approximated by a tall and skinny matrix,
a small squared one, and a short and wide one, respectively. In this work, we focus
on the uniform \scrH -matrices [21], and, for simplicity, we suppose that each block has a
fixed rank at most r, i.e.,

(2.5) A
(\ell )
\scrI ,\scrJ \approx U

(\ell )
\scrI M

(\ell )
\scrI ,\scrJ (V

(\ell )
\scrJ )T , U

(\ell )
\scrI , V

(\ell )
\scrJ \in \BbbR N/2\ell \times r, M

(\ell )
\scrI ,\scrJ \in \BbbR r\times r,

where \scrI and \scrJ are any interacting segments at level \ell .
The main observation is that it is possible to factorize each A(\ell ) as A(\ell ) \approx 

U (\ell )M (\ell )(V (\ell ))T depicted in Figure 3. U (\ell ) is a block diagonal matrix with diago-

nal blocks U
(\ell )
\scrI for \scrI at level \ell , V (\ell ) is a block diagonal matrix with diagonal blocks

V
(\ell )
\scrJ for \scrJ at level \ell , and finally, M (\ell ) aggregates all of the blocks M

(\ell )
\scrI ,\scrJ for all in-

teracting segments \scrI ,\scrJ at level \ell . This factorization induces a decomposition of A
given by

(2.6) A =

L\sum 
\ell =2

A(\ell ) +A(ad) \approx 
L\sum 

\ell =2

U (\ell )M (\ell )(V (\ell ))T +A(ad).
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Thus the matrix-vector multiplication (2.2) can be expressed as

(2.7) u \approx 
L\sum 

\ell =2

u(\ell ) + u(ad) =

L\sum 
\ell =2

U (\ell )M (\ell )(V (\ell ))T v +A(ad)v,

as illustrated in Figure 3, which constitutes the basis for writing \scrH -matrices as a NN.
In addition, the matrices \{ U (\ell ), V (\ell ),M (\ell )\} L\ell =2 and A(ad) have the following prop-

erties.

Property 1. The matrices are as follows:
1. U (\ell ) and V (\ell ), \ell = 2, . . . , L, are block diagonal matrices with block size N/2\ell \times 
r,

2. A(ad) is a block cyclic tridiagonal matrix with block size m\times m, and
3. M (\ell ), \ell = 2, . . . , L, are block cyclic band matrices with block size r \times r and

band size n
(\ell )
b , which is 2 for \ell = 2 and 3 for \ell \geq 3, if we treat all of the pale

orange colored blocks of M (\ell ) in Figure 3 (a) as nonzero blocks.

We point out that the band sizes n
(\ell )
b and n

(ad)
b depend on the definitions of \sansN \sansL 

and \sansI \sansL . In this case, the lists were defined using the strong admissible condition in
\scrH -matrices. Other conditions can certainly be used, such as the weak admissibility
condition, leading to similar structures.

2.2. Matrix-vector multiplication as an NN. An artificial NN, in particu-
lar, a feed-forward network, can be thought of as the composition of several simple
functions, usually called propagation functions, in which the intermediate 1D vari-
ables are called neurons, which, in return, are organized in vector, or tensor, variables
called layers. For example, an artificial feed-forward NN

(2.8) u = \scrF (v), u, v \in \BbbR n,

with K + 1 layer can be written using the following recursive formula:

\xi (0) = v,

\xi (k) = \phi (W (k)\xi (k - 1) + b(k)),

u = \xi (K),

(2.9)

where for each k = 1, . . . ,K we have that \xi (k), b(k) \in \BbbR nk ,W (k) \in \BbbR nk\times nk - 1 . Follow-
ing the terminology of machine learning, \phi is called the activation function that is
applied entrywise, W (k) are the weights, b(k) are the biases, and \xi (k) is the kth layer
containing nk number of neurons. Typical choices for the activation function are lin-
ear function, the rectified-linear unit (ReLU), or sigmoid function. In addition, (2.9)
can easily be rewritten using tensors by replacing the matrix-vector multiplication
by the more general tensor contraction. We point out that representing layers with
tensors or vectors is equivalent up to reordering and reshaping. The main advantage
of using the former is that layers, and their propagating functions, can be represented
in a more compact fashion. Therefore, in what follows we predominantly use a tensor
representation.

Within this context, training a network refers to finding the weights and biases,
whose entries are collectively called parameters, in order to approximate a given map.
This is usually done by minimizing a loss function using a stochastic optimization
algorithm.
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2.2.1. Locally connected networks. We interpret the structure of \scrH -matrices
(2.6) using the framework of NNs. The different factors in (2.7) possess a distinctive
structure, which we aim to exploit by using locally connected (LC) networks. LC
networks are propagating functions whose weights have a block-banded constraint.
For the 1D example, we also treat \xi as a 2-tensor of dimensions \alpha \times Nx, where \alpha is
the channel dimension, Nx is the spatial dimension, and \zeta is a 2-tensor of dimensions
\alpha \prime \times N \prime 

x. We say that \xi is connected to \zeta by an LC network if
(2.10)

\zeta c\prime ,i = \phi 

\left(  (i - 1)s+w\sum 
j=(i - 1)s+1

\alpha \sum 
c=1

Wc\prime ,c;i,j\xi c,j + bc\prime ,i

\right)  , i = 1, . . . , N \prime 
x, c\prime = 1, . . . , \alpha \prime ,

where w and s \in \BbbN are the kernel window size and stride, respectively. In addition,
we say that \zeta is an LC layer if it satisfies (2.10).

Each LC network requires six parameters, Nx, \alpha , N
\prime 
x, \alpha 

\prime , w, and s, to be char-
acterized. Next, we define three types of LC networks by specifying some of their
parameters.

\sansL \sansC \sansR Restriction network: We set s = w = Nx

N \prime 
x

and \alpha = 1 in an LC network.

This network represents the multiplication of a block diagonal matrix with
block sizes \alpha \prime \times s and a vector with size Nx\alpha , as illustrated by Figure 4
(a). We denote this network using \sansL \sansC \sansR [\phi ;Nx, N

\prime 
x, \alpha 

\prime ]. The application of
\sansL \sansC \sansR [\sansl \sansi \sansn \sanse \sansa \sansr ; 32, 8, 3] is depicted in Figure 4 (a).

