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Abstract

In the computational sciences, one must often estimate model parameters from data
subject to noise and uncertainty, leading to inaccurate results. In order to improve the
accuracy of models with noisy parameters, we consider the problem of reducing error
in an elliptic linear system with the operator corrupted by noise. We assume the noise
preserves positive definiteness, but otherwise, we make no additional assumptions
about the structure of the noise. Under these assumptions, we propose the operator
shifting framework, a collection of easy-to-implement algorithms that augment a noisy
inverse operator by subtracting an additional shift term. In a similar fashion to the
James–Stein estimator, this has the effect of drawing the noisy inverse operator closer
to the ground truth by reducing both bias and variance. We develop bootstrap Monte
Carlo algorithms to estimate the required shift magnitude for optimal error reduction in
the noisy system. To improve the tractability of these algorithms, we propose several
approximate polynomial expansions for the operator inverse and prove desirable
convergence and monotonicity properties for these expansions. We also prove
theorems that quantify the error reduction obtained by operator shifting. In addition to
theoretical results, we provide a set of numerical experiments on four different graph
and grid Laplacian systems that all demonstrate the effectiveness of our method.

Keywords: Operator shifting, Randommatrices, Monte Carlo, Polynomial expansion,
Elliptic systems

1 Introduction
There are a plethora of different situations in the natural, mathematical, and computer
sciences that necessitate computing the solution to a linear system of equations given by

Ax = b , (1)

whereA ∈ R
n×n and x,b ∈ R

n for n ∈ N.When both thematrixA and b are known, there
aremany decades of research on how to solve the system Eq. (1) efficiently. Unfortunately,
for a variety of reasons, it is often the case that the truematrixA is not known exactly, and
must be estimated from data (see [15,18]). In this situation, there is an error between the
unobserved true matrix A and the matrix Â one constructs from data. The discrepancy
betweenA and Â is often referred to asmodel uncertainty, as it stems from incomplete or
inaccurate information about the underlying system. This model uncertainty means that
with a naive application of the inverse of the observed matrix Â, one is not solving the
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desired system Eq. (1), but rather, the system

Âx̂ = b , (2)

where x̂ = Â−1b ∈ R
n is the solution we observe when we solve the observed system

naively. Often, we will write

Â = A + Ẑ , (3)

where one can think of the matrix Ẑ as constituting the noise or sampling error in our
measurements of the system Eq. (1). Hence, the sampling error Ẑ between A and Â
translates into an error between the true solution x and the naively estimated solution x̂.
The question of interest in this paper is whether, using the information available to us,

we can find a better approximation x̃ for the true solution x by modifying how we solve
the sampled system Eq. (2). “Better” here means in the sense of average error measured in
the norm of some symmetric positive definite matrix B, i.e., that we have

EB(x̃) < EB(x̂) , (4)

where the error functional EB(·) is defined as

EB(x̂) ≡ E[‖x̂ − x‖2B] = E[‖Â−1b − A−1b‖2B] , (5)

where the norm ‖ · ‖B is defined ‖x‖2B = xTBx. The two norms of particular interest to us
are the L2 norm (for obvious reasons), i.e., B = I, as well as the energy norm, i.e., B = A,
as the latter is an important metric of error in many physical problems.
Many traditional techniques approach this problemby imposingBayesian regularization

conditions on the sampled solution x̂ (e.g., Tikhonov regularization [22]) or applying post-
processing on x̂. In this paper, we take a fundamentally different tact. Instead of thinking
about the problem of improving the individual estimates x̂ of solutions x, we propose
herein a framework for thinking about the problem in terms of linear operators. We
contend that this paradigm shift is quite useful—as it is often the case that one may be
interested in solving more than just one system of the form Eq. (2) given a single estimate
Â of the matrix A. In this situation, it often makes more sense to think of improving
the estimator Â−1 rather than improving individual estimators x̂, although the two are
obviously related. In light of this, we will amend our earlier objective Eq. (5) slightly.
Namely, instead of achieving low error on just a single right-hand side b, we want to
simultaneously performwell on a whole collection of possible right-hand sides of interest.
For this reason, we suppose that b is sampled from a distribution B and that our goal is to
reduce the average error over this distribution,

Eb∼BEÂ[‖Â−1b − A−1b‖2B] . (6)

In the interest of building out this new perspective, we propose a novel method we
call operator shifting. The idea of operator shifting is to add an augmenting term to the
sampled inverse operator Â−1, yielding a family of operators

Â−1 − βK̂(Â−1) (7)

parameterized by an shift factor β ∈ R, for a choice of shift operator K̂(Â−1) ∈ R
n×n

depending on the problem setting. Note that the shift operator is a function of the sampled
matrix Â. Our new approximation for x is then given by

x̃β = (Â−1 − βK̂)b (8)
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Fig. 1 An example of the overshooting effect. If we take a single sample of the scalar random variable
X ∼ �(2, 1/2), and invert it, the pdf of the inverted 1/X has an expectation that is significantly larger (x2) than
the inversion 1/E[X ]. This means that naively trying to estimate 1/E[X ] with only a single sample will likely
give a significant overestimate. The same principle also applies when X is a randommatrix

Through judicious selection of the shift operator K̂, we show that one can estimate a β

that will reduce error by a factor that depends on the variance of the naive solution x̂.
As we will see, the power of operator shifting lies in the fact that the technique works
under very minimal assumptions on the randomness structure of Â; in general, the only
assumption we need to guarantee error reduction is that Â is an unbiased estimator of A,
and even this assumption can be relaxed.
The most obvious choice of shift operator is perhaps to shift the naive estimate Â−1

toward the origin by taking K̂(Â) = Â−1. There are two fundamental reasons why one
might expect this to be a good choice of shift—the first concerns the bias of the estimate
Â−1 and the second concerns the variance.

1. Bias: For symmetric positive definite matrices, the matrix inversion operation is
convex with respect to the Löwner order1. A matrix analogue of Jensen’s inequality,
therefore, suggests that, depending on the variance in Â, Â−1 will substantially over-
estimate A−1 on average (i.e., E[Â−1] � A−1). Hence, it makes to shift Â−1 toward
the origin in order to reduce the bias in Â−1. We provide an illustration of this bias
in Fig. 1.

2. Variance: Shrinking the estimate toward afixedpoint (i.e., the origin) simultaneously
has the effect of reducing variance in the estimator. This is analogous to the seminal
work of James and Stein [11] that demonstrated the standard mean estimator is
inadmissible, as shrinking the estimator slightly toward the origin always reduces
average error.

Therefore, the confluence of these two factors suggests that we should expect a reduction
in both bias and variance and hence a more accurate estimator as a result. Indeed, in this
paper, we prove that, with onlyminimal assumptions on the randomness of Â, the optimal
reduction in error always comes from a shift toward the origin.
We structure the remainder of the paper as follows. First, we give an overview of related

work in Sect. 2, then we set out basic assumptions and notations in Sect. 3. In Sect. 4, we
prove bounds that quantify how much error the operator shifting technique can reduce
in various norms (e.g., the Frobenius norm). Afterward, Sect. 5 focuses specifically on

1Recall the definition of the Löwner order: A � B when xTAx ≤ xTBx for all vectors x ∈ R
n .
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error in the energy norm (i.e., when B = A, the norm defined by the elliptic operator
itself) and provides the analogous bounds. Afterward, Sect. 6 introduces the bootstrap
formalism we will use in Sect. 7 to produce a computable Monte Carlo estimator for
the optimal β , and hence for A−1. But since this Monte Carlo estimator requires a full
matrix solve for every sample, we turn for the remainder of the paper to the problem
of efficient computation of the optimal β . We show in Sect. 8 that the energy norm
objective has a polynomial expansion with monotonicity properties that are immensely
useful for efficiently computing a good choice of β . Unfortunately, this expansion does
not converge for all matrices—but we show in Sect. 9 that one can shift the base point of
the polynomial expansion while maintaining monotonicity. Then, Sect. 10 considers this
base-point shifting approach on a variable point-wise basis. And finally, in Sect. 11, we
present numerical experiments to verify the theoretical results in this paper.
Note that we consider only elliptic systems in this paper, i.e., requiring that A is sym-

metric positive definite and Â is symmetric positive definite almost surely—however, one
could theoretically apply the techniques we present herein to asymmetric systems as well,
but we do not provide any theoretical guarantees in the asymmetric case.
Finally, in order to help readers quickly implement our method without getting caught

up in all of the surrounding mathematical details, we provide the quick start Sect. 8.3 to
give readers an alternate entry point to the algorithm we present in this paper. For the
accompanying source code for this paper, please see Sect. 13.

