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A NOTE ON OPTIMIZATION FORMULATIONS OF
MARKOV DECISION PROCESSES∗

LEXING YING† AND YUHUA ZHU‡

Abstract. This note summarizes the optimization formulations used in the study of Markov
decision processes. We consider both the discounted and undiscounted processes under the standard
and the entropy-regularized settings. For each setting, we first summarize the primal, dual, and primal-
dual problems of the linear programming formulation. We then detail the connections between these
problems and other formulations for Markov decision processes such as the Bellman equation and the
policy gradient formulation.
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1. Introduction

Most of the algorithms of Markov decision processes (MDPs) are derived from the
fixed-point iteration of the Bellman equation [3]. Examples include value iteration [4,5,
23], policy iteration [3,11], temporal difference (TD) learning [25], Q-learning [33], etc.
The analyses of these algorithms in the tabular case and linear function approximation
case often leverage the contraction property of the Bellman operator. In the past decade
or so, nonlinear approximations such as neural networks have become more popular.
However, for nonlinear function approximations, this contraction property no longer
holds, often resulting in instability. Many variants and modifications have been proposed
to stabilize the training, e.g., DQN [17], A3C [16]. However, theoretical guarantees for
these algorithms are still missing.

A second perspective of studying MDPs is based on optimization. For nonlinear
approximations, optimization formulations are often more convenient both for algorith-
mic design and mathematical analysis as they guarantee convergence to at least local
minimums. Therefore in recent years, more attention has been given to the optimization
framework. One major direction is based on linear programming (LP) [22] and some
recent developments include [1,7,29,30]. Another direction is the Bellman residual min-
imization (BRM) [2], which includes algorithms based on the primal-dual form of the
BRM [6, 8, 27], stochastic compositional gradient (SCGD) methods based on two-scale
separation [31, 32], algorithms based on the smoothness of the underlying transition
dynamics [13,35,36]. The convergence properties of these algorithms have been studied
in [14,15,18,28,34].

The contribution of this note is two-fold. First, we summarize the LP problems used
in the study of MDPs. Many results in this note are well-known, but we were not able
to find a place where these results are summarized in a uniform framework. Second,
we point out the connections between the LP problems and other MDP formulations,
including the equivalence between the dual problem and the policy gradient formulation
and the equivalence between the primal problem and the Bellman equation.
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1.1. Notation. A Markov decision process M with discrete state and action
spaces is characterized by M=(S,A,P,r,γ). Here S is the discrete state space, with
each state usually denoted by s. A is the discrete action space, with each action usually
denoted by a∈A. Throughout the note, |S| and |A| are used to denote the size of S and
A, respectively. P is a third-order tensor where, for each action a∈A, P a∈R|S|×|S| is
the transition matrix between the states, i.e., P a

st is the probability of arriving at state
t if action a is taken at state s. r is a second-order tensor where, for each action a∈A,
ras is the reward at state s if action a is taken. Finally, γ∈ [0,1] is the discount factor.

Let ∆ be the probability simplex over the space of actions, i.e.,

∆=

{
η=(ηa)a∈A :

∑
a∈A

ηa=1 and ηa≥0 for ∀a∈A

}
.

The set of all valid policies is defined to be

∆|S|={π=(πs)s∈S :πs∈∆ for ∀s∈S}.

For a policy π∈∆|S|, the transition matrix Pπ ∈R|S|×|S| under the policy π is defined
as

Pπ
st=

∑
a∈A

P a
stπ

a
s , (1.1)

i.e., Pπ
st is the probability of arriving at state t from state s if policy π is taken. The

reward rπ ∈R|S| under the policy π is

rπs =
∑
a∈A

rasπ
a
s , (1.2)

i.e., rπs represents the expected reward at state s if policy π is taken.
Each policy π induces a discrete Markov process, where at each round m, an action

am is chosen at state sm according to a particular policy π, and then the agent arrives
at state sm+1 according to the distribution of the transition matrix P am and receives a
reward ram

sm . The goal of an MDP problem is to maximize the cumulative reward among
all possible policies. Depending on whether γ is strictly less than one or not, an MDP
can either be discounted (γ<1) or undiscounted (γ=1).

When solving the MDPs, entropy regularizer has been proved quite useful in terms
of exploration and convergence [9,16,21,24]. In this note, we adopt the following negative
conditional entropy defined for non-negative ρ∈R|A|:

h(ρ) :=
∑
a∈A

ρa log
ρa∑
b∈Aρb

. (1.3)

This entropy h(ρ) is both convex and homogeneous of degree one in ρ (see for example
Appendix A.1 of [18]). This regularizer has been widely used in the literature [8–10,16,
21,24]. Depending on whether this regularizer is used, we call an MDP either standard
or regularized.

1.2. Outline. The rest of the note is organized as follows. In Section 2, we
first derive the primal, dual, and primal-dual problems for the discounted standard
MDP. We then show the equivalence between the policy gradient formulation and the
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discounted
unregularized

discounted
regularized

undiscounted
unregularized

undiscounted
regularized

primal: (2.2) /(2.6) (3.2)/(3.3)/
(3.7)/(3.8)

(4.2).(4.6) (5.2)/(5.3)/
(5.6)/(5.7)

primal-dual: (2.3) (3.1) (4.3) (5.1)
dual: (2.4) /(2.5) (3.4) /(3.6) (4.4)/(4.5) (5.4) /(5.5)
theorems Theorems 2.1

& 2.2
Theorems 3.1
& 3.2

Theorems 4.1
& 4.2

Theorems 5.1
& 5.2

Table 1.1. Summary of the optimization formulations for different kinds of MDPs.

dual problem as well as the equivalence between the Bellman equation and the primal
problem. Sections 3, 4, and 5 address the discounted regularized MDP, the undiscounted
standard MDP, and the undiscounted regularized MDP, respectively, by following the
same outline. We summarize all the main results in Table 1.1.