\sansL \sansC \sansK Kernel network: We set s = 1 and N \prime 
x = Nx. This network represents the

multiplication of a cyclic block band matrix of block size \alpha \prime \times \alpha and band
size w - 1

2 times a vector of size Nx\alpha , as illustrated by the upper portion of
Figure 4 (b). To account for the periodicity we pad the input layer \xi c,j on
the spatial dimension to the size (Nx + w  - 1)\times \alpha . We denote this network
by \sansL \sansC \sansK [\phi ;Nx, \alpha , \alpha 

\prime , w]. This network has two steps: the periodic padding of
\xi c,j on the spatial dimension, and the application of (2.10). The application
of \sansL \sansC \sansK [\sansl \sansi \sansn \sanse \sansa \sansr ; 8, 3, 3, 3] is depicted in Figure 4 (b).

\sansL \sansC \sansI Interpolation network: We set s = w = 1 and N \prime 
x = Nx in an LC network.

This network represents the multiplication of a block diagonal matrix with
block size \alpha \prime \times \alpha , times a vector of size Nx\alpha , as illustrated by the upper
figure in Figure 4 (c). We denote the network \sansL \sansC \sansI [\phi ;Nx, \alpha , \alpha 

\prime ], which has two
steps: the application of (2.10), and the reshaping of the output to a vector
by column major indexing. The application of \sansL \sansC \sansI [\sansl \sansi \sansn \sanse \sansa \sansr ; 8, 3, 4] is depicted
in Figure 4 (c).

2.2.2. NN representation. Following (2.7), in order to construct the NN ar-
chitecture for (2.7), we need to represent the following four operations:

\xi (\ell ) = (V (\ell ))T v,(2.11a)

\zeta (\ell ) =M (\ell )\xi (\ell ),(2.11b)

u(\ell ) = U (\ell )\zeta (\ell ),(2.11c)

u(ad) = A(ad)v.(2.11d)

From Property 1.1 and the definition of \sansL \sansC \sansR and \sansL \sansC \sansI , the operations (2.11a) and
(2.11c) are equivalent to

(2.12) \xi (\ell ) = \sansL \sansC \sansR [\sansl \sansi \sansn \sanse \sansa \sansr ;N, 2\ell , r](v), u(\ell ) = \sansL \sansC \sansI 

\biggl[ 
\sansl \sansi \sansn \sanse \sansa \sansr ; 2\ell , r,

N

2\ell 

\biggr] 
(\zeta (\ell )),
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Space

La
ye
r Flatten

s = w = Nx

N \prime 
x
, \alpha = 1 s = 1, N \prime 

x = Nx s = 1, w = 1, N \prime 
x = Nx

(a) \sansL \sansC \sansR [\phi ;Nx, N
\prime 
x, \alpha 

\prime ]
with Nx = 32, N \prime 

x = 8,
and \alpha \prime = 3

(b) \sansL \sansC \sansK [\phi ;Nx, \alpha , \alpha 
\prime , w]

with Nx = 8, \alpha = \alpha \prime = 3.
and w = 3

(c) \sansL \sansC \sansI [\phi ;Nx, \alpha , \alpha 
\prime ] with

Nx = 8, \alpha = 3, and
\alpha \prime = 4

Fig. 4. Three instances of LC networks used to represent the matrix-vector multiplication in
(2.7). The upper portions of each column depict the patterns of the matrices, and the lower portions
are their respective analogues using LC networks.

respectively. Analogously, Property 1.3 indicates that (2.11b) is equivalent to

(2.13) \zeta (\ell ) = \sansL \sansC \sansK [\sansl \sansi \sansn \sanse \sansa \sansr ; 2\ell , r, r, 2n
(\ell )
b + 1](\xi (\ell )).

We point out that \xi (\ell ) is a vector in (2.11c) but a 2-tensor in (2.12) and (2.13). In
principle, we need to flatten \xi (\ell ) in (2.12) into a vector and reshape it back into a
2-tensor before (2.13). These operations do not alter the algorithmic pipeline, so they
are omitted.

Given that v, u(ad) are vectors, but \sansL \sansC \sansK is defined for 2-tensors, we explicitly
write the reshape and flatten operations. We denote as \sansR \sanse \sanss \sansh \sansa \sansp \sanse [n1, n2] the map that
reshapes a vector of size n1n2 into a 2-tensor of size n1\times n2 by column major indexing,
and \sansF \sansl \sansa \sanst \sanst \sanse \sansn is defined as the inverse of \sansR \sanse \sanss \sansh \sansa \sansp \sanse . Using Property 1.2, we can write
(2.11d) as

\~v = \sansR \sanse \sanss \sansh \sansa \sansp \sanse [m, 2L](v), \~u(ad) = \sansL \sansC \sansK 
\Bigl[ 
\sansl \sansi \sansn \sanse \sansa \sansr ; 2L,m,m, 2n

(ad)
b + 1

\Bigr] 
(\~v),(2.14)

u(ad) = \sansF \sansl \sansa \sanst \sanst \sanse \sansn (\~u(ad)).

Combining (2.12), (2.13), and (2.14), we obtain Algorithm 1, whose architecture is
illustrated in Figure 5. In particular, Figure 5 is the translation to the NN framework
of (2.7) (see Figure 3) using the building blocks depicted in Figure 4.

Moreover, the memory footprints of the NN architecture and \scrH -matrices are
asymptotically the same with respect to the spatial dimension of u and v. This can
be readily shown by computing the total number of parameters. For the sake of
simplicity, we only count the parameters in the weights, ignoring those in the biases.
A direct calculation yields the number of parameters in \sansL \sansC \sansR , \sansL \sansC \sansK , and \sansL \sansC \sansI :

(2.15) N\sansL \sansC \sansR 
p = Nx\alpha 

\prime , N\sansL \sansC \sansK 
p = Nx\alpha \alpha 

\prime w, N\sansL \sansC \sansI 
p = Nx\alpha \alpha 

\prime ,
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Adjacent𝑙 = 𝐿𝑙 = 2

Copy Copy Copy

\sansL \sansC \sansR -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansL \sansC \sansK -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansL \sansC \sansI -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansL \sansC \sansR -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansL \sansC \sansK -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansL \sansC \sansI -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansL \sansC \sansK -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansF \sansl \sansa \sanst \sanst \sanse \sansn 

\sansR \sanse \sanss \sansh \sansa \sansp \sanse 

\sansF \sansl \sansa \sanst \sanst \sanse \sansn \sansF \sansl \sansa \sanst \sanst \sanse \sansn 

\sanss \sansu \sansm 

Fig. 5. NN architecture for \scrH -matrices.