2 Related work
The spirit of our approach is heavily influenced by James–Stein Estimation [11]. In Stein’s
original paper, [19], he demonstrated the (at the time) shocking phenomenon that the
standard mean estimator is actually inadmissible2 for the quadratic loss in dimensions
≥ 3. The reason behind this has to do with the fact that one can always advantageously
trade-off bias for a reduction in variance by shrinking the estimator toward any fixed
point. At a fundamental level, one can frame our work as taking this idea and applying it
to the novel setting of matrices corrupted by noise.
Some particularly relevant work pertains to debiasing distributed second-order opti-

mization. Second-order optimization methods often rely on solving a symmetric linear
system involving the Hessian of an object (positive definite if the objective is strongly
convex). However, in many machine learning applications, the objective is composed of a
summation of terms over a massive corpus of data, such that computing the true Hessian
is extremely expensive. Instead, practitioners often turn to stochastic optimization meth-
ods that subsample the objective and its derivatives by using only a small section of the
corpus at a time. However, for an optimization problem given by

min
x

m∑

i=0
fi(x) , (9)

the true Hessian and approximated Hessian are given as follows:

H =
m∑

i=0
Hi Ĥ =

m∑

i=0

p̂i
E[p̂i]

Hi , (10)

2An inadmissible estimator μ̂ for a quantityμ is one for which there exists an alternate estimator μ̂′ that always achieves
better loss regardless of the value of μ.
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where Hi is the Hessian of fi and pi ∈ {0, 1} is a random variable that determines if the
ith item in the corpus is in the current mini-batch. The naive estimator Ĥ has an upward
bias and there has been work in the literature on how to de-bias the estimator using
determinantal averaging [8]. However, this approach is fundamentally limited to matrix
ensembles of the form Eq. (10). In this paper, the types of noise we consider are far more
general.
Other relevant work has been done in the field of matrix sketching. Matrix sketch-

ing is a technique to reduce the complexity of a least-squares/linear problem by using
random sketches of the rows/columns of the matrix. This process can likewise produce
estimates that are substantially biased. One can attempt to address this bias by modifying
regularization or other problem parameters [9]. This can be applied to the aforemen-
tioned second-order optimization problem by using a Hessian sketch. However, again,
the technique is tied to a very specific type of matrix noise.
There has been related work on the mathematical analysis of linear algebra algorithms

in the noisy regime. For example, [3] studies the randomized Kaczmarz algorithm on
so-called “Doubly-Noisy Linear Systems” (i.e., systems with noise both in A and b). The
setting is very similar to the one we have presented; however, the approach of the work
is a through the lens of a specific solver (e.g., Kaczmarz), rather than statistical estimator
approach we take herein. Moreover, due to the difficulties of such analyses, results are
typically limited to specific types of multiplicative noise.
Beyond theworldof James–Stein estimation andoperatorde-biasing, there are anumber

of immediate connections between the work done herein and previous work in the field of
statistical inverse problems. In various inverse problems, one is interested in estimation
from noisy or incomplete measurements. For example, semi-blind deconvolution involves
trying to reconstruct a function convolved with a kernel where the kernel is known, but
with some uncertainty. Note that this is distinct from fully blind deconvolution where
one has no information about the kernel. In the sense that the measurement operator
is corrupted by noise or uncertainty, and the goal is to recover the underlying object
by inverting a linear system, this setting is quite similar to our own and hence worth
mentioning.
A common approach to these problems is to induce regularization on both the operator

and the recovery target. For example, Total Least Squares algorithms as pioneered by
Golub and Van Loan [10] optimize over small perturbations to the noisy operator as well
as the linear regression weights. Similar approaches specific to semi-blind deconvolution
include introducing a free estimate of the underlying kernel with regularization to match
the observed data [5]. Another technique in semi-blind deconvolution is to treat the full
operator as a free variable and introduce optimization constraints to make sure that the
operator and the observations do not deviate by too much [4].
Unfortunately, these types of techniques that operate over the operator suffer from a

number of flaws. The most obvious is that introducing ∼ n2 additional free variables
into an optimization problem also introduces a substantial additional computational cost.
Along with this computational cost also comes a much more severe chance of over-
fitting unless regularization is handled appropriately. Furthermore, these regularization
techniques implicitly depend on good Bayesian priors for what the underlying target and
the operator should look like. In the absence of good priors, this optimization avenue
may not be as viable. In contrast, all optimizations performed in the operator shifting
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framework we present here are only over a single variable β , and hence are not subject to
these concerns.
Other situations in the statistical inverse problem literature that involve noisy or uncer-

tain operators include circumstanceswhere the forward operatormay be far too expensive
to apply directly, and hencemust be replaced by a learned proxy for efficient computation
[13]. Another setting in the literature is when one has a set of noisy input-output pairs
of the underlying operator. Work has been done on using these input-output pairs to
construct regularizers for solving the inverse problem [2]. Nonetheless, these approaches
and settings are quite different from the approach and setting we present in this paper.
Beyond the field of statistical inverse problems, a pertinent area of the literature related

to our work is model uncertainty. Quantifying and representing model uncertainty is
important in many different fields of computational science, ranging from structural
dynamics [18] to weather and climate prediction [15]. However, work relating to model
or parameter uncertainty is usually domain-specific and focuses more on establishing a
model for uncertainty than it does on trying to reduce error in the resulting predictions. In
contrast, our work focuses entirely on reducing error, rather than quantifying it. Our work
is also not restricted to a particular domain, class of problems, or randomness structure,
as long as those problems are linear.
We note that our setting shares some similarities with the problem of uncertainty

quantification (UQ). However, the problem we face here is different from the standard
uncertainty quantification setting in a subtle but very important way. In UQ, one is usually
given a distributionP and amapT and asked to estimate statistics about the pushforward
distributionT∗P (i.e., expectation, standard error, etc.). Practitioners typically accomplish
this task via Monte Carlo techniques [14] or some form of stochastic Galerkin projection
[24] or collocation method [23]. However, for our purposes, we are more interested in
the image of the statistic E[Â] = A under matrix inversion, rather than quantifying the
pushforward of the distribution of Â under matrix inversion.
The central problem in this paper is also not dissimilar to the setting of matrix com-

pletion seen in [6,12]. In matrix completion, one usually seeks to recover a low-rank
ground truth matrix Mij from observations that have been corrupted by additive noise,
e.g., N = M + Z. If P� denotes the subset sampling operator on matrix space, then one
is trying to recoverM from

P�(N) = P�(M) + P�(Z) . (11)

However, the operator shifting and matrix completion settings are subtly different. The
matrix completion analogue of A is the actual linear operator P� and not the matrix
M. Morally, one may think of the matrix competition problem as solving the under-
determined linear system

P�(M) = P�(N) (12)

by assuming a low-rank regularity onM. The randomness in this problem lies completely
in the right-hand side N, and not in the actual linear operator P�.
We also draw attention to the related field of perturbationmatrix analysis. In this setting,

one is usually interested inproving results abouthowvariousproperties ofmatrices change
under a perturbation to the elements of the matrix. A seminal example of work in this
field is the Davis-Kahan theorem [7], which quantifies the extent to which the invariant
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sub-spaces of a matrix change under perturbations. In a similar vein, work in backward
stability analysis revolves around understanding the behavior of the solution of a linear
system under perturbations to the matrix. However, backward stability analysis typically
adopts a worst-case mentality in analysis. In contrast, we care about average case error—
and more importantly, how one can reduce it.
We should briefly mention that the mathematical branch of random matrix theory

(RMT) studies the spectral properties of randommatrix ensembles [1,21]. However, RMT
results usually apply only when the entries of the random matrices are independent and
in the large matrix limit. We find these assumptions to be too stringent for the problem
at hand.
In addition to these tangentially related settings, we also call attention to the similarity

of some of our techniques to those in harmonic analysis. It is well known that the method
of summation of an infinite series can affect the conditions under which it converges, as
well as the quality of the convergence. For example, the Fourier series of a continuous
function f on the unit interval [0, 1] may not converge pointwise to f if summed naively.
But Fejér’s theorem (see [20]) states that Césaro and Abel sums of the Fourier series of
an integrable function f converge uniformly to f at any point of continuity. Our work
takes on a similar flavor in that it revolves heavily around the convergence properties of
partial sums of the infinite series expansion of the matrix function f (A) = A−1. These
partial sums are critical to accelerating an otherwise expensiveMonte Carlo computation.
Hence we develop methods of partial summation that have desirable properties—such as
convergence and monotonicity.
In conclusion, we do not believe that the setting we introduce in this paper, where the

operator is noisy, has been studied in the proposed fashion before. There is little precedent
in the literature for the operator shifting method we present herein.