2. Discounted standard MDP
The discounted standard MDP is probably the most studied case in literature [23,

26]. For γ∈ (0,1), the value function under policy π is a vector vπ ∈R|S|, where vπs
represents the expected discounted cumulative reward starting from state s under the
policy π, i.e.,

vπs =E

[ ∞∑
m=0

γmram
sm |s0=s

]
, (2.1)

where the expectation is taken over am∼πsm ,sm+1∼P am
sm,·, for all m≥0. The value

function naturally satisfies the Bellman equation for any s∈S:

vπs = rπs +γEπ[vπs1 |s0=s]= rπs +γ
∑
t∈S

Pπ
stv

π
t .

The goal of an MDP problem is to find the maximum value function among all
possible policies.

2.1. LP problems.
Primal problem. The primal problem of finding the maximum value function

reads

min
v

∑
s∈S

esvs, s.t. ∀a,∀s, ras +γ
∑
t∈S

P a
stvt−vs≤0, (2.2)

where e∈R|S| is an arbitrary vector with positive entries. An example with 2 states and
2 actions is illustrated in Figure 2.1, where the pink region represents the constraints
and the pink arrow points to the minimization direction. The optimal solution of this
minimization problem is the red point. As shall see later in Section 2.2, the optimal
solution of the dual problem is the same red point, coming from the opposite direction.

Primal-dual problem. By introducing the Lagrangian multiplier µa
s for the in-

equality constraints, we arrive at the primal-dual

min
vs

max
µa
s≥0

∑
s∈S

esvs+
∑
s,a

(ras +γ
∑
t∈S

P a
stvt−vs)µ

a
s , (2.3)
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Fig. 2.1. This plot interprets the primal and dual problem for an MDP with 2 states and 2
actions. The pink region represents the constraints for the primal problem, while the yellow region
represents the constraints for the dual problem. The pink and yellow arrows indicate the minimization
and maximization directions, respectively. Both formulations end up at the same red point, but from
the opposite directions.

or equivalently in the matrix-vector notation

min
v

max
µa≥0

e⊤v+
∑
a∈A

(µa)⊤(ra+γP av−v),

where (·)⊤ stands for transpose. This primal-dual problem is, for example, used in [30].

Dual problem. Since the minimum of vs is taken over a convex function and the
maximum of µa

s is over a concave function, one can exchange the order of minimum and
maximum because of the minimax theorem [19]. The primal-dual problem can also be
written as

max
µa≥0

min
v

e⊤v+
∑
a∈A

(µa)⊤(ra+γP av−v).

Taking derivative with respect to v and setting it to be zero gives rise to

e=−
∑
a∈A

(γ(P a)⊤−I)µa, i.e.,
∑
a∈A

(I−γ(P a)⊤)µa=e.

Hence the dual problem is

max
µa≥0

∑
a∈A

(ra)⊤µa, s.t.
∑
a∈A

(I−γ(P a)⊤)µa=e. (2.4)

This dual problem is mentioned, for example, in [34].

The above formulations are summarized as the following theorem.

Theorem 2.1. For the discounted standard MDP, the following three formulations
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are equivalent,

Primal : min
v∈R|S|

∑
s∈S

e⊤v, s.t. ∀a,∀s, ras +γ
∑
t∈S

P a
stvt−vs≤0,

Primal−dual : min
v∈R|S|

max
µa∈R|S|

µa≥0

e⊤v+
∑
a∈A

(µa)⊤(ra+γP av−v),

Dual : max
µa∈R|S|

µa≥0

∑
a∈A

(ra)⊤µa, s.t.
∑
a∈A

(I−γ(P a)⊤)µa=e,

where e∈R|S| is an arbitrary vector with positive entries.

2.2. Equivalences.
Dual problem and policy gradient. The dual problem (2.4) is equivalent to

the policy gradient formulation. To see this, let us parameterize µa
s =wsπ

a
s with ws=∑

a∈Aµa
s . This ensures that π∈∆|S| because

∑
a∈Aπa

s =
∑

a∈A
µa
s

ws
=1 and πa

s ≥0. By
this new parameterization, the constraints in dual become

(I−γ(Pπ)⊤)w=e, or w=(I−γ(Pπ)⊤)−1e,

where Pπ
st is defined in (1.1) as the transition matrix under policy π. By denoting this w

as wπ to indicate its π dependence, we can write
∑

a∈A(r
a)⊤µa=(rπ)⊤wπ. As a result,

the dual problem (2.4) can be written as

max
π∈∆|S|

rπ ·(I−γ(Pπ)⊤)−1e, or max
π∈∆|S|

e⊤(I−γPπ)−1rπ,

which is equivalent to

max
π∈∆|S|

e⊤vπ, s.t. vπ =(I−γPπ)−1rπ.