Algorithm 1 Application of the NN representation of an \scrH -matrix to a vector v \in 
\BbbR N .

1: u = 0;
2: for \ell = 2 to L do
3: \xi = \sansL \sansC \sansR [\sansl \sansi \sansn \sanse \sansa \sansr ;N, 2\ell , r](v);

4: \zeta = \sansL \sansC \sansK [\sansl \sansi \sansn \sanse \sansa \sansr ; 2\ell , r, r, 2n
(\ell )
b +1](\xi );

5: u = u+ \sansL \sansC \sansI [\sansl \sansi \sansn \sanse \sansa \sansr ; 2\ell , r, N
2\ell 
](\zeta );

6: end for

7: \~v = \sansR \sanse \sanss \sansh \sansa \sansp \sanse [m, 2L](v);

8: \~u(ad) = \sansL \sansC \sansK 
\Bigl[ 
\sansl \sansi \sansn \sanse \sansa \sansr ; 2L,m,m, 2n

(ad)
b + 1

\Bigr] 
(\~v);

9: u(ad) = \sansF \sansl \sansa \sanst \sanst \sanse \sansn (\~u(ad));
10: u = u+ u(ad).

respectively. Hence, the number of parameters in Algorithm 1 is

(2.16)

N\scrH 
p =

L\sum 
\ell =2

\biggl( 
Nr + 2\ell r2(2n

(\ell )
b + 1) + 2\ell r

N

2\ell 

\biggr) 
+ 2Lm2(2n

(ad)
b + 1)

\leq 2LNr + 2L+1r2
\biggl( 
2

L
max
\ell =2

n
(\ell )
b + 1

\biggr) 
+Nm(2n

(ad)
b + 1)

\leq 2N log(N)r + 3Nm(2nb + 1) \sim O(N log(N)),

where nb = max(n
(ad)
b , n

(\ell )
b , \ell = 2, . . . , L), and r \leq m is used.

2.3. Multidimensional case. Following the previous section, the extension of
Algorithm 1 to the d-dimensional case can be easily deduced using the tensor product
of 1D cases. Consider d = 2 below, for instance, and the generalization to the higher-
dimensional case will be straightforward.

Suppose that we have an IE in two dimensions given by

(2.17) u(x) =

\int 
\Omega 

g(x, y)v(y) dy, \Omega = [0, 1)\times [0, 1).

We discretize the domain \Omega with a uniform grid with n = N2 (N = 2Lm) discretiza-
tion points and let A be the resulting matrix obtained from discretizing (2.17). We
denote the set of all grid points as

(2.18) \scrI (d,0) = \{ (k1/N, k2/N) : k1, k2 = 0, . . . , N  - 1\} .
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Clearly, \scrI (d,0) = \scrI (0) \otimes \scrI (0), where \scrI (0) is defined in (2.3), and \otimes is tensor product.

At each level \ell (0 \leq \ell \leq L), we decompose the grid into 4l disjoint boxes as \scrI (d,\ell )
i =

\scrI (\ell )
i1

\otimes \scrI (\ell )
i2

for i1, i2 = 1, . . . , 2l.
The definition of the lists \sansN \sansL and \sansI \sansL can be easily extended. For each box \scrI ,

\sansN \sansL (\scrI ) contains three boxes for the 1D case, and 32 boxes for the two-dimensional
(2D) case. Similarly, the decomposition (2.4) on the matrix A can be easily extended
for this case.

Following the structure of \scrH -matrices, the off-diagonal blocks of A(\ell ) can be
approximated as
(2.19)

A
(\ell )
\scrI ,\scrJ \approx U

(\ell )
\scrI M

(\ell )
\scrI ,\scrJ (V

(\ell )
\scrJ )T , \scrI ,\scrJ \in \scrI (\ell ), U

(\ell )
\scrI , V

(\ell )
\scrJ \in \BbbR (N/2\ell )2\times r, M

(\ell )
\scrI ,\scrJ \in \BbbR r\times r.

As mentioned before, we can describe the network using tensors or vectors. In
what follows, we will switch between representations in order to illustrate the concepts
in a compact fashion. We denote an entry of a tensor T by Ti,j , where i is the 2D
index i = (i1, i2). Using the tensor notation, U (\ell ), V (\ell ) in (2.7) can be treated as
4-tensors of dimension N \times N \times 2\ell r\times 2\ell . We generalize the notion of band matrix to
band tensors. A band tensor T satisfies that

(2.20) Ti,j = 0 if | i1  - j1| > nb,1 or | i2  - j2| > nb,2,

where nb = (nb,1, nb,2) is called the band size for tensors. Thus Property 1 can be
generalized to tensors yielding the following properties.

Property 2. The 4-tensors are as follows:
1. U (\ell ) and V (\ell ), \ell = 2, . . . , L, are block diagonal tensors with block size N/2\ell \times 
N/2\ell \times r \times 1,

2. A(ad) is a block band cyclic tensor with block size m\times m\times m\times m and band

size n
(ad)
b = (1, 1), and

3. M (\ell ), \ell = 2, . . . , L, are block band cyclic tensors with block size r \times 1\times r \times 1

and band size n
(\ell )
b , which is (2, 2) for \ell = 2 and (3, 3) for \ell \geq 3.