3 Basic assumptions and notation
For the sake of transparency, before we go any further, we will make a number of assump-
tions on the nature of randomness on Â—as this will help clarify the setting. We will use
Dω∗ to denote the distribution of Â. Throughout this paper, we will use S+(Rn) to denote
the set of symmetric positive definite matrices inR

n×n. We make the following extremely
lax assumptions about the randomness of Â:

1. Almost-Surely Positive Definite: We assume that Â ∈ S+(Rn) almost surely. We
believe this is a very reasonable assumption if Â is generated from an elliptic problem
whose parameters are subject to noise, it is extremely unlikely that any value of the
underlying problem parameters will destroy ellipticity.

2. Unbiased, or Downward-Biased: We assume that Â is an unbiased estimate of A,
i.e., that E[Â] = A. More generally, all of the machinery applies equally well when
E[Â] � A.

3. Finiteness of the Inverse Second Moment: We assume that E[Â−2] ≺ ∞. Note that
this is necessary to ensure that ourmeasure of error Eq. (5) actually exists for arbitrary
choice of b.

We note that these assumptions are surprisingly lax. Most importantly, we do not assume
that entries of Â are independent. In the context of the theory to be presented herein, this
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assumption is irrelevant and not needed. Moreover, for all of the numerical examples we
present, the entries of Â will in fact be correlated random variables. We believe this helps
reinforce the generality of the operator shifting framework.

4 Operator shifting in operator inner product norms
To begin, we want to shift the perspective of estimating the result of a matrix solve A−1b
into the problem of estimating the matrix inverse A−1 itself. As we will see, these are
actually the same problem, and the matrix inverse estimation viewpoint is more in line
with the traditional perspective of the Stein estimation. Indeed, in practice, one may not
be simply interested in a single right-hand side b, but rather, producing a good inverse
operator for awide variety of potential right-hand sidesb. Asdiscussed inour introduction,
we encode this desire by changing our error metric to have b be sampled from a known
distribution B and then measuring the average error under this distribution,

Eb∼BEÂ∼Dω∗ [‖Â−1b − A−1b‖2B] . (13)

When b is made into a random variable, the result actually induces a metric on the space
of operators Rn×n. To see this, let R ≡ E[bbT ] denote the second moment matrix of the
distribution B and consider the following manipulations,

Eb∼BEÂ∼Dω∗ [‖Â−1b − A−1b‖2B]
= Eb∼BEÂ∼Dω∗ [b

T (Â−1 − A−1)TB(Â−1 − A−1)b]

= Eb∼BEÂ∼Dω∗ tr[b
T (Â−1 − A−1)TB(Â−1 − A−1)b]

= Eb∼BEÂ∼Dω∗ tr[(Â
−1 − A−1)TB(Â−1 − A−1)bbT ]

= EÂ∼Dω∗ tr[(Â
−1 − A−1)TB(Â−1 − A−1)Eb∼B(bbT )]

= EÂ∼Dω∗ tr[(Â
−1 − A−1)TB(Â−1 − A−1)R]

= EÂ∼Dω∗ tr[R
1/2(Â−1 − A−1)TB(Â−1 − A−1)R1/2]

(14)

The natural metric and norm on operator space that corresponds to this notion of error
is therefore defined by:

〈X,Y〉B,R ≡ tr[R1/2XTBYR1/2]

‖X‖2B,R ≡ 〈X,X〉B,R ,
(15)

where X,Y ∈ R
n×n. Note that the often-used Frobenius norm ‖ · ‖F and corresponding

inner product 〈·, ·〉F defined by

〈X,Y〉F ≡ tr(XTY) ,

‖X‖2F ≡ 〈X,X〉F
(16)

is a special case of this class of norms that we obtain when B = R = I.
Therefore, the pivot from thinking about obtaining a lower error in a specificb to obtain-

ing a lower error on a collection of b essentially changes our problem to an estimation
problem for Â−1 in the ‖ · ‖B,R norm. Corresponding to this change in outlook, we will
use the notation

EB,R(Â−1) ≡ E‖Â−1 − A−1‖2B,R = Eb∼BEÂ∼Dω∗ [‖Â−1b − A−1b‖2B] , (17)

to denote the (B,R)-error of the estimator Â−1. When considering the Frobenius norm,
we will simply use the notation EF (·).
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Now, let us return to the central technique of this paper and introduce an operator shift
to the sampled operator inverse Â−1,

Â−1 − βK̂(Â−1) . (18)

A quick dimensional analysis of the above quantity suggests that K̂(Â−1) should be a linear
function of Â−1. Therefore, it makes sense to study operator shifts of the form

K̂(Â−1) = CÂ−1D , (19)

where C,D are matrices.
To start, let us consider the choice of C = D = B where B is symmetric positive

definite. When B = I, this is analogous to Stein shrinkage but for matrices instead of
vector quantities. We will see that there are more choices of C and D available that yield
interesting theoretical results for error reduction; however, the case K̂(Â−1) = BÂ−1B
is the simplest to analyze and has the most interesting error bound. We note that this is
analogous to simply applying a Stein shrinkage factor to the naive estimator Â−1. As we
laid out in our introduction, we should expect that for some β > 0, we should achieve a
smaller estimation error ofA−1. The central lemmawhich bears this intuitive expectation
out is the following Löwner Order Inversion Lemma,

Lemma 1 (Löwner Order Inversion) Suppose that A ∈ S+(Rn) and Â ∈ S+(Rn) almost
surely. Moreover, suppose that, A spectrally dominates Â in expectation, i.e.,

E[Â] � A , (20)

then, matrix inversion inverts the expected Löwner order, i.e.,

E[Â−1] � A−1 (21)

The proof of this lemma simply depends upon the convexity of the function (·)−1 on the
cone of positive definition matrices. However, we relegate this proof to the “Appendix” so
that we can continue on to the main result of this section,

Theorem 1 (Operator Shifting Bounds) Under the assumptions in Sect. 3, consider oper-
ator shifting in any (B,B) matrix norm ‖ · ‖B,B (for example, the Frobenius norm). The
operator shift K̂ = Â−1 has an optimal shift factor that satisfies:

1 ≥
√√√√ EB,B(Â−1)

E‖Â−1‖2B,B
≥ β∗ ≥ EB,B(Â−1)

E‖Â−1‖2B,B
≥ 0 . (22)

The corresponding optimal reduction in relative error is given by

max
β∈R

EB,B(Â−1) − EB,B(Â−1 − βK̂)
EB,B(Â−1)

≥ EB,B(Â−1)
E‖Â−1‖2B,B

, (23)

where E(X̂) is the mean squared error of matrix estimator X̂ in the ‖ · ‖B,B matrix norm.

This theorem tells us that if we approximate a good shift factor that comes close to β∗ we
should expect a reduction in error that is proportional to the error relative to the average
squared norm. Moreover, it tells us roughly how large we should expect the optimal
shift factor to be. If one already has a good estimate of the ratio EB,B(Â−1)/E‖Â−1‖2B,B,
one could use this as an approximate shift factor. Let us now establish this result in the
following proof,
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Proof For the scope of this proof, we use 〈·, ·〉 and ‖ · ‖ to denote the B,B matrix inner
product 〈·, ·〉B,B and matrix norm ‖ · ‖B with the subscript suppressed, with E(·) denoting
the corresponding estimator error EB,B(·) for A−1.
To begin this proof we want to compute an expression for the shift factor β that opti-

mizes the error. Expanding the error gives us

E(Â−1 − βK̂) = E(Â−1) − 2β E〈K̂, Â−1 − A−1〉 + β2
E‖K̂‖2 , (24)

and hence, the optimal shift factor β∗ is given by

β∗ = E〈K̂, Â−1 − A−1〉
E‖K̂‖2 , (25)

and the corresponding optimal error is

E(Â−1 − β∗K̂) = E(Â−1) − (E〈K̂, Â−1 − A−1〉)2
E‖K̂‖2 , (26)

We therefore expand the quantity E〈A−1, Â−1 − A−1〉 above,
E〈A−1, Â−1 − A−1〉 = E tr(B1/2A−1BÂ−1B1/2) − tr(B1/2A−1BA−1B1/2)

= E tr(A−1/2BÂ−1BA−1/2) − tr(B1/2A−1BA−1B1/2)

= tr(A−1/2BE[Â−1]BA−1/2) − tr(B1/2A−1BA−1B1/2)

≥ tr(A−1/2BA−1BA−1/2) − tr(B1/2A−1BA−1B1/2)

= tr(B1/2A−1BA−1B1/2) − tr(B1/2A−1BA−1B1/2) = 0

(27)

where we have used the fact that E[Â−1] � A−1 by Lemma 1. Now returning to Eq. (26),
we obtain

E〈K̂, Â−1 − A−1〉 = E〈Â−1, Â−1 − A−1〉
≥ E〈Â−1, Â−1 − A−1〉 − E〈A−1, Â−1 − A−1〉
= E〈Â−1 − A−1, Â−1 − A−1〉
= E(Â−1) .