Since the constraint can be written as (I−γPπ)vπ = rπ, it implies that vπ = rπ+γPπvπ.
Hence, the dual problem is equivalent to the optimization formulation of the policy
gradient method,

max
π∈∆|S|

e⊤vπ, s.t. vπ = rπ+γPπvπ, (2.5)

where we recall that e∈R|S| is any vector with positive entries. Therefore, the op-
timization formulation that the policy gradient method is based on can be
viewed as a nonlinear reparameterization of the dual LP problem. This un-
derstanding is also illustrated in Figure 2.1, where the yellow region represents the
constraints and the yellow arrow points to the maximum direction. Notice that both
the primal and dual problems end up at the same red point from opposite directions.

Primal problem and Bellman equation. Next, we show that the primal prob-
lem is equivalent to solving the Bellman equation

vs=max
a∈A

(
ras +γ

∑
t∈S

P a
stvt

)
. (2.6)

Bellman equation to primal problem. The derivation from (2.6) to (2.2) can be
found, for example, in [23]. We provide a short derivation here for completeness. Let
v∗ be the solution to (2.6), then for each s, there exists a∗s ∈A s.t.,

v∗= ra
∗
+γP a∗

v∗,
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where ra
∗

s ≡ r
a∗
s

s ,P a∗

st ≡P
a∗
s

st . For any v that satisfies the constraints in the primal problem
(2.2), the following inequality holds

v≥ ra
∗
+γP a∗

v.

Subtracting these two equations gives

v−v∗≥γP a∗
(v−v∗).

Since P a∗
is a probability transition matrix, by maximum principle, one has v−v∗≥0,

and thus

e⊤v≥e⊤v∗

for all v satisfying the constraints in (2.2). This proves that v∗ is the minimizer of the
primal problem (2.2).

Primal problem to Bellman equation. Let v∗ be the minimizer of the primal problem
(2.2). The KKT conditions for (2.2) read

ras +γ
∑
t∈S

P a
stv

∗
t ≤v∗s , for ∀s,a;∑

a∈A
(µa

s −γ
∑
t∈S

P a
tsµ

a
t )=es, for ∀s;

µa
s(r

a
s +γ

∑
t∈S

P a
stv

∗
t −v∗s )=0 for ∀s,a.

First, we claim it is impossible that there exists s such that for ∀a, ras +γ
∑

t∈SP
a
stv

∗
t −

v∗s >0. If it were true, then from the last equation, one would have µa
s =0 for all a. Let

µa
s =wsπ

a
s , then ws=0 for this s. Inserting it into the second equation, one has

ws−γ
∑
t∈S

Pπ
tswt=−γ

∑
t∈S

Pπ
tswt=es.

Since both Pπ
ts,wt≥0 for all t, then LHS ≤0. However, as the RHS es>0, we reach a

contradiction. Therefore, the claim is true, i.e., there does not exist any s such that ∀a,
ras +g

∑
t∈SP

a
stv

∗
t −v∗s >0.

Therefore for any fixed s, there exists a∗s, s.t.,

r
a∗
s

s +γ
∑
t∈S

P
a∗
s

st v
∗
t =v∗s .

For all a ̸=a∗s, by the first equation, one has

ras +γ
∑
t∈S

P a
stv

∗
t ≤v∗s .

Combining the above two equations leads to v∗s =maxa(r
a
s +γ

∑
t∈SP

a
stv

∗
t ). Therefore,

the minimizer v∗ also satisfies the Bellman Equation (2.6) for all s.
The above two equivalences are stated in the following theorem.

Theorem 2.2. For the discounted standard MDP, the primal formulation (2.2) is
equivalent to solving the Bellman equation

vs=max
a∈A

(
ras +γ

∑
t∈S

P a
stvt

)
, ∀s∈S,
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and the dual formulation (2.4) is equivalent to the optimization formulation of the policy
gradient method

max
π∈∆|S|

e⊤vπ, s.t. vπ = rπ+γPπvπ.

3. Discounted regularized MDP
For 0<µ∈R|S|×|A|, the discounted regularized MDP includes the negative condi-

tional entropy

h(µs)=
∑
a∈A

µa
s log

µa
s∑

b∈Aµb
s

in the objective function, where for each s∈S, µs∈R|A| and for each a∈A, µa∈R|S|.

3.1. LP problems.
Primal-dual problem. Let us introduce first in the primal-dual problem:

min
vs

sup
µa
s>0

∑
s∈S

esvs+
∑
s,a

(
ras +γ

∑
t∈S

P a
stvt−vs

)
µa
s −
∑
s∈S

h(µs). (3.1)

As h(µs) is convex in µs, this objective function is concave in µa
s . In connection with

the primal-dual problem (2.3) of the standard case, including the extra entropic term
allows for replacing the condition µa

s ≥0 with µa
s >0. In the literature, it is common

for the entropy term to have a prefactor η>0. Here we simply assume η=1 as one can
always reduce to this case by rescaling the rewards ras .

Primal problem. By introducing µa
s =wsπ

a
s with ws=

∑
a∈Aµa

s and π∈∆|S|,
(3.1) becomes

min
vs

sup
π∈∆|S|,πa

s ,ws>0

∑
s∈S

esvs+
∑
s,a

(ras +γ
∑
t∈S

P a
stvt−vs)π

a
sws−

∑
s∈S

wsh(πs),

where we use the fact that h(·) is homogeneous of degree one. This is equivalent to

min
vs

(∑
s∈S

esvs+ sup
ws>0

∑
s∈S

ws ·max
πs∈∆

(∑
a∈A

(ras +γ
∑
t∈S

P a
stvt−vs)π

a
s −h(πs)

))
.