Next, we characterize LC networks for the 2D case. An NN layer for the 2D
case can be represented by a 3-tensor size \alpha \times Nx,1 \times Nx,2, in which \alpha is the channel
dimension and Nx,1, Nx,2 are the spatial dimensions. If a layer \xi with size \alpha \times Nx,1\times 
Nx,2 is connected to an LC layer \zeta with size \alpha \prime \times N \prime 

x,1 \times N \prime 
x,2, then

\zeta c\prime ,i = \phi 

\left(  (i - 1)s+w\sum 
j=(i - 1)s+1

\alpha \sum 
c=1

Wc\prime ,c;i,j\xi c,j + bc\prime ,i

\right)  , i1 = 1, . . . , N \prime 
x,1,(2.21)

i2 = 1, . . . , N \prime 
x,2, c\prime = 1, . . . , \alpha \prime ,

where (i  - 1)s = ((i1  - 1)s1, (i2  - 1)s2). As in the 1D case, the channel dimension
corresponds to the rank r, and the spatial dimensions correspond to the grid points of
the discretized domain. Analogously to the 1D case, we define the LC networks \sansL \sansC \sansR ,
\sansL \sansC \sansK , and \sansL \sansC \sansI and use them to express the four operations in (2.11) which constitute
the building blocks of the NN. The extension is trivial. The parameters Nx, s, and
w in the 1D LC networks are replaced by their 2D counterparts Nx = (Nx,1, Nx,2),
s = (s1, s2), and w = (w1, w2), respectively. We point out that s = w = Nx

N \prime 
x
for the

1D case is replaced by sj = wj =
Nx,j

N \prime 
x,j

, j = 1, 2, for the 2D case in the definition of

LC.
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⟹

Fig. 6. Diagram of \sansR \sanse \sanss \sansh \sansa \sansp \sanse [22, 3, 3] in Algorithm 2.

Using the notation above we extend Algorithm 1 to the 2D case in Algorithm 2.
We crucially remark that the \sansR \sanse \sanss \sansh \sansa \sansp \sanse [r2, n1, n2] function in Algorithm 2 is not the
usual major column-based reshaping. It reshapes a 2-tensor T with size rn1 \times rn2
into a 3-tensor S with size r2 \times n1 \times n2 by treating the former as a block tensor with
block size r\times r, and reshaping each block as a vector following the formula S(k, i, j) =
T ((i - 1)r+k1, (j - 1)r+k2) with k = (k1 - 1)r+k2, for k1, k2 = 1, . . . , r, i = 1, . . . , n1,
and j = 1, . . . , n2. Figure 6 provides an example for the case \sansR \sanse \sanss \sansh \sansa \sansp \sanse [22, 3, 3]. The
\sansF \sansl \sansa \sanst \sanst \sanse \sansn is its inverse.

Algorithm 2 Application of NN architecture for \scrH -matrices on a vector v \in \BbbR N2

.
1: u = 0;
2: for \ell = 2 to L do
3: \xi = \sansL \sansC \sansR [\sansl \sansi \sansn \sanse \sansa \sansr ; (N,N), (2\ell , 2\ell ), r](v);

4: \zeta = \sansL \sansC \sansK [\sansl \sansi \sansn \sanse \sansa \sansr ; (2\ell , 2\ell ), r, r, (2n
(\ell )
b,1 + 1, 2n

(\ell )
b,2 + 1)](\xi );

5: u = u+ \sansL \sansC \sansI [\sansl \sansi \sansn \sanse \sansa \sansr ; (2\ell , 2\ell ), r,
\bigl( 
N
2\ell 

\bigr) 2
](\zeta );

6: end for
7: \~v = \sansR \sanse \sanss \sansh \sansa \sansp \sanse [m2, 2L, 2L](v);

8: \~u(ad) = \sansL \sansC \sansK 
\Bigl[ 
\sansl \sansi \sansn \sanse \sansa \sansr ; (2L, 2L),m2,m2, (2n

(ad)
b,1 + 1, 2n

(ad)
b,2 + 1)

\Bigr] 
(\~v);

9: u(ad) = \sansF \sansl \sansa \sanst \sanst \sanse \sansn (\~u(ad));
10: u = u+ u(ad).

3. Multiscale NN. In this section, we extend the aforementioned NN archi-
tecture to represent a nonlinear generalization of pseudo-differential operators of the
form

(3.1) u = \scrM (v), u, v \in \BbbR Nd

.

Due to its multiscale structure, we refer to the resulting NN architecture as the mul-
tiscale neural network (MNN). We consider the 1D case below for simplicity, and that
the generalization to higher dimensions follows directly as in subsection 2.3.

Algorithm 3 Application of MNN to a vector v \in \BbbR N .
1: u = 0;
2: for \ell = 2 to L do
3: \xi 0 = \sansL \sansC \sansR [\sansl \sansi \sansn \sanse \sansa \sansr ;N, 2\ell , r](v);
4: for k = 1 to K do
5: \xi k = \sansL \sansC \sansK [\phi ; 2\ell , r, r, 2n

(\ell )
b

+ 1](\xi k - 1);
6: end for
7: u = u+ \sansL \sansC \sansI [\sansl \sansi \sansn \sanse \sansa \sansr ; 2\ell , r, N

2\ell 
](\xi K);

8: end for

9: \xi 0 = \sansR \sanse \sanss \sansh \sansa \sansp \sanse [m, 2L](v);
10: for k = 1 to K  - 1 do
11: \xi k = \sansL \sansC \sansK [\phi ; 2L,m,m, 2n

(ad)
b + 1](\xi k - 1);

12: end for
13: \xi K = \sansL \sansC \sansK [\sansl \sansi \sansn \sanse \sansa \sansr ; 2L,m,m, 2n

(ad)
b

+ 1](\xi K - 1);
14: u(ad) = \sansF \sansl \sansa \sanst \sanst \sanse \sansn (\xi K);
15: u = u+ u(ad).
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Adjacent𝑙 = 𝐿𝑙 = 2

Copy Copy Copy

\sansL \sansC \sansR -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansL \sansC \sansK -\phi 

\sansL \sansC \sansK -\phi 

\sansL \sansC \sansK -\phi 

\sansL \sansC \sansI -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansF \sansl \sansa \sanst \sanst \sanse \sansn 

\sansL \sansC \sansR -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansL \sansC \sansK -\phi 

\sansL \sansC \sansK -\phi 

\sansL \sansC \sansK -\phi 

\sansL \sansC \sansI -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansF \sansl \sansa \sanst \sanst \sanse \sansn 

\sansL \sansC \sansK -\phi 

\sansL \sansC \sansK -\phi 

\sansL \sansC \sansK -\sansl \sansi \sansn \sanse \sansa \sansr 

\sansR \sanse \sanss \sansh \sansa \sansp \sanse 

\sansF \sansl \sansa \sanst \sanst \sanse \sansn 

\sanss \sansu \sansm 

Fig. 7. MNN architecture for nonlinear mappings, which is an extension of the NN architecture
for \scrH -matrices Figure 5. \phi is an activation function.