(28)

For a bound in the opposite direction, we simply invoke Cauchy-Schwarz:

E〈K̂, Â−1 − A−1〉 ≤
√
E‖K̂‖2 E‖Â−1 − A−1‖2

=
√
E‖Â−1‖2 E(Â−1)

(29)

Therefore, the desired result follows immediately from Eqs. (25) and (26). ��

It is possible to extend this result to a wider range of possible choices of shifts where C
and D are not identities. The proof sketch remains more or less the same but requires a
few extra steps. Unfortunately, not all possible choices of shifts admit an analogy to the
above proof. There is a compatibility constraint on C and D that forces the result to play
especially nice with the 〈·, ·〉B,R inner product, namely,

RDT = CTB, (RDT ) = (RDT )T , RDT � 0 . (30)

Some examples when this may be the case are as follows:

1. The trivial case where R = B = D = C = I.
2. The case where R = B and D = C = I.
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3. The case where C = R, D = B and [B,R] = 0.
4. The case where C = B−1 and D = R−1.

However, with these constraints, we can essentially repeat the previous theorem for a
wider selection of possible operator shifts and obtain the following more general result,

Theorem 2 Under the assumptions in Sect. 3, consider operator shifting in the ‖ · ‖B,R-
norm. Any operator shift K̂ = CÂ−1D such that C,D ∈ R

n×n satisfy the compatibility
conditions Eq. (30) has an optimal shift factor that satisfies:

√√√√ EB,R(Â−1)
E‖Â−1‖2CTBC,DRDT

≥ β∗ ≥ ECTB,RDT (Â−1)
E‖Â−1‖2CTBC,DRDT

≥ 0 . (31)

And the corresponding optimal reduction in error is given by

max
β∈R

EB,R(Â−1) − EB,R(Â−1 − βK̂)
EB,R(Â−1)

≥ ECTB,RDT (Â−1)2

E‖Â−1‖2CTBC,DRDT EB,R(Â−1)
, (32)

where EB,R(X̂) is the mean squared error of matrix estimator X̂ in the ‖ · ‖B,R-norm.

The proof of this statement is relegated to the “Appendix” because it is not that funda-
mentally different from the proof that we just gave for the more specialized statement.
We observe that the theorems above tell us how much error one could expect if we

could produce a perfect estimate of the shift factor β . However, this is unfortunately not
possible. If one examines the optimal shift factor for (as an example) the Frobenius error,

β∗ = E〈K̂, Â−1 − A−1〉F
E‖K̂‖2F

, (33)

we see very clearly that this expression depends on A, a quantity that we don’t know.
This means that it must be approximated. The bounds of Theorem 1 give us some idea of
roughly how large β will be, as it is very likely that the user will have a good idea of how
large the relative error EF (Â−1)/E‖Â−1‖2F is, as it corresponds to the amount of noise in
the estimate.
Alternatively, anothermethod to approximate β∗ is to try to bootstrap it using synthetic

samples of Â−1. Naturally, one cannot draw additional samples from the distributionDω∗ ;
however, it is usually the case that by observing Â, we have some ideas of the parame-
ters that generate the distribution Dω∗ and hence can draw synthetic samples from an
approximate distribution Dω̂ that can be used to build a Monte Carlo estimate for β∗.
However, we will table this discussion until later in the paper when we talk about algorith-
mic implementations of operator shifting. For now, let us focus primarily on theoretical
results.

5 Operator shifting in the energy norm
The previous section represents a class of operator shifts that one might use when the
norm B is actually known; however, for many elliptic problems, the norm defined by the
true matrix A itself is an important error norm. For example, in many physical problems,
xTAxmeasures the energy of a state x and hence can be even more important as a metric
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than L2. Moreover, the case of A is special because the optimal shift factor reads

β∗ = E〈K̂, Â−1 − A−1〉A,R

E‖K̂‖2A,R
, (34)

and hence the A−1 in the numerator will cancel with the A in the 〈·, ·〉A,R-inner product,
where once again R is the second moment matrix of b. This choice of norm leads more or
less to a very similar set of bounds on the optimal shift factor β∗ but for a slightly different
set of norms,

Theorem 3 Under the assumptions in Sect. 3, consider operator shifting in any (A,R)
matrix norm ‖ · ‖A,R (for example, the energy norm). The operator shift K̂ = Â−1 has an
optimal shift factor that satisfies:

1 ≥
√√√√ EA,R(Â−1)

E‖Â−1‖2A,R
≥ β∗ ≥ EA,R(Â−1)

E‖Â−1‖2A,R
≥ 0 . (35)

The corresponding optimal reduction in relative error is given by

max
β∈R

EA,R(Â−1) − EA,R(Â−1 − βK̂)
EA,R(Â−1)

≥ EA,R(Â−1)
E‖Â−1‖2A,R

(36)

where EA,R(X̂) is the mean squared error of matrix estimator X̂ in the ‖ · ‖A,R-norm.

Proof Almost exactly the same as Theorem 1. The one place where the proof diverges is
the equation Eq. (27). In this setting, we instead have:

E〈A−1, Â−1 − A−1〉 = E tr(R1/2A−1AÂ−1R1/2) − tr(R1/2A−1AA−1R1/2)

= E tr(R1/2Â−1R1/2) − tr(R1/2A−1R1/2)

= tr(R1/2
E[Â−1]R1/2) − tr(R1/2A−1R1/2)

≥ tr(R1/2A−1R1/2) − tr(R1/2A−1R1/2) = 0

(37)

��

We note that the admissible norms for the above theorem are slightly different than
those of Theorem 1. In particular, while the proof of Theorem 1 required that the norm
matrix B and second moment matrix R be identical, one is allowed to choose any second
moment matrix R in the above theorem as long as B = A.
Now let us consider other possible operator shifts besides the trivial one K̂ = Â−1.

For a generalized version of the above theorem, using the energy norm also means that
the possible operator shifts we can make and the conditions they must satisfy are slightly
different. Indeed, for the energy norm, we consider only shifts in the form

K̂ = Â−1C , (38)

where C satisfies the compatibility conditions:

(RCT ) = (RCT )T , RCT � 0 . (39)

This type of shift gives the following theorem:

Theorem 4 Under the assumptions in Sect. 3, consider operator shifting in energy norm
‖ · ‖A,R . Any operator shift K̂ = Â−1C such that C satisfies the compatibility conditions
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Eq. (39) has an optimal shift factor that satisfies:

1 ≥
√√√√ EA,R(Â−1)

E‖Â−1‖2A,CTRC
≥ β∗ ≥ EA,RCT (Â−1)

E‖Â−1‖2A,CTRC
≥ 0 . (40)

And the corresponding optimal reduction in relative error is given by

max
β∈R

EA,R(Â−1) − EA,R(Â−1 − βK̂)
EA,R(Â−1)

≥ EA,RCT (Â−1)2

E‖Â−1‖2A,CTRC EA,R(Â−1)
(41)

where EA,R(X̂) is the mean squared error of matrix estimator X̂ in the ‖ · ‖A,R-norm.

Wereligate the proof of this theorem to “Appendix.”Now,we finally turn to the problem
of actually estimating the quantity β∗.