Since the inner optimal over πs cannot lie on the boundary, it is the same to write
the optimal as maxπs∈∆ and supπs∈∆,πs>0. The primal problem of the above minimax
problem is then given by

min
vs

e⊤v, s.t. ∀s, max
πs∈∆

∑
a∈A

(ras +γ
∑
t∈S

P a
stvt−vs)π

a
s −h(πs)≤0,

or equivalently,

min
v

e⊤v, s.t. max
π

(rπ+γPπv−hπ)≤v. (3.2)

Note that the maximization in the constraint

max
πs∈∆

(∑
a∈A

(ras +γ
∑
t∈S

P a
stvt−vs)π

a
s −h(πs)

)
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is in the form of the Gibbs variational principle. Therefore, the optimizer for this
maximization is

πa
s =

exp(ras +γ
∑

t∈SP
a
stvt−vs)

Zs

where Zs=
∑

a∈A exp(ras +γ
∑

t∈SP
a
stvt−vs) is the normalization factor and the maxi-

mal value is logZs. Hence, the constraint is equivalent to logZs≤0, i.e.,∑
a∈A

exp(ras +γ
∑
t∈S

P a
stvt−vs)≤1

i.e.

e−vs ·
∑
a∈A

exp(ras +γ
∑
t∈S

P a
stvt)≤1, or

∑
a∈A

exp(ras +γ
∑
t∈S

P a
stvt)≤evs .

Taking log on both sides leads to

vs≥ log

(∑
a∈A

exp(ras +γ
∑
t∈S

P a
stvt)

)
.

This implies that the primal problem (3.2) is equivalent to

min
vs

e⊤v, s.t. ∀s,vs≥ log

(∑
a∈A

exp(ras +γ
∑
t∈S

P a
stvt)

)
. (3.3)

Dual problem. The supremum and minimum in the primal-dual problem (3.1)
can be exchanged because the objective function is convex in v and concave in µ. Now
one has,

sup
µa
s>0

min
vs

∑
s∈S

esvs+
∑
s,a

(rs+γ
∑
t∈S

P a
stvt−vs)µ

a
s −
∑
s∈S

h(µs).

Taking derivative in v gives
∑

a∈A(I−γ(P a)⊤)µa=e. Therefore, the dual problem
takes the form

sup
µa>0

∑
a∈A

(ra)⊤µa−
∑
s∈S

h(µs), s.t.
∑
a∈A

(I−γ(P a)⊤)µa=e. (3.4)

The above three formulations are summarized as the following theorem.

Theorem 3.1. For the discounted regularized MDP, the following three formulations
are equivalent,

Primal : min
v∈R|S|

e⊤v, s.t. v≥max
π

(rπ+γPπv−hπ),

or equivalently, min
v∈R|S|

e⊤v, s.t. v≥ log

(∑
a∈A

exp(ra+γP av)

)
,

Primal−dual : min
v∈R|S|

sup
µ∈R|S|×|A|

µ>0

e⊤v+
∑
a

(µa)⊤ (ra+γP av−v)−
∑
s∈S

h(µs),

Dual : sup
µ∈R|S|×|A|

µ>0

∑
a∈A

(ra)⊤µa−
∑
s∈S

h(µs), s.t.
∑
a∈A

(I−γ(P a)⊤)µa=e,

where e∈R|S| is an arbitrary vector with positive entries.



LEXING YING AND YUHUA ZHU 735

3.2. Equivalences.
Dual problem and policy gradient. We claim that the dual problem (3.4)

is again equivalent to the policy gradient formulation. As before, let us parameterize
µa
s =wsπ

a
s with ws=

∑
a∈Aµa

s and π∈∆|S|. Then the constraints in (3.4) become

∀s,
∑
a∈A

πa
sws−γ

∑
a,t

P a
tsπ

a
t wt=es, or w=(I−γ(Pπ)⊤)−1e.

By denoting the solution w by wπ to show its π dependence, one can rewrite (3.4) as

max
π∈∆|S|

rπ ·wπ−
∑
s∈S

wπ
s

(∑
a∈A

πa
s logπ

a
s

)

By further introducing hπ ∈R|S| as the vector with entry hπ
s =h(πs)=

∑
a∈Aπa

s logπ
a
s ,

we transform (3.4) to

max
π∈∆|S|

(rπ−hπ) ·wπ, or max
π∈∆|S|

e⊤(I−γPπ)−1 (rπ−hπ) . (3.5)

We can also view rπ−hπ as a regularized reward by subtracting the entropy func-
tion hπ. The value function vπ =E[

∑
m≥0γ

m(ram
sm −h(πsm))] under the new reward

satisfies the regularized Bellman equation vπ = rπ−hπ+γPπvπ. Hence, the optimiza-
tion formulation of the policy gradient method for this regularized discounted MDP is

max
π∈∆|S|

e⊤vπ, s.t., vπ = rπ−hπ+γPπvπ, (3.6)

which is clearly equivalent to (3.5) by letting vπ =(I−γPπ)−1 (rπ−hπ) .

Primal problem and Bellman equation. The regularized Bellman equation is

v= max
π∈∆|S|

rπ+γPπv−hπ. (3.7)

In each component,

vs=max
πs∈∆

∑
a∈A

(ras +γ
∑
t∈S

P a
stvt)π

a
s −h(πs).