3.1. Algorithm and architecture. NN can represent nonlinearities by choos-
ing the activation function, \phi , to be nonlinear, such as ReLU or sigmoid. The range of
the activation function also imposes constraints on the output of the NN. For example,
the range of ``ReLU"" in [0,\infty ) and the range of the sigmoid function is [0, 1]. Thus,
the last layer is often chosen to be a linear layer to relax such constraint. Algorithm 1
is then revised to Algorithm 3, and the architecture is illustrated in Figure 7. We
remark that the nonlinear activation function is only used in the \sansL \sansC \sansK network. The
\sansL \sansC \sansR and \sansL \sansC \sansI networks in Algorithm 1 are still treated as restriction and interpolation
operations between coarse grid and fine grid, respectively, so we use the linear activa-
tion functions in these layers. Particularly, we also use the linear activation function
for the last layer of the adjacent part, which is marked in line 13 in Algorithm 3.

As in the linear case, we calculate the number of parameters of MNN and obtain
(neglecting the number of parameters in b in (2.10))

(3.2)

NMNN
p =

L\sum 
\ell =2

\biggl( 
Nr +K2\ell r2(2n

(\ell )
b + 1) + 2\ell r

N

2\ell 

\biggr) 
+K2Lm2(2n

(ad)
b + 1)

\leq 2LNr +K2L+1r2
\biggl( 
2

L
max
\ell =2

n
(\ell )
b + 1

\biggr) 
+NKm(2n

(ad)
b + 1)

\leq 2N log(N)r + 3NKm(2nb + 1).

3.2. Translation invariant case. For the linear case (2.1), if the kernel is
translation invariant, i.e., g(x, y) = g(x - y), then the matrix A is a Toeplitz matrix.
Then the matrices M (\ell ) and A(ad) are Toeplitz matrices and all matrix blocks of U (\ell )

(resp., V (\ell )) can be represented by the same matrix.
This leads to the convolutional neural network (CNN) as

(3.3) \zeta c\prime ,i = \phi 

\left(  (i - 1)s+w\sum 
j=(i - 1)s+1

\alpha \sum 
c=1

Wc\prime ,c;j\xi c,j + bc\prime 

\right)  , i = 1, . . . , N \prime 
x, c

\prime = 1, . . . , \alpha \prime .
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Compared to the LC network, the only difference is that the parameters W and b are
independent of i. Hence, inheriting the definition of \sansL \sansC \sansR , \sansL \sansC \sansK , and \sansL \sansC \sansI , we define
the layers \sansC \sansR , \sansC \sansK , and \sansC \sansI , respectively. By replacing the LC layers in Algorithm 1
by the corresponding CNN layers, we obtain the NN architecture for the translation
invariant kernel.

For the nonlinear case, the translation invariant kernel for the linear case can be
extended to kernels that are equivariant to translation, i.e., for any translation \scrT ,

(3.4) \scrT \scrM (v) = \scrM (\scrT v).

For this case, all of the LC layers in Algorithm 3 can be replaced by its corresponding
CNN layers. The number of parameters of \sansC \sansR , \sansC \sansK , and \sansC \sansI are

(3.5) N\sansC \sansR 
p =

Nx

N \prime 
x

\alpha \prime , N\sansC \sansK 
p = \alpha \alpha \prime w, N\sansC \sansI 

p = \alpha \alpha \prime .

Thus, the number of parameters in Algorithm 3 using CNN is

(3.6)
NMNN

p,CNN =

L\sum 
\ell =2

\biggl( 
r
N

2\ell 
+Kr2(2n

(\ell )
b + 1) + r

N

2\ell 

\biggr) 
+Km2(2n

(ad)
b + 1)

\leq rN + (r2 log(N) +m2)(2nb + 1)K.

4. Numerical results. In this section we discuss the implementation details
of MNN. We demonstrate the accuracy of the MNN architecture using two nonlinear
problems: the nonlinear Schr\"odinger equation (NLSE), and the Kohn--Sham map (KS
map) in the Kohn--Sham density functional theory (KSDFT).

4.1. Implementation. Our implementation of MNN uses Keras [14], a high-
level application programming interface (API) running, in this case, on top of Ten-
sorFlow [1] (a library of tools for training NNs). The loss function is chosen as the
mean squared relative error, in which the relative error is defined with respect to \ell 2

norm as

(4.1) \epsilon =
| | u - uNN | | \ell 2

| | u| | \ell 2
,

where u is the target solution generated by a numerical discretization of the PDEs
and uNN is the predicted solution by MNN. The optimization is performed using the
NAdam optimizer [16]. The weights and biases in MNN are initialized randomly from
the normal distribution, and the batch size is always set between 1/100th and 1/50th
of the number of train samples.

In all of the tests, the band size is chosen as nb,ad = 1, and n
(l)
b is 2 for l = 2 and

3 otherwise. The nonlinear activation function is chosen as ReLU. All of the tests are
run on GPU with data type float32. All of the numerical results are the best results
by repeating the training a few times, using different random seeds. The selection
of parameters r (number of channels), L (N = 2Lm), and K (number of layers in
Algorithm 3) is problem dependent.

4.2. NLSE with inhomogeneous background potential. The NLSE is widely
used in quantum physics to describe the single particle properties of the Bose--Einstein
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condensation phenomenon [51, 2]. Here we study the NLSE with inhomogeneous back-
ground potential V (x):

(4.2)

 - \Delta u(x) + V (x)u(x) + \beta u(x)3 = Eu(x), x \in [0, 1)d,

s.t.

\int 
[0,1]d

u(x)2 dx = 1 and

\int 
[0,1]d

u(x) dx > 0,

with period boundary condition. We aim to find its ground state denoted by uG(x).
We take a strongly nonlinear case \beta = 10 in this work and thus consider a defocusing
cubic Schr\"odinger equation. Due to the cubic term, an iterative method is required
to solve (4.2) numerically. We employ the method in [5] for the numerical solution,
which solves a time-dependent NLSE by a normalized gradient flow. The MNN is
used to learn the map from the background potential to the ground state

(4.3) V (x) \rightarrow uG(x).

This map is equivariant to translation, and thus MNN is implemented using the CNN
layers. The constraints in (4.2) can be guaranteed by adding a post-correction in the
network as

(4.4) u = const\times \^u

\| \^u\| 2
,

where \^u is the prediction of the NN. In the following, we study the performance of
MNN on 1D and 2D cases.