6 Bootstrap formalism
To be able to approximate the optimal shift factor β∗ using Bootstrap Monte Carlo and
write down a final algorithm for the operator shifting ideas presented above, we must first
establish a formalism that allows one to generate synthetic samples of Â−1.
To build the formalism, we assume that there exists an underlying parameter space

� (with sigma algebra �), where the parameters ω ∈ � contain a description of the
system that produces the matrices above (e.g., ω may be measurements of a scattering
background, edge weights, vertex positions, etc.). We suppose the relationship between
parameters and matrices is given by a measurable map

M : � −→ S+(Rn) . (42)

For example, ω ∈ � may be a weighted graph, and M(ω) ∈ S+(Rn) may denote a minor
of its Laplacian. We suppose that there exist some unobserved true system parameters
ω∗ ∈ � that produce the true matrix A = M(ω∗). We also suppose that there exists a
known family of distributions Pω over � indexed by ω ∈ � that describe the observed
randomness in the system ifωwere to be the true system parameters. It is this relationship
between ω∗ and the distribution Pω∗ that we assume is known as part of the model (but
not the true system parameters ω∗ themselves). Once this family has been specified, the
distribution of Â is given by M#Pω∗ , where M# denotes the pushforward. We define
Dω∗ ≡ M#Pω∗ .
To frame the full problem, we assume that we are given a single sample ω̂ from Pω∗ with

corresponding matrix Â = M(ω̂) and we would like to use operator shifting to obtain a
more accurate estimate of the inverse operator A = M(ω∗). This, of course, necessitates
estimating the optimal shift factor,

β∗ =
EÂ∼Dω∗ 〈K̂, Â−1 − A−1〉B,R

EÂ∼Dω∗ ‖K̂‖2B,R
. (43)

Naturally, it is not possible for us to estimate this quantity directly with Monte Carlo, as
we do not know the true parameters ω∗ and hence cannot draw synthetic samples from
Dω∗ .
However, while Dω∗ is unknown, we assume that the family of distributions Pω itself is

known—that is, given a ω, we can sample synthetic data from the distribution Pω. This
means that to approximate the optimal shift factor, we can try to approximate β∗ by
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True Parameters

True Distribution

Observed Parameters

Bootstrap Distribution

Observed Matrix

Bootstrap Parameters

Bootstrap Matrices

Augmentation Matrix Shift Factor

Shifted Operator

Unobserved

Observed

Our Algorithm

Chosen

ω∗

Pω∗

ω̂

Pω̂

Â

ω̂b,1, ..., ω̂b,N

Âb,1, ..., Âb,N

K̂ β̂

Â−1 − β̂K̂

Fig. 2 A pictographic diagram of the flow of our algorithm. Arrows denote logical dependencies. Quantities
in blue are unobserved truth quantities. Quantities in yellow are observed (noisy) data. Quantities in gray are
chosen by the user, and quantities in green are computed or bootstrapped via our algorithm

drawing approximate Monte Carlo samples from the approximate distribution Pω̂. We
will give all the details of this algorithm in the next section.

7 Estimating the optimal shift factor
To convert the above into a general algorithm, we need to first do two things. The first is
to convert β∗ into a form that is more amenable to Monte Carlo evaluation. Obviously,
computing the trace of a dim× dim matrix is too expensive in most settings. Therefore,
we evaluate traces by using the probabilistic form of the trace, i.e., if R ∈ S+(Rn), then

tr(R1/2XR1/2) = Eq̂[q̂TXq̂], (44)

where q̂ is sampled from any distribution with second moment matrix R. We will use the
notation that 〈·, ·〉B for B ∈ S+(Rn) denotes the B vector norm,

〈x, y〉B ≡ xTBy . (45)

With Eq. (44), we can evaluate matrix inner products in the 〈·, ·〉B,R by using expectations
of the corresponding 〈·, ·〉B vector norm,

〈X,Y〉B,R = Eq̂∼N (0,R)〈Xq̂,Yq̂〉B . (46)
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Algorithm 1Operator Shifting (GS)
Input: A right-hand side b, an operator sample Â ∼ Dω∗ with corresponding parameters

ω̂ ∈ �, a choice of second moment matrix R, a choice of norm B, sample countM.
Output: An estimate x̃ of A−1b.

1: DrawM i.i.d. bootstrap samples Âb,1, . . . , Âb,M ∼ Dω̂ .
2: DrawM i.i.d. bootstrap samples q̂1, . . . , q̂M ∼ N (0,R).
3: Assign

β̂∗(Â) =
∑M

i=1〈K̂(Âb,i)q̂i, (Â−1
b,i − Â−1)q̂i〉B

∑M
i=1 ‖K̂(Âb,i)q̂i‖2B

,

4: Assign x̃ ← (Â−1 − β̂∗RÂ−1B)b
5: Return x̃.

With this, we can rewrite the expression Eq. (43) as

β∗ =
EÂ∼Dω∗ ,q̂∼N (0,R)〈K̂q̂, (Â−1 − A−1)q̂〉B

EÂ∼Dω∗ ,q̂∼N (0,R)‖K̂q̂‖2B
, (47)

where the normal distributionN (0,R) can always be substituted for any other distribution
with the same secondmoment.We note that the above quantity is impossible to compute
outright because we do not know the ground truth A or the distribution Dω∗ . To work
around this limitation, we approximate β∗ by bootstrapping the above quantity with
observed data Â, and replacing A with an observed Â and the distribution Dω∗ with Dω̂.
This nets us the approximation

β̃∗(Â) = EÂb∼Dω̂ ,q̂∼N (0,R)〈K̂(Âb)q̂, (Â−1
b − Â−1)q̂〉B

EÂ∼Dω̂ ,q̂∼N (0,R)‖K̂(Âb)q̂‖2B
, (48)

where Âb denotes a bootstrapped sample from the distribution Dω̂. Since bootstrapping
tends to work well when estimating scalar quantities, we believe that this approximation
step is justified. Now, the above can be estimated with Monte Carlo,

β̂∗(Â) =
∑M

i=0〈K̂(Âb,i)q̂i, (Â−1
b,i − Â−1)q̂i〉B

∑M
i=0 ‖K̂(Âb,i)q̂i‖2B

, (49)

where
Âb,1, . . . , Âb,M ∼ Dω̂

q̂1, . . . , q̂M ∼ N (0,R)

i.i.d.,

i.i.d.
(50)

This gives us our general purpose operator shifting algorithm, which we give in full detail
in Algorithm 1.Moreover, we give a pictographic representation of the algorithm in Fig. 2.

8 Efficient estimation using truncated expansions
The reader will note that an implementation of operator shifting will involve applying a
different M Monte Carlo samples in Eq. (49). Naturally, this can be quite expensive for
very large operators. Hence, in this section, we turn to the problem of making Monte
Carlo samples more efficient. Fortunately, the energy norm has a number of properties
that make it particularly attractive when it comes to efficient computations. In particular,
under certain assumptions on the distribution of the randomness in Â, we will prove that
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β can be approximated effectively by using a modified 2kth order Taylor expansion for
Â−1. This means that one can performMonte-Carlo computation of β effectively without
needing to invert a full linear system for each sample.
Wewill operate in the framework of Sect. 5, but specialize our discussion to the operator

shift given by

K̂ = Â−1 , (51)

Repeating the computation done in the previous two sections, we have that the optimal
shift factor is given by

β∗ = E〈Â−1, Â−1 − A−1〉A,R

E‖Â−1‖2A,R
, (52)

For brevity of notation, we introduce a shorthand for the expected R-modulated trace,

〈X̂〉R = E tr(R1/2X̂R1/2) . (53)

With this notation, we have:

β∗ = 〈Â−1AÂ−1〉R − 〈Â−1〉R
〈Â−1AÂ−1〉R

, (54)

The properties that make this setting amenable for computation are related to the Taylor
series of the numerator and denominator of the above expression. To demonstrate, we can
expand the numerator and denominator term using the Taylor expansion of Â−1 about
base-point A−1,

Â−1 ∼ A−1 − A−1ẐA−1 + A−1ẐA−1ẐA−1 − A−1ẐA−1ẐA−1ẐA−1 + ...

= A−1/2
[ ∞∑

k=0
(−A−1/2ẐA−1/2)k

]
A−1/2 .

(55)

However, note that for this infinite Taylor series to converge, onemust restrict the domain
of Â. Just like in the single variable case, the Taylor series only converges absolutely on
the event {Â ≺ 2A}. We prove this in a lemma,

Lemma 2 Let X̂ ∈ S+(Rn) be a randommatrix such that E[X̂−2] exists and X̂ � (2− ε)Y
almost surely for Y ∈ S+(Rn) and ε > 0. Consider the infinite Taylor series for X̂−1 and
X̂−2, respectively, about base-point Y, i.e.,

X̂−1 ∼ Y−1/2
[ ∞∑

k=0
(−Y−1/2(X̂ − Y)Y−1/2)k

]
Y−1/2 ,

X̂−2 ∼ Y−1/2
[ ∞∑

k=0
(k + 1)(−Y−1/2(X̂ − Y)Y−1/2)k

]
Y−1/2 .

(56)

Both series converge in mean-squared Frobenius norm to their respective limits.