By the Gibbs variational principle, the RHS is equal to log(exp(
∑

a∈A(rs+
γ
∑

t∈SP
a
stvt))). Therefore, the regularized Bellman equation could also be written

as the following log-sum-exp form

vs=log

(∑
a∈A

exp

(
ras +γ

∑
t∈S

P a
stvt

))
. (3.8)

Below we show that the primal problem (3.2) is equivalent to solving (3.7).

Bellman equation to primal problem. Let v∗ be the solution of (3.7). Then there
exists π∗ s.t.,

v∗= rπ
∗
+γPπ∗

v∗−hπ∗
.
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For any v that satisfies the constraints of the primal problem, the following inequality
holds

v≥ rπ
∗
+γPπ∗

v−hπ∗
.

Subtracting these two equations gives rise to

v−v∗≥γPπ∗
(v−v∗).

Again by maximum principle, one has v−v∗≥0 and hence

e⊤v≥e⊤v∗

for all v that satisfy the constraints in (3.2). This proves that v∗ is the minimizer of
the primal problem (3.2).

Primal problem to Bellman equation. Let v∗ be the minimizer of the primal prob-
lem (3.2). We now prove v∗ is also the solution to the Bellman Equation (3.7) by
contradiction. Assume that v∗ does not satisfy (3.7). Then there must exist s̄, s.t. for
∀π

v∗s̄ ≥ (rπ+γPπv∗−hπ)s̄+δ

with some constant δ>0. Let us define v̄ s.t., v̄s̄=v∗s̄ −δ and v̄s=v∗s for s ̸= s̄. We claim
that for ∀π

v̄s≥ (rπ+γPπ v̄−hπ)s, ∀s.

First, for s ̸= s̄ the above inequality holds because v̄s=v∗s and v∗s satisfies the constraints
in the primal problem (3.2). For s= s̄, one has v̄s̄=v∗s̄ −δ≥ (rπ+γPπv∗−hπ)s̄. Since

(Pπv∗)s̄=
∑
t∈S

Pπ
s̄tv

∗
t =
∑
t̸=s̄

Pπ
s̄tv

∗
t +Pπ

s̄s̄(v
∗
s̄ −δ)+δ=

∑
t∈S

Pπ
s̄tv̄t+δ,

v̄s̄≥ (rπ+γPπ v̄−hπ)s̄+δ. This completes the proof of the claim. This means that v̄
also satisfies the constraints of the primal problem, but e⊤v̄ <e⊤v∗ by construction,
which contradicts with v∗ being the minimizer of the primal problem. Therefore, the
assumption is wrong and v∗ satisfies (3.7).

The above two equivalences are stated in the following theorem.

Theorem 3.2. For the discounted regularized MDP, the primal formulations (3.2)
and (3.3) are equivalent to solving the following equations

v= max
π∈∆|S|

rπ+γPπv−hπ, or equivalently, v=log

[∑
a∈A

exp

(
ra+γ

∑
t∈S

P av

)]
,

and the dual formulation (3.4) is equivalent to the optimization formulation of the policy
gradient method

max
π∈∆|S|

e⊤vπ, s.t., vπ = rπ−hπ+γPπvπ.



LEXING YING AND YUHUA ZHU 737

4. Undiscounted standard MDP
In this section, we consider the MDP without discounts, i.e., γ=1. Besides, we

assume the MDP is unichain, i.e., for each policy π, the MDP induced by policy π is
ergodic [20]. Let ρπ ∈R be the average reward under policy π,

ρπ = lim
T→∞

E

[
1

T

T∑
m=1

ram
sm

]
,

where the expectation is taken over am∼πsm ,sm+1∼P am
sm,·. Notice for an ergodic

Markov process, the average-reward is the same for any initial state because the station-
ary distribution is unique invariant, strictly positive and independent of initial states
(Chapter 6 of [12]). Let wπ ∈R|S|>0 be the stationary distribution induced by policy
π satisfying wπ

s =
∑

t∈SP
π
tsw

π
t . Then wπ is the only solution to (I−(Pπ)⊤)wπ =0 with∑

s∈Sw
π
s =1. The average reward under policy π could also be written as

ρπ =(rπ)⊤wπ.

Define the value function for the non-discount MDP as vπs =Eπ[
∑∞

m=1(r
am
sm −

ρπ)|s0=s], then the value function satisfies the average-reward Bellman equation:

vπs = rπs −ρπ+
∑
t∈S

Pπ
stv

π
t (4.1)

with
∑

s∈S v
π
sw

π
s =1. Note that without this constraint, there are infinitely many vπ,

e.g., vπ+C for any constant C still satisfies the above equation. The goal here is to
find the maximum average reward among all possible policies.

4.1. LP problems.
Primal problem. The primal problem is

min
vs,ρ

ρ s.t. ∀a,∀s, ras +
∑
t∈S

P a
stvt−vs−ρ≤0. (4.2)

This can be found, for example, in [18].

Primal-dual problem. By including the Lagrangian multiplier µa
s for the inequal-

ity constraints, one obtains the primal-dual problem

min
vs,ρ

max
µa
s≥0

ρ+
∑
s,a

(ras +
∑
t∈S

P a
stvt−vs−ρ)µa

s , (4.3)

or equivalently, in the matrix-vector notation

min
vs,ρ

max
µa
s≥0

ρ+
∑
a∈A

(µa)⊤(ra+P av−v−ρ1),

where 1 is the |S|-dimensional vector with all elements equal to 1.

Dual problem. To get the dual problem, we take the derivative with respect to ρ
to get

1−
∑
s,a

µa
s =0.
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Taking the derivative with respect to v leads to∑
a∈A

(I−(P a)⊤)µa=0.