4.2.1. 1D case. For the 1D case, the number of discretization points is N = 320,
and we set L = 6 and m = N

2L
= 5. The potential V is chosen as

(4.5) V =  - 20 exp(IF (v)),

where v \in \scrN (0, 1)40 and IF : \BbbR 40 \rightarrow \BbbR 320 is the Fourier interpolation operator. In
all of the tests, the number of test samples is the same as that the number of train
samples if not properly specified. We perform numerical experiments to study the
behavior of MNN for a different number of channels r, a different number of \sansC \sansK 
layers K, and a different number of training samples N train

samples. All of the networks
are trained using 5000 epochs.

Table 1
Relative error in approximating the ground state of NLSE for a different number of samples

Ntrain
samplesfor the 1D case with r = 8 and K = 7.

Ntrain
samples Ntest

samples Training error Validation error

500 5000 8.9e-3 1.7e-3
1000 5000 9.4e-4 1.2e-3
5000 5000 8.1e-4 8.4e-4
20000 20000 8.0e-4 8.1e-4

Usually, the number of samples should be greater than that of parameters to
avoid overfitting. However, in NNs it has been consistently found that the number
of samples can be less than that of parameters [62, 63]. We present the numerical
results for different N train

sampleswith K = 7 and r = 8 in Table 1. In this case, the
number of parameters is Nparams= 18299. The validation error is slightly larger than
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Table 2
Relative error in approximating the ground state of NLSE for a different number of channels r

for 1D case with K = 7 and Ntrain
samples= 5000.

r Nparams Training error Validation error

2 2339 2.6e-3 2.6e-3
4 5811 1.2e-3 1.2e-3
6 11131 9.9e-4 1.0e-3
8 18299 8.1e-4 8.4e-4

Table 3
Relative error in approximating the ground state of NLSE for a different number of \sansC \sansK layers

K for 1D case with r = 8 and Ntrain
samples= 5000.

K Nparams Training error Validation error

1 4907 8.2e-3 8.2e-3
3 9371 1.6e-3 1.7e-3
5 13835 1.1e-3 1.1e-3
7 18299 8.1e-4 8.4e-4

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

x

V

(a) V

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

-2

-1

0

1

2
10

-3

x

u err

(b) uNN

Fig. 8. A sample of the potential V (4.5) in the test set and its corresponding solution uG,
predicted solution uNN , and its error with respect to the uG by MNN with r = 8 and K = 7 for the
1D NLSE.

the training error even for the case N train
samples= 500 and is approaching the training

error as the N train
samplesincreases. For the case N train

samples= 5000, the validation error is
close to the training error; thus there is no overfitting, and the errors are only slightly
larger than that when N train

samples= 20000. This allows us to train MNN with N train
samples<

Nparams. This feature is particularly useful for high-dimensional cases, given that in
such cases Nparamsis usually very large and generating a large amount of samples can
be prohibitively expensive.

Table 2 presents the numerical results for a different number of channels, r (i.e.,
the rank of the \scrH -matrix), with K = 7 and N train

samples= 5000. As r increases, we find
that the error first consistently decreases and then stagnates. We use r = 8 for the
1D NLSE below to balance between efficiency and accuracy.

Similarly, Table 3 presents the numerical results for a different number of \sansC \sansK 
layers, K, with r = 8 and N train

samples= 5000. The error consistently decreases with
respect to the increase of K, as NN can represent increasingly more complex functions
with respect to the depth of the network. However, after a certain threshold, adding
more layers provides very marginal gains in accuracy. In practice, K = 7 is a good
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Table 4
Relative error in approximating the ground state of NLSE for the CNN with a different number

of channels \alpha and a different number of layers K with window size to be 25 for the 1D case with
Ntrain

samples= 5000.

\alpha K Nparams Training error Validation error

8 13 18097 4.6e-3 4.6e-3
10 13 28121 3.9e-3 3.9e-3
12 13 40345 3.5e-3 3.5e-3
14 13 54769 3.8e-3 3.8e-3
12 15 47569 4.0e-3 4.0e-3

choice for the NLSE for the 1D case.
We also compare the MNN with an instance of the classical CNN. The CNN

architecture used in [20] is adopted as the reference architecture. Table 4 presents
the setup of the networks and the training and validation errors for CNN. Clearly,
by comparing the results of MNN in Tables 2 and 3 with the results of CNN in
Table 4, one can observe that the MNN not only reduces the number of parameters,
but also improve the accuracy. Throughout the results shown in Tables 2 and 3,
the validation errors are very close to the corresponding training errors, and thus
no overfitting is observed. Figure 8 presents a sample for the potential V and its
corresponding solution and prediction solution by MNN. We can observe that the
prediction solution agrees with the target solution very well.

4.2.2. 2D case. For the 2D case, the number of discretization points is n =
80\times 80, and we set L = 4 and m = 5. The potential V is chosen as

(4.6) V =  - 20 exp(IF (v)),

where v \in \scrN (0, 1)10\times 10 and IF : \BbbR 10\times 10 \rightarrow \BbbR 80\times 80 is the 2D Fourier interpolation
operator. In all of the tests the number of test data is the same as that of the train
data. We perform several simulations to study the behavior of MNN for a different
number of channels, r, and a different number of \sansC \sansK layers, K. As discussed in the
1D case, MNN allows N train

samples< Nparams. In all of the tests, the number of samples
is always 20000 and the networks are trained using 5000 epochs. A numerical test
shows no overfitting for the test.

Table 5
Relative error in approximating the ground state of NLSE for a different number of channels r

for the 2D case with K = 7 and Ntrain
samples= 20000.

r Nparams Training error Validation error

2 45667 6.1e-3 6.1e-3
6 77515 2.4e-3 2.4e-3
10 136915 2.9e-3 2.9e-3

Tables 5 and 6 present the numerical results for a different number of channels,
r, and a different number of \sansC \sansK layers, K, respectively. Similar to the 1D case, the
choice of parameters r = 6 and K = 7 also yields accurate results in the 2D case.
Figure 9 presents a sample of the potential V in the test set and its corresponding
solution, prediction solution, and its error with respect to the reference solution.

4.3. Kohn--Sham map. KSDFT [32, 37] is the most widely used electronic
structure theory. It requires the solution of the following set of nonlinear eigenvalue
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Fig. 9. A sample of the potential V (4.6) in the test set and its corresponding solution uG,
predicted solution uNN by MNN K = 5 and r = 6, and its error with respect to uG for the 2D
NLSE.