Aproof of this fact is relegated to the “Appendix.”This places a damper onour ability to use
the Taylor expansion of Â−1 with impunity over all of S+(Rn). For simplicity, however, we
will assume fornow that the truedistributionDω∗ is supportedon the event {Â ≺ (2−ε)A}.
It turns out, as we will show in Sect. 9, that one can remove this assumption by instead
expanding about a variable base-point α(Â)A for some large enough factor α(Â) ∈ R.
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Therefore, when we have supp(Dω∗ ) ⊂ {Â ≺ (2 − ε)A}, we can expand 〈Â−1〉R ,

〈Â−1〉R =
〈
A−1/2

( ∞∑

k=0
(−A−1/2ẐA−1/2)k

)
A−1/2

〉

R

=
∞∑

k=0

〈
A−1/2(−A−1/2ẐA−1/2)kA−1/2

〉

R

=
∞∑

k=0

〈
(−A−1/2ẐA−1/2)k

〉

A−1/2RA−1/2

=
∞∑

k=0
〈X̂k〉S ,

(57)

where we have defined

X̂ ≡ −A−1/2ẐA−1/2 , S ≡ A−1/2RA−1/2 . (58)

Note quickly that the assumption that E[Â] � A implies E[X̂] � 0. The assumption that
0 ≺ Â ≺ (2 − ε)A gives us that

− (1 − ε)I ≺ X̂ ≺ I . (59)

From line one to two in Eq. (57), wemay interchange the 〈·〉R operator and the infinite sum
by virtue of the fact that 〈·〉R is continuous with respect to the mean squared Frobenius
norm,

〈X̂〉R = E tr(R1/2X̂R1/2) = E tr(RX̂) ≤ ‖R‖F
√
E‖X̂‖2F , (60)

where the inequality above is by Cauchy-Schwarz.
We can similarly expand 〈Â−1AÂ−1〉R ,

〈Â−1AÂ−1〉R

=
〈
A−1/2

( ∞∑

k=0
(−A−1/2ẐA−1/2)k

)( ∞∑

k=0
(−A−1/2ẐA−1/2)k

)
A−1/2

〉

R

=
〈
A−1/2

( ∞∑

k=0
(k + 1)(−A−1/2ẐA−1/2)k

)
A−1/2

〉

R

=
∞∑

k=0
(k + 1)

〈
A−1/2(−A−1/2ẐA−1/2)kA−1/2

〉

R
,

=
∞∑

k=0
(k + 1)〈X̂k〉S

(61)

where on lines two to three we have used the property that
(∑

k zk
) (∑

k zk
) ∼ ∑

k (k +
1)zk . lemma 2 tells us the above series converges in the mean Frobenius norm, and the
fact that 〈·〉S is continuous with respect to the expected squared Frobenius norm lets us
interchange summation and the 〈·〉S operator.
Thus, plugging everything into Eq. (54), we obtain that

β∗ =
∑∞

k=0 k 〈X̂k〉S∑∞
k=0(k + 1) 〈X̂k〉S

(62)

The form Eq. (62) suggests a possible way of avoiding the need to invert a linear system
for every Monte Carlo sample involved in approximating β∗. Instead of attempting to
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approximate the quantity β∗ directly, one can truncate the series in Eq. (62) with an
appropriate windowing function to obtain a series of truncated shift factors, defined as

βN ≡
∑∞

k=0 ωN (k) 〈X̂k〉S∑∞
k=0 ωN∗ (k) 〈X̂k〉S

, (63)

where ωN (k) : Z≥0 −→ R and ωN∗ (k) : Z≥0 −→ R are two appropriately defined
collections of discrete windowing functions, each with bounded support, such that the
collection has the property that ωN (k) → k and ωN∗ (k) → k + 1 as N → ∞. It turns
out, as we will discuss in the next section, that regardless of the randomness structure of
the distribution Dω∗ (as long as it is bounded), one can choose an appropriate series of
windowing functions ωN (k),ωN∗ (k) such that

0 ≤ β1 ≤ β2 ≤ ... ≤ βN ≤ ... ≤ β∗ ≤ 1 , (64)

which means that using any of the truncated shift factors βN underestimates the value of
β∗ and hence still decreases the value of the objective E((1 − β)Â−1) from its base value
of E(Â−1), i.e.,

E(Â−1) ≥ E((1 − β1)Â−1) ≥ ... ≥ E((1 − βN )Â−1) ≥ ... ≥ E((1 − β∗)Â−1) . (65)

Before we continue, note that one can rewrite the truncated shift factors βN in a form
more amenable for computation, namely

βN = E
[∑∞

k=0 ωN (k) q̂TA−1(ẐA−1)k q̂
]

E
[∑∞

k=0 ωN∗ (k) q̂TA−1(ẐA−1)k q̂
] , (66)

where q̂ is sampled from a distribution with second moment matrix R (perhapsN (0,R))
and is independent from Â ∼ Dω∗ .

8.1 Monotonic estimates of the shift factor

Our analyses of the monotonicity of the βN rely upon the following lemma,

Lemma 3 Let a1, a2, ..., ak , ... ∈ R≥0 and b1, b2..., bk , ... ∈ R≥0 be two sequences of nonneg-
ative real numbers with b1 > 0, and consider the truncated sum ratios

βN ≡
∑N

k=1 ak∑N
k=1 bk

, (67)

then, if it is the case that
ak
bk

≥ ak−1
bk−1

, (68)

for all k (e.g., the ratios ak/bk are monotonically increasing), then the sequence
β1,β2, ...,βk , ... is monotonically increasing.

To construct the discrete windowing functions ωN (k),ωN∗ (k), it is instructive to think
of the generating polynomials corresponding to ωN (k),ωN∗ (k), i.e.,

�N (x) ≡
∞∑

k=0
ωN (k) xk , �N∗ (x) ≡

∞∑

k=0
ωN∗ (k) xk . (69)

We can rewrite Eq. (63) as

βN = 〈�N (X̂)〉S
〈�N∗ (X̂)〉S

. (70)
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Note that we have used the fact that �N (x),�N∗ (x) are polynomial generating functions
of bounded degrees to interchange summation and expectation.
Our intent now is to find a sequence of polynomials �N (x),�N∗ (x) with the properties

�N (x) ↗
∞∑

k=0
k xk , �N∗ (x) ↗

∞∑

k=0
(k + 1) xk , for |x| < 1, as N → ∞ , (71)

such that the sequence in Eq. (70) allows us to invoke Lemma3.Wedo this by constructing
�N (x),�N∗ (x) from smaller primitive polynomials 	j(x), 	j

∗(x) such that

�N (x) =
N∑

j=0
	j(x) , �N∗ (x) =

N∑

j=0
	

j
∗(x) , (72)

E

[
	j(X̂)

]
� 0 , E

[
	

j
∗(X̂)

]
� 0 , (73)

	j(x) = 2j − 1
2j

	
j
∗(x) , for j ≥ 1 , (74)

	0(x) = 0 . (75)

With this, we can expand Eq. (70) into the required form of Lemma 3,

βN =
∑N

j=0〈	j(X̂)〉S
∑N

j=0〈	j
∗(X̂)〉S

≡
∑N

j=0 aj
∑N

j=0 bj
. (76)

Note that property Eq. (73) implies aj ≥ 0 and bj > 0, and the property Eq. (74) implies,
for j ≥ 1,

aj
bj

= 〈	j(X̂)〉S
〈	j

∗(X̂)〉S
= 2j − 1

2j
〈	j

∗(X̂)〉S
〈	j

∗(X̂)〉S
= 2j − 1

2j
, (77)

and for j = 0, we have a0/b0 = 0. Hence, the ratio aj/bj is monotonically increasing in j
and hence satisfies the requirement Eq. (68) of Lemma 3. Therefore, the existence of such
primitive polynomials 	N (x), 	N∗ (x) immediately implies that

βN → β∗ as N → ∞ , (78)

0 ≤ β1 ≤ β2 ≤ β3 ≤ ... ≤ βN ≤ ... ≤ β∗ ≤ 1 , (79)

where Eq. (78) follows from Eq. (71); the fact that β∗ ≤ 1 follows from from βN → β∗ and
the fact that aj ≤ bj , and hence the numerator of

∑N
j=0 aj/

∑N
j=0 bj is always bounded by

the denominator, implying βN ≤ 1 for all N ; and the fact that βN ≥ 0 for any N comes
from nonnegativity of the numerator and denominator of βN .
To show that such primitive polynomials 	N (x) and 	N∗ (x) actually exist, we consider

the following definition,

	0(x) ≡ 0 , 	0∗(x) ≡ 1 , (80)

	1(x) ≡ x + 1
2
x2 , 	1∗(x) ≡ 2x + x2 , (81)

	j(x) ≡ (2j − 1)
(
1
2
x2j−2 + x2j−1 + 1

2
x2j
)

, for k ≥ 2 , (82)

	
j
∗(x) ≡ 2j

(
1
2
x2j−2 + x2j−1 + 1

2
x2j
)

, for k ≥ 2 . (83)