Hence the dual problem is

max
µa
s≥0

∑
a∈A

(ra)⊤µa, s.t.
∑
a∈A

(I−(P a)⊤)µa=0, 1−
∑
s,a

µa
s =0. (4.4)

The above three formulations are summarized as the following theorem.

Theorem 4.1. For the undiscounted standard MDP, the following three formulations
are equivalent,

Primal : min
v∈R|S|

ρ∈R

ρ, s.t. ∀a, ra+P av−v−ρ1≤0,

Primal−dual : min
v∈R|S|

ρ∈R

max
µa∈R|S|

µa≥0

ρ+
∑
a∈A

(µa)⊤(ra+P av−v−ρ1),

Dual : max
µa∈R|S|

µa≥0

∑
a∈A

(ra)⊤µa, s.t.
∑
a∈A

(I−(P a)⊤)µa=0,
∑
s,a

µa
s =1.

4.2. Equivalences.
Dual problem and policy gradient. The dual problem (4.4) is equivalent to the

policy gradient formulation. Let us again parameterize µa
s =wsπ

a
s with ws=

∑
a∈Aµa

s

and π∈∆|S|. By the new parameterization, the constraints become∑
a∈A

(I−(P a)⊤)µa=0⇒ (I−(Pπ)⊤)w=0.

1−
∑

s,aµ
a
s =0 also implies that 1−

∑
s∈Sws=0. Together we conclude that w is the

stationary distribution induced by π. By denoting this w by wπ, we can write the dual
problem as

max
π∈∆|S|

rπ ·wπ, s.t. (I−(Pπ)⊤)wπ =0,
∑
s∈S

wπ
s =1, (4.5)

which is exactly the optimization formulation of the policy gradient method.

Primal problem and Bellman equation. Next, we show that the primal prob-
lem (4.2) is equivalent to the average reward Bellman equation for v,ρ

vs=max
a

(
ras −ρ+

∑
t∈S

P a
stvt

)
, s∈S. (4.6)

Bellman equation to primal problem. The derivation from (4.6) to (4.2) can be
found, for example, in [23]. Here we provide a short proof for completeness. Let v∗,ρ∗

be the solution to the Bellman equation (4.6), then for all s, there exists a∗s s.t.,

v∗= ra
∗
−ρ∗1+P a∗

v∗,
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where ra
∗

s ≡ r
a∗
s

s ,P a∗

st ≡P
a∗
s

st . For any v,ρ that satisfy the constraints in the primal prob-
lem (4.2), the following inequality holds

v≥ ra
∗
−ρ1+P a∗

v.

Subtracting these two equations gives

v−v∗≥P a∗
(v−v∗)−(ρ−ρ∗)1

Let w∗ be the stationary distribution induced by the policy πa
s =

{
1,a=a∗s

0,a ̸=a∗s
, then

(w∗)⊤=(w∗)⊤P a∗
. Multiplying (w∗)⊤ to the last equation yields,

(w∗)⊤(ρ−ρ∗)1≥0

Since we assume the MDP is unichain, the stationary distribution w∗ for any policy is
strictly positive. This implies that

ρ≥ρ∗

holds for all v,ρ satisfying the constraints in (4.2). This proves that v∗,ρ∗ is the mini-
mizer of the primal problem (4.2).

Primal problem to Bellman equation. Let (v∗,ρ∗) be the minimizer of the primal
problem (4.2). We now show that (v∗,ρ∗) also satisfies the average reward Bellman
Equation (4.6). The KKT conditions of (4.2) are

ras +
∑
t∈S

P a
stv

∗
t −v∗s ≤ρ∗, for ∀s,a;

1−
∑
s,a

µa
s =0;

∑
a∈A

(µa
s −
∑
t∈S

P a
tsµ

a
t )=0, for ∀s;

µa
s(r

a
s +
∑
t∈S

P a
stv

∗
t −v∗s −ρ∗)=0 for ∀s,a.

First we claim that it is impossible that there exists s s.t. ∀a, ras +
∑

t∈SP
a
stv

∗
t −v∗s −ρ∗<

0. Let µa
s =wsπ

a
s with ws=

∑
a∈Aµa

s and πs∈∆ for all s. Plugging it into the second
and third equation gives,

1−
∑
s∈S

ws=0, w−(Pπ)⊤w=0.

Therefore w is the unique stationary distribution induced by the policy π. Since we
assume the MDP is unichain, the stationary distribution is strictly positive. If there
exists s, s.t. for ∀a, ras +

∑
t∈SP

a
stv

∗
t −v∗s −ρ∗<0, then by the last equation of the KKT

condition, µa
s =wsπ

a
s =0 implies ws=0 for this s, which contradicts with the unichain

assumption. Therefore, the claim is true, i.e., there does not exist any s s.t. ∀a,
ras +g

∑
t∈SP

a
stv

∗
t −v∗s >0.

Therefore, for ∀s, there always exists a∗s, s.t.,

r
a∗
s

s +
∑
t∈S

P
a∗
s

st v
∗
t −v∗s =ρ∗.
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By the first equation, for all a ̸=a∗,

ras +
∑
t∈S

P a
stv

∗
t −v∗s ≤ρ∗.

Combining the above two equations gives ras +
∑

t∈SP
a
stv

∗
t −v∗s ≤ rs+

∑
t∈SP

a∗
s

st v
∗
t −v∗s =

ρ∗. This is equivalent to ρ∗=maxar
a
s +
∑

t∈SP
a
stv

∗
t −v∗s , the average reward Bellman

Equation (4.6).
The above two equivalences are stated in the following theorem.