Table 6
Relative error in approximating the ground state of NLSE for a different number of \sansC \sansK layers

K for the 2D case with r = 6 and Ntrain
samples= 20000.

K Nparams Training error Validation error

3 37131 5.6e-3 5.6e-3
5 57323 3.8e-3 3.8e-3
7 77515 2.4e-3 2.4e-3

equations (real arithmetic assumed for all quantities):\biggl( 
 - 1

2
\Delta + V [\rho ](x)

\biggr) 
\psi i(x) = \varepsilon i\psi i(x), x \in \Omega = [ - 1, 1)d,\int 

\Omega 

\psi i(x)\psi j(x) dx = \delta ij , \rho (x) =

ne\sum 
i=1

| \psi i(x)| 2.
(4.7)

Here ne is the number of electrons (spin degeneracy omitted), d is the spatial di-
mension, and \delta ij stands for the Kronecker delta. In addition, all eigenvalues \{ \varepsilon i\} are
real and ordered nondecreasingly, and \rho (x) is the electron density, which satisfies the
constraint

(4.8) \rho (x) \geq 0,

\int 
\Omega 

\rho (x) dx = ne.

The Kohn--Sham equations (4.7) need to be solved self-consistently, which can also
be viewed as solving the following fixed point map:

(4.9) \rho = \scrF KS[V [\rho ]].
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Table 7
Relative error on the approximation of the KS map for different r, with K = 6, Ntrain

samples=

16000, and Ntest
samples= 4000.

r Nparams Training error Validation error

2 2117 6.7e-4 6.7e-4
4 5183 3.3e-4 3.4e-4
6 9833 2.8e-4 2.8e-4
8 16067 3.3e-4 3.3e-4
10 33013 1.8e-4 1.9e-4

Here the mapping \scrF KS[\cdot ] from V to \rho is called the KS map, which for a fixed potential
is reduced to a linear eigenvalue problem, and it constitues the most computationally
intensive step for solving (4.7). We seek to approximate the KS map using an MNN,
whose output was regularized so that it satisfies (4.8).

In the following numerical experiments the potential, V , is given by

(4.10) V (x) =  - 
ng\sum 
i=1

\sum 
j\in \BbbZ d

ci exp

\biggl( 
 - (x - ri  - 2j)2

2\sigma 2

\biggr) 
, x \in [ - 1, 1)d,

where d is the dimension and ri \in [ - 1, 1)d. We set \sigma = 0.05 or \sigma = 0.15 for one
dimension and \sigma = 0.2 for two dimensions. The coefficients ci are randomly chosen
following the uniform distribution \scrU ([0.8, 1.2]). The centers of the Gaussian wells,
ri, are chosen randomly under the constraint that | ri  - ri\prime | > 4\sigma , unless explicitely
specified. The KS map is discretized using a pseudo-spectral method [59], and solved
by a standard eigensolver.

4.3.1. 1D case. We set \sigma = 0.05 and we generated four data sets using a
different number of wells, ng, which in this case is also equal to the number of electrons
ne, ranging from 2 to 8.

The number of discretization points is N = 320. We trained the architecture
defined in section 3 for each ng, setting the number of levels L = 6, using different
values for r and K.

Table 7 shows that there is no overfitting, even at this level of accuracy and
number of parameters. This behavior is found in all of the numerical examples; thus
we only report the test error in what follows.

From Table 8 we can observe that as we increase r, the error decreases sharply.
Figure 10 depicts this behavior. In Figure 10 we have that if r = 2, then the network
output, \rho NN , fails to approximate \rho accurately; however, by modestly increasing r,
the network is able to accurately approximate \rho .

However, the accuracy of the network stagnates rapidly. In fact, increasing r
beyond 10 does not provide any considerable gains. In addition, Table 8 shows that
the accuracy of the network is agnostic to the number of Gaussian wells present in
the system.

In addition, we studied the relation between the quality of the approximation
and K. We fixed r = 6, and we trained several networks using different values of K,
ranging from 2, i.e., a very shallow network, to 10. The results are summarized in
Table 9. We can observe that the error decreases sharply as the depth of the network
increases, but it rapidly stagnates as K becomes large.

The KS map is a very nonlinear mapping, and we demonstrate below that the
nonlinear activation functions in the network play a crucial role. Consider a linear
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Table 8
Relative test error on the approximation of the KS map for different ranks r, with fixed K = 6

and Ntrain
samples= 16000.

ng\setminus r 2 4 6 8 10

2 6.7e-4 3.3e-4 2.8e-4 3.3e-4 1.8e-4
4 8.5e-4 4.1e-4 2.9e-4 3.8e-4 2.4e-4
6 6.3e-4 4.8e-4 3.8e-4 4.0e-4 4.2e-4
8 1.2e-3 5.1e-4 3.7e-4 4.5e-4 3.7e-4

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4
ρ
ρNN r = 2

ρNN r = 6

−0.08 −0.06 −0.04 −0.02

0.2

0.3

0.4

0.00 0.05 0.10
0.0

0.1

Fig. 10. Estimation using two different multiscale networks with r = 2 and r = 6; with K = 6,
and L = 5 fixed.

network, in which we have completely eliminated the nonlinear activation functions.
This linear network can be easily implemented by setting K = 1 and \phi (x) = x. We
then train the resulting linear network using the same data as before and following
the same optimization procedure. Table 10 shows that the approximation error can
be very large, even for relatively small ng.