To show this family of primitive polynomials satisfies the desired properties, note that,
for j ≥ 2,

	j(x) = 2j − 1
2

x2j−2(x + 1)2 ≥ 0 . (84)
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This implies 	j(X̂) � 0. Moreover, we can only have 	j(X̂) = 0 if all of the eigenvalues
of X̂ are either 0 or −1. Note that a −1 eigenvalue in X̂ is impossible by virtue of the fact
that −I ≺ X̂ ≺ I. Therefore, 	j(X̂) = 0 is only possible if X̂ = 0. However, this cannot be
the case almost surely, as X̂ = 0 implies Â = A. Therefore, with probability greater than
0, we have that 	j(X̂) � 0, implying

E[	j(X̂)] � 0 , E[	j
∗(X̂)] � 0 . (85)

Furthermore, for j = 1, we have

E[	1(X̂)] = E[X̂] + 1
2
E[X̂2] � 0 , (86)

where we have used the fact that E[X̂] � 0 (from the fact that E[Â] � A) and the fact that
X̂2 � 0 with probability greater than 0 (unless Â = A a.s.).
Finally, to show Eq. (71), we simply note that, for k odd, and N large enough, it is the

case that

[xk ]�N (x) = [xk ]	(k+1)/2(x) = k ,

[xk ]�N∗ (x) = [xk ]	(k+1)/2∗ (x) = k + 1 ,
(87)

since 	(k+1)/2(x) is the only primitive polynomial with a xk term in �N (x), and likewise
for �N∗ (x). For k ≥ 2 even, we have that

[xk ]�N (x) = [xk ](	k/2(x) + 	k/2+1(x)) = k − 1
2

+ k + 1
2

= k ,

[xk ]�N∗ (x) = [xk ](	k/2∗ (x) + 	
k/2+1∗ (x)) = k

2
+ k + 2

2
= k + 1 .

(88)

Thus, the polynomials �N (x) and �N∗ (x) have all the desired properties. We restate the
results of the past two sections in a theorem,

Theorem 5 Under the assumptions in Sect. 3, consider operator shifting with shift K̂ = Â
in energy norm ‖ · ‖A,R . Suppose that the random matrix Â ∈ S+(Rn) satisfies 0 ≺ Â ≺
(2 − ε)A almost surely. Then let βN be the truncated approximations to the optimal shift
factor β∗, i.e.,

βN =
∑2N

k=0 ωN (k)〈X̂k〉S∑2N
k=0 ωN∗ (k)〈X̂k〉S

=
E

[∑2N
k=0 ωN (k) q̂TA−1(ẐA−1)k q̂

]

E

[∑2N
k=0 ωN∗ (k) q̂TA−1(ẐA−1)k q̂

] , (89)

where ωN (k) and ωN∗ (k) are given by

ωN (k) =

⎧
⎪⎪⎨

⎪⎪⎩

k k < 2N
k−1
2 k = 2N

0 o.w.

, ωN∗ (k) =

⎧
⎪⎪⎨

⎪⎪⎩

k + 1 k < 2N
k
2 k = 2N

0 o.w.

. (90)

Under these assumptions, we have that

βN ↗ β∗ as N → ∞ ,
0 ≤ β1 ≤ β2 ≤ β3 ≤ ... ≤ βN ≤ ... ≤ β∗ ≤ 1 ,

EA,R(Â−1) ≥ EA,R((1 − β1)Â−1) ≥ ... ≥ EA,R((1 − βN )Â−1) ≥ ... ≥ EA,R((1 − β∗)Â−1) ,

where EA,R(X̂) denotes the mean squared error of matrix estimator X̂ in the ‖ · ‖A,R-norm.
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8.2 Hard windowing

The tradeoff for monotone convergence to the true shift factor β∗ is that the windowing
functions ωN (k) and ωN∗ (k) presented above—which we will refer to as soft windowing
functions—may be too conservative at low orders. When this is the case, one may instead
choose to use hard windowing functions that perform a hard truncation of the infinite
Taylor series. That is, one may choose to instead use

ωN (k) =
⎧
⎨

⎩
k k ≤ 2N

0 o.w.
, ωN∗ (k) =

⎧
⎨

⎩
k + 1 k ≤ 2N

0 o.w.
. (91)

Under the conditions of Theorem 5, this choice of windowing function will still guaran-
tee the convergence βN → β∗. However, we lose the monotonicity guarantees of the soft
windowing functions unless one makes very stringent assumptions on the underlying dis-
tribution. That being said, in practice this technique can perform quite well, as indicated
in our numerical experiments in Sect. 11. To distinguish between truncated energy norm
shifting with soft and hard windows, we will use the abbreviations ES-T-S and ES-T-H
for truncated energy norm augmentation with soft and hard windows, respectively.

8.3 Quick start

To help readers with implementation, we provide explicit formulas for the shift factor
β for low truncation orders, as well as a pseudo-code implementation of the different
variants of energy norm augmentation.

8.3.1 Explicit formulas for low orders

First, we provide formulas for low orders of the algorithm presented in the previous
section. In the subsequent formulas, we let

Ẑ ≡ Â − A, q̂ ∼ N (0,R), Â ∼ Dω∗ , q̂ ⊥⊥ Â . (92)

1. ES-T-S, Order 2:

βES-T-S
1 = E

[
q̂T ( 12A

−1ẐA−1ẐA−1 + A−1ẐA−1)q̂
]

E
[
q̂T (A−1ẐA−1ẐA−1 + 2A−1ẐA−1 + A−1)q̂

] . (93)

2. ES-T-S, Order 2, Mean-Zero Error:
In many cases, the error matrix Ẑ may be mean zero, i.e., E[Ẑ] = 0. When this
happens, the above expression has an even simpler form,

βES-T-S
1 = 1

2
E
[
q̂T (A−1ẐA−1ẐA−1)q̂

]

E
[
q̂T (A−1ẐA−1ẐA−1 + A−1)q̂

] . (94)

3. ES-T-H, Order 2:

βES-T-H
1 = E

[
q̂T (2A−1ẐA−1ẐA−1 + A−1ẐA−1)q̂

]

E
[
q̂T (3A−1ẐA−1ẐA−1 + 2A−1ẐA−1 + A−1)q̂

] . (95)

4. ES-T-H, Order 2, Mean-Zero Error: In many cases, the error matrix Ẑ may be
mean zero, i.e., E[Ẑ] = 0. When this happens, the above expression has an even
simpler form,

βES-T-H
1 = E

[
q̂T (2A−1ẐA−1ẐA−1)q̂

]

E
[
q̂T (3A−1ẐA−1ẐA−1 + A−1)q̂

] . (96)
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8.4 Algorithm

We give the full meta-algorithm for all favors of energy norm augmentation in Algo-
rithm 2. Note that in Algorithm 2, like in Algorithm 1, we replace expectations with
bootstrappedMonte Carlo estimators. If one wants to use the simplified expressions pro-
vided above in Sect. 8.3.1, one must similarly replace the expectations with sampled and
bootstrapped versions. This process is fairly straightforward; for example, for ES-T-H,
Order 2, Mean-Zero Error, we get

β̂ES-T-H
1 =

∑M
i=0 q̂Ti (2Â

−1(Âb,i − Â)Â−1(Âb,i − Â)Â−1)q̂i
∑M

i=0 q̂Ti (3Â−1(Âb,i − Â)Â−1(Âb,i − Â)Â−1 + Â−1)q̂i
, (97)

where Âb,i and q̂i are defined as in algorithm 2.