Theorem 4.2. For the undiscounted standard MDP, the primal formulation (4.2) is
equivalent to solving the Bellman equation

vs=max
a

(
ras −ρ+

∑
t∈S

P a
stvt

)
, ∀s∈S,

and the dual formulation (4.4) is equivalent to the optimization formulation of the policy
gradient method

max
π∈∆|S|

(rπ)⊤wπ, s.t. (I−(Pπ)⊤)wπ =0,
∑
s∈S

wπ
s =1.

5. Undiscounted regularized MDP
We again use the the negative conditional entropy

h(µs)=
∑
a∈A

µa
s log

µa
s∑
bµ

b
s

as the regularizer.

5.1. LP problems.
Primal-dual problem. By adding the extra entropic term to the primal-dual

problem (4.3) of the undiscounted unregularized case, the primal-dual problem of the
undiscounted regularized MDP is

min
vs,ρ

sup
µa
s>0

ρ+
∑
s,a

(ras +
∑
t∈S

P a
stvt−vs−ρ)µa

s −
∑
s∈S

h(µs). (5.1)

Primal problem. By introducing µa
s =wsπ

a
s , one obtains

min
vs,ρ

sup
π∈∆|S|,pias ,ws>0

ρ+
∑
s,a

(ras +
∑
t∈S

P a
stvt−vs−ρ)πa

sws−
∑
s∈S

wsh(πs),

which is equivalent to

min
vs,ρ

(
ρ+ sup

ws>0

∑
s∈S

ws ·max
πs∈∆

(∑
a∈A

(ras +
∑
t∈S

P a
stvt−vs−ρ)πa

s −h(πs)

))
.

The primal problem of the above minimax problem is

min
vs,ρ

ρ s.t. ∀s, max
πs∈∆

(∑
a∈A

(ras +
∑
t∈S

P a
stvt−vs−ρ)πa

s −h(πs)

)
≤0,
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or equivalently,

min
v,ρ

ρ s.t. max
π

(rπ−ρ1+Pπv−hπ)≤v. (5.2)

Note that the constraint

max
πs∈∆

(∑
a∈A

(ras +γ
∑
t∈S

P a
stvt−vs−ρ)πa

s −h(πs)

)

is in the form of the Gibbs variational principle. The optimizer for this maximization is

πa
s =

exp(ras +
∑

t∈SP
a
stvt−vs−ρ)

Zs
,

where Zs is the normalization factor, the optimal value is logZs. Therefore, the con-
straint is equivalent to logZs≤0, i.e.,∑

a∈A
exp(ras +

∑
t∈S

P a
stvt−vs−ρ)≤1

i.e.

e−vs ·
∑
a∈A

exp(ras +
∑
t∈S

P a
stvt−ρ)≤1, or

∑
a∈A

exp(ras +
∑
t∈S

P a
stvt−ρ)≤evs .

Taking log gives

vs≥ log

(∑
a∈A

exp(ras +
∑
t∈S

P a
stvt−ρ)

)
.

Hence the primal problem can also be written as

min
vs,ρ

ρ s.t. vs≥ log

(∑
a∈A

exp(ras +
∑
t∈S

P a
stvt−ρ)

)
, (5.3)

which is an alternative formulation of the primal problem. Notice that a similar prob-
lem with equality constraints was instead derived in [18]. In practice, the inequality
constraints as in (5.3) are often preferred since the feasibility set is then convex.

Dual problem. The supremum and minimum in the primal-dual problem (3.1)
can be exchanged because the objective function is convex in v,ρ and concave in µ.
Then one has,

sup
µa
s>0

min
vs,ρ

ρ+
∑
s,a

(ras +
∑
t∈S

P a
stvt−vs−ρ)µa

s −
∑
s∈S

h(µs).

Taking derivatives in ρ and v leads to

1−
∑
s,a

µs=0,
∑
a∈A

(I−(P a)⊤)µa=0.

Hence the dual problem in terms of µa
s is

sup
µa>0

∑
a∈A

(ra)⊤µa−
∑
s∈S

h(µs) s.t.
∑
a∈A

(I−(P a)⊤)µa=0, 1−
∑
s,a

µa
s =0. (5.4)
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The above three formulations are summarized as the following theorem.

Theorem 5.1. For the undiscounted regularized MDP, the following three formula-
tions are equivalent,

Primal : min
v∈R|S|

ρ∈R

ρ, s.t. v≥max
π

(rπ−ρ1+Pπv−hπ),

or equivalently, min
v∈R|S|

ρ∈R

ρ, s.t. v≥ log

(∑
a∈A

exp(ra+γP av−ρ1)

)
,

Primal−dual : min
v∈R|S|

ρ∈R

sup
µ∈R|S|×|A|

µ>0

ρ+
∑
a

(µa)⊤ (ra+P av−v−ρ1)−
∑
s∈S

h(µs),

Dual : sup
µ∈R|S|×|A|

µ>0

∑
a∈A

(ra)⊤µa−
∑
s∈S

h(µs), s.t.
∑
a∈A

(I−γ(P a)⊤)µa=0,
∑
s,a

µa
s =1.