In addition, we note that the favorable behavior of MNN with respect to ng
shown earlier is rooted in the fact that the band gap (here the band gap is equal to
\epsilon ng+1  - \epsilon ng ) remains approximately the same as we increase ng. According to the
density functional perturbation theory (DFPT), the KS map is relatively insensitive
to the change of the external potential. This setup mimics an insulating system.
On the other hand, we may choose \sigma in (4.10) to be 0.15, and relax the constraint
between Gaussian centers to | ri  - ri\prime | > 2\sigma . The rest of the coefficients are randomly
chosen using the same distributions as before. In this case, we generate a new data
set, in which the average gap for the generated data sets is 0.2, 0.08, 0.05, and 0.03
for ng equal to 2, 4, 6, and 8, respectively. The decrease of the band gap with respect
to the increase of ng resembles the behavior of a metallic system, in which the KS
map becomes more sensitive to small perturbations of the potential. After generating
the samples, we trained two different networks: the MNN with K = 6, r = 10 and a
regular CNN with 15 layers, 10 channels, and window size 13. The results are shown in
Tables 11 and 12. From Tables 11 and 12 we can observe that MNN outperforms CNN
and that as the band gap decreases, the performance gap between MNN and CNN
widens. We point out that it is possible to partially alleviate this adverse dependence
on the band gap in the MNN by introducing a nested hierarchical structure to the
interpolation and restriction operators as shown in [20].
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Table 9
Relative test error on the approximation of the KS map for different K and fixed rank r = 6,

and Ntrain
samples= 16000.

ng\setminus K 2 4 6 8 10

2 1.4e-3 3.1e-4 2.8e-4 3.5e-4 2.3e-4
4 1.9e-3 5.8e-4 2.8e-4 6.0e-4 7.1e-4
6 2.1e-3 7.3e-4 3.8e-4 6.7e-4 6.7e-4
8 2.0e-3 8.8e-4 3.7e-4 6.7e-4 6.8e-4

Table 10
Relative error in approximating the KS map for a different number of Gaussians ng for one

dimension using a linear MNN network with K = 1, r = 10, and Ntrain
samples= 16000.

ng Nparams Training error Validation error

2 8827 9.5e-2 9.5e-2
4 8827 9.7e-2 9.5e-2
6 8827 9.7e-2 9.7e-2
8 8827 8.7e-2 8.6e-2

Table 11
Relative error in approximating the KS map for a different number of Gaussians ng for one

dimension using an MNN network with K = 6, r = 10, and Ntrain
samples= 16000.

ng Nparams Training error Validation error

2 20890 1.5e-3 1.9e-03
4 20890 7.1e-3 8.8e-03
6 20890 1.6e-2 2.3e-02
8 20890 2.9e-2 2.9e-02

Table 12
Relative error in approximating the KS map for a different number of Gaussians ng for one

dimension using a periodic CNN with 15 layers, 10 channels, windows size 13, and Ntrain
samples= 16000.

ng Nparams Training error Validation error

2 19921 1.6e-3 1.9e-3
4 19921 1.7e-2 1.8e-2
6 19921 6.2e-2 6.5e-2
8 19921 9.0e-2 9.3e-2

4.3.2. 2D case. The discretization is the standard extension to the 2D case
using tensor products, using a 64 \times 64 grid. In this case we only used ng = 2 and
followed the same number of training and test samples as in the 1D case. We fixed
K = 6, L = 4, and trained the network for a different number of channels, r. The
results are displayed in Table 13, which shows the same behavior as for the 1D case,
in which the error decays sharply and then stagnates, and there is no overfitting. In
particular, the network is able to effectively approximate the KS map as shown in
Figure 11. Figure 11a shows the output of the NN for a test sample, and Figure 11b
shows the approximation error with respect to the reference.
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Table 13
Relative errors on the approximation of the KS map for the 2D case for different r and K = 6,

Ntrain
samples= 16000, and Ntest

samples= 4000.

r Training error Validation error

4 5.2e-3 5.2e-3
6 1.6e-3 1.7e-3
8 1.2e-3 1.1e-3
10 9.1e-4 9.3e-4

0

1

0.05

1

0.1

0

0.15

0

-1 -1

(a) \rho NN

-2

1

-1

1

0

10
-4

1

0

2

0

-1 -1

(b) | \rho NN  - \rho | 

Fig. 11. (a) Output of the trained network on a test sample for K = 6 and \alpha = 10; (b) error
with respect to the reference solution.

5. Conclusion. We have developed a multiscale neural network (MNN) archi-
tecture for approximating nonlinear mappings, such as those arising from the solution
of integral equations (IEs) or partial differential equations (PDEs). In order to control
the number of parameters, we first rewrite the widely used hierarchical matrix into the
form of a NN, which mainly consists of three subnetworks: restriction network, kernel
network, and interpolation network. The three subnetworks are all linear and corre-
spond to the components of a singular value decomposition. We demonstrate that
such structure can be directly generalized to nonlinear problems, simply by replacing
the linear kernel network by a multilayer kernel network with nonlinear activation
functions. Such ``nonlinear singular value decomposition operation"" is performed at
different spatial scales, which can be efficiently implemented by a number of locally
connected (LC) networks, or convolutional NNs (CNN) when the mapping is equi-
variant to translation. Using the parameterized nonlinear Schr\"odinger equation and
the Kohn--Sham map as examples, we find that MNN can yield accurate approxi-
mation to such nonlinear mappings. When the mapping has N degrees of freedom,
the complexity of MNN is only O(N logN). Thus the resulting MNN can be further
used to accelerate the evaluation of the mapping, especially when a large number of
evaluations are needed within a certain range of parameters.

In this work, we only provide one natural architecture of MNN based on hierar-
chical matrices. The architecture can be altered depending on the target application.
Some of the possible modifications and extensions are listed as follows. (1) In this
work, the NN is inspired by a hierarchical matrix with a special case of strong ad-
missible condition. One can directly construct architectures for \scrH -matrices with the
weak admissible condition, as well as other structures such as the fast multiple meth-
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ods, \scrH 2-matrices, and wavelets. (2) The input, u, and output, v, in this work are
periodic. The network can be directly extended to the nonperiodic case, by replacing
the periodic padding in \sansL \sansC \sansK by some other padding functions. One may also explore
the mixed usage of LC networks and CNNs in different components of the architec-
ture. (3) The matrices A(ad) and M (\ell ) can be block-partitioned in different ways,
which would result in different setups of parameters in the \sansL \sansC \sansK layers. (4) The \sansL \sansC \sansR 
and \sansL \sansC \sansI networks in Algorithm 3 can involve nonlinear activation functions as well
and can be extended to networks with more than one layer. (5) The \sansL \sansC \sansK network
in Algorithm 3 can be replaced by other architectures. In principle, for each scale,
these \sansL \sansC \sansK layers can be altered to any network, for example, the sum of two paral-
lel subnetworks, or the ResNet structure [30]. (6) It is known that \scrH -matrices can
well approximate smooth kernels but become less efficient for highly oscillatory ker-
nels, such as those arising from the Helmholtz operator in the high frequency regime.
The range of applicability of the MNN remains to be studied both theoretically and
numerically.
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