5.2. Equivalences.

Dual problem and policy gradient. The dual problem (5.4) is equivalent to the
optimization formulation of the policy gradient method. Let us parameterize µa

s =wsπ
a
s

with ws=
∑

a∈Aµa
s and π∈∆|S|. Then the constraint in (5.4) becomes

1−
∑
s∈S

ws=0, (I−(Pπ)⊤)w=0,

which indicates that w is the stationary distribution of Pπ. After denoting this solution
by wπ and plugging it into the objective function in (5.4), we transform the dual problem
to

max
π∈∆|S|

(rπ−hπ)
⊤
wπ, s.t.

∑
s∈S

wπ
s =1, (I−(Pπ)⊤)wπ =0. (5.5)

We can also view rπ−hπ as a regularized reward by subtracting the entropy function
hπ. The average-reward under the new reward becomes

ρπ = lim
T→∞

E

[
1

T

T∑
m=1

(ram
sm −h(πsm))

]
.

In this way, (5.5) is exactly the optimization formulation of the policy gradient method
for this undiscounted regularized MDP.

Primal problem and Bellman equation. The regularized average-reward Bell-
man equation for v,ρ is

v= max
π∈∆|S|

rπ−ρ1+Pπv−hπ. (5.6)

In each component,

vs=max
πs∈∆

∑
a∈A

(ras −ρ+
∑
t∈S

P a
stvt))π

a
s −h(πs).
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By the Gibbs variational principle, the RHS is equal to log(exp(
∑

a∈A(r
a
s −ρ+∑

t∈SP
a
stvt))). Therefore, the regularized average-reward Bellman equation can be writ-

ten as the log-sum-exp form for v,ρ

vs=log

(∑
a∈A

exp

(
ras −ρ+

∑
t∈S

P a
stvt

))
. (5.7)

Next, we show that the primal problem (5.2) is equivalent to solving (5.6).

Bellman equation to primal problem. Let v∗,ρ∗ be the solution to the Bellman
equation. For v∗,ρ∗, there exists π∗ s.t.,

v∗= rπ
∗
−ρ∗1+Pπ∗

v∗−hπ∗
.

Then, for any v satisfying the above constraints, the following inequality holds,

v≥ rπ
∗
−ρ1+Pπ∗

v−hπ∗
.

Subtracting these two equations gives

v−v∗≥Pπ∗
(v−v∗)−(ρ−ρ∗)1

Again let w∗ be the stationary distribution induced by the policy π∗, then (w∗)⊤=
(w∗)⊤Pπ∗

. Then multiplying (w∗)⊤ to the last equation yields

(w∗)⊤(ρ−ρ∗)1≥0.

Since we assume the MDP is unichain, the stationary distribution for any policy is
strictly positive. This implies that

ρ≥ρ∗

holds for all v satisfying the constraints in (5.2). This proves that v∗ is the minimizer
of the primal problem (3.2).

Primal problem to Bellman equation. Let v∗,ρ∗=argminv,ρρ be the minimizer of

the primal problem (5.2). Besides, there exists a policy π∗ s.t. ρ∗=(wπ∗
)⊤(rπ

∗ −hπ∗
).

This can be seen from multiplying (wπ)⊤ to the constraint v∗≥ rπ−ρ∗1+Pπv∗−hπ.
Due to (wπ)⊤1=1,(wπ)⊤Pπ =(wπ)⊤, one has

ρ∗≥ (wπ)⊤(rπ−hπ)

for all π. Let π∗=argminπ(w
π)⊤(rπ−hπ), then the minimizer ρ∗=(wπ∗

)⊤(rπ
∗ −hπ∗

).
We now show that (v∗,ρ∗) is also the solution to the Bellman Equation (5.6) by

contradiction. Assume (v∗,ρ∗) does not satisfy (5.6), then there must exist s̄, s.t., for
∀π

v∗s̄ ≥ (rπ−ρ∗+Pπv∗−hπ)s̄+δ (5.8)

with some positive constant δ>0. The inequality (5.8) also holds for π∗, so one can
write it in vector form,

v∗≥ rπ
∗
−ρ∗1+Pπ∗

v∗−hπ∗
+ δ̃,
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where δ̃ is a vector with δ on its s̄-th element and 0 on all other elements. Then
multiplying (wπ∗

)⊤ to the above equation yields,

0≥ δwπ∗

s̄ .

Note that the RHS is always >0 because the stationary distribution wπ∗
is strictly

positive, which leads to a contradiction. Hence we conclude that v∗,ρ∗ is also the
solution to the Bellman Equation (5.6).

The two equivalences are stated in the following theorem.

Theorem 5.2. For the undiscounted regularized MDP, the primal formulations (5.2)
and (5.3) are equivalent to solving the following equations,

v= max
π∈∆|S|

rπ−ρ1+Pπv−hπ, or eq. v=log

[∑
a∈A

exp

(
ra−ρ1+γ

∑
t∈S

P av

)]
,

and the dual formulation (5.4) is equivalent to the optimization formulation of the policy
gradient method

max
π∈∆|S|

(rπ−hπ)
⊤
wπ, s.t.

∑
s∈S

wπ
s =1, (I−(Pπ)⊤)wπ =0.

6. Conclusion
We summarize the primal, primal-dual and dual formulations for discounted stan-

dard MDP, discounted regularized MDP, undiscounted standard MDP and undiscounted
regularized MDP. For all four MDPs, we present the equivalence between the primal
formulation and the Bellman equation and the equivalence between the dual formula-
tion and the policy gradient formulation. We hope these connections between different
optimization formulations can be useful to the theoretical understanding of MDP algo-
rithms.
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