9 Shifted base-point estimation
Obviously, the issue with the above theorem is that the restriction that supp(Dω∗ ) ⊂ {Â ≺
(2− ε)A} is quite restrictive from a problem standpoint; there are many natural problems
that do not fall into this setting. Recall that this assumption comes from the fact that the
infinite Taylor series for Â−1 about base-point A only converges when Â ≺ (2 − ε)A.
We address this issue with a technique we call shifted base-point estimation. The key

idea is to grow the region of convergence of the infinite Taylor series by changing the
base point of the Taylor series expansion. If we make the assumption that the distribution
Dω∗ is bounded, then there must exist some α ≥ 1 such that Â ≺ αA for every Â in the
support of Dω∗ . Lemma 2 then tells us that we are justified in taking an infinite Taylor
expansion about base-point αA,

Â−1 = A−1/2
[ ∞∑

k=0

1
αk+1 (−A−1/2ẐαA−1/2)k

]
A−1/2 . (98)

where Ẑα ≡ Â−αA. In general, the best values of α are those that are as small as possible
while maintaining that the support of Dω∗ lies within {Â ≺ αA}, as the accuracy of a
truncated series becomes less far away from the base point.
With the above, one can repeat the calculations of Sect. 8 practically verbatim to derive

the infinite series expression for the optimal shift factor,

β∗ =
∑∞

k=0(k + 1 − α)α−k 〈(−A−1/2ẐαA−1/2)k〉S∑∞
k=0(k + 1)α−k 〈(−A−1/2ẐαA−1/2)k〉S

. (99)

for notational simplicity, define

X̂α ≡ α−1(−A−1/2ẐαA−1/2) . (100)

Note that

X̂α = I − α−1A−1/2ÂA−1/2 . (101)

From the fact that 0 ≺ Â ≺ αA, it follows that

0 ≺ X̂α ≺ I . (102)

Therefore, the expression for the optimal shift factor becomes

β∗ =
∑∞

k=0(k + 1 − α)α−k 〈X̂k
α〉S∑∞

k=0(k + 1)α−k 〈X̂k
α〉S

. (103)
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Algorithm 2 Energy-Norm Operator Shfiting Meta-algorithm
Input: A right-hand side b, an operator sample Â ∼ Dω∗ with corresponding parameters

ω̂ ∈ �, a choice of second moment matrix R, a choice of matrix C satisfying the compatibility
conditions, sample countM.

Output: An estimate x̃ of A−1b.
1: Factorize/preprocess Â to precompute Â−1 if necessary.
2: DrawM i.i.d. bootstrap samples Âb,1, ..., Âb,M ∼ Dω̂ .
3: DrawM i.i.d. bootstrap samples q̂1, ..., q̂M ∼ N (0,R).
4: if using Truncated Energy-Norm Shifting (ES-T) then
5: if using Soft Truncation (ES-T-S) then
6: Let

ωN (k) =

⎧
⎪⎪⎨

⎪⎪⎩

k k < 2N
k−1
2 k = 2N

0 o.w.
, ωN∗ (k) =

⎧
⎪⎪⎨

⎪⎪⎩

k + 1 k < 2N
k
2 k = 2N
0 o.w.

.

7: else if using Hard Truncation (ES-T-H) then
8: Let

ωN (k) =
{
k k ≤ 2N
0 o.w.

, ωN∗ (k) =
{
k + 1 k ≤ 2N
0 o.w.

.

9: end if
10: Assign

β̂∗ ←
∑M

i=0
∑∞

k=0 ωN (k) q̂T
i C

T Â−1((Âb,i − Â)Â−1)k q̂i
∑M

i=0
∑∞

k=0 ωN∗ (k) q̂T
i CT Â−1((Âb,i − Â)Â−1)kCq̂i

,

where
11: else if using Untruncated Energy-Norm Shifting (ES) then
12: Assign

β̂∗ ←
∑M

i=0 q̂T
i C

T (Â−1
b,i ÂÂ−1

b,i − Â−1
b,i )q̂i∑M

i=0 q̂T
i CT (Â−1

b,i ÂÂ−1
b,i )Cq̂i

,

13: end if
14: Clamp β̂∗ ← max(0, β̂∗).
15: Assign x̃ ← (Â−1 − β̂∗Â−1C)b
16: Return x̃.

From here, we follow the same schema to define the truncation of the infinite series
above,

βN =
∑∞

k=0 ωN
α (k)α−k 〈X̂k

α〉S∑∞
k=0 ωN

α,∗(k)α−k 〈X̂k
α〉S

. (104)

and the form we will use for Monte Carlo,

βN = E
[∑∞

k=0 ωN
α (k)α−k q̂TA−1(ẐαA−1)k q̂

]

E
[∑∞

k=0 ωN
α,∗(k)α−k q̂TA−1(ẐαA−1)k q̂

] , (105)

where ωN
α (k) and ωN

α,∗(k) are new window functions that converge to k + 1− α and k + 1,
respectively. To show that this has the same properties as the truncated shift factors in
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the previous section, we simply repeat the proof from the previous section, but with a few
small changes.
First, we repeat the previous section to obtain the polynomial expression for βN ,

βN = 〈�N
α (X̂α)〉S

〈�N
α,∗(X̂α)〉S

, (106)

where, once again

�N
α (x) =

N∑

j=0
	

j
α(x) , �N

α,∗(x) =
N∑

j=0
	

j
α,∗(x) , (107)

For brevity of notation, we define the quantity,

η ≡ 1 − α−1 . (108)

Now, our monotonicity analysis in this section is based upon the observation that for
x ≥ 0, it is the case that

xj(x − η) ≥ ηj(x − η) , (109)

and therefore, it is also the case that, for x ≥ 0,

xj(xk − ηk ) = xj(xk−1 + ηxk−2 + ... + ηk−2x + ηk−1)(x − η) ≥ kηj+k−1(x − η) .

(110)

Whereas the analysis in the previous section built a monotonic sequence of polynomials
that were positive everywhere, the above formula allows us to build amonotonic sequence
of polynomials that are positive in expectation, but not necessarily positive everywhere.
To do this, we first note that by our E[Â] � A assumption,

E[X̂α] = E[I − α−1A−1/2ÂA−1/2] � I − α−1A−1/2AA−1/2 = ηI . (111)

Hence, the above polynomial inequalities imply that

E[X̂j
α(X̂k

α − ηkI)] � E[kηj+k−1(X̂α − ηI)] � 0 . (112)

This allows us to use the matrix polynomials X̂j
α(X̂k

α − ηkI) as building blocks for a series
that converges monotonically to the desired β∗. The final observation that one needs to
build the series is the fact that

∞∑

k=0
ηk = 1

1 − η
= α . (113)

With this established, we finally define the primitive polynomials

	k
α(x) ≡ kxk − ηxk−1 − η2xk−2 − ... − ηk−1x − ηk = (k + 1)xk −

k∑

j=0
ηjxk−j . (114)

By Eq. (112), we have that

E[	k
α(X̂α)] = E

⎡

⎣(k + 1)X̂k
α −

k∑

j=0
ηjX̂k−j

α

⎤

⎦ =
k∑

j=0
E[X̂k−j

α (X̂j
α − ηj)] � 0 . (115)

However, if one examines the individual terms of the composite sum
∑∞

k=0 	k
α(x) by

powers of x, one observes that, for x ∈ [0, 1),

[xj]
∞∑

k=0
	k

α(x) = j −
∞∑

k=1
ηk = j + 1 − α . (116)
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Ergo, for x ∈ [0, 1), we have that

�N
α (x) =

N∑

k=0
	k

α(x) ↗
∞∑

k=0
(k + 1 − α)xk . (117)

And therefore, if we also take

	k
α,∗(x) = (k + 1)xk , �N

α,∗(x) =
N∑

k=0
	k

α,∗(x) =
N∑

k=0
(k + 1)xk , (118)

and note that

β∗ =
∑∞

k=0(k + 1 − α) 〈X̂k
α〉S∑∞

k=0(k + 1) 〈X̂k
α〉S

, (119)

we can conclude that

βN = 〈�N
α (X̂α)〉S

〈�N
α,∗(X̂α)〉S

→ β∗ . (120)

and from the fact that the numerator is a sumof positive terms, and the fact that�N
α (X̂α) �

�N
α,∗(X̂α) by construction, it therefore follows that

0 ≤ βN ≤ 1 , 0 ≤ β∗ ≤ 1 . (121)

To achieve a proof ofmonotonicity of the βN , we appeal to Lemma 3, which necessitates
that we verify the inequality

akbk−1 = 〈	k
α(X̂α)〉S 〈	k−1

α,∗ (X̂α)〉S ≥ 〈	k−1
α (X̂α)〉S 〈	k

α,∗(X̂α)〉S = ak−1bk . (122)

To do this, let us subtract and expand the above terms

akbk−1 − ak−1bk = 〈	k
α(X̂α)〉S 〈	k−1

α,∗ (X̂α)〉S − 〈	k−1
α (X̂α)〉S 〈	k

α,∗(X̂α)〉S

= k 〈X̂k−1
α 〉S

⎛

⎝(k + 1) 〈X̂k
α〉S −

k∑

j=0
ηj〈X̂k−j

α 〉S
⎞

⎠

− (k + 1) 〈X̂k
α〉S

⎛

⎝k 〈X̂k−1
α 〉S −

k−1∑

j=0
ηj〈X̂k−j−1

α 〉S
⎞

⎠

= (k + 1)
k−1∑

j=0
ηj 〈X̂k

α〉S〈X̂k−j−1
α 〉S − k

k∑

j=0
ηj 〈X̂k−1

α 〉S 〈X̂k−j
α 〉S

= k
k−1∑

j=0
ηj 〈X̂k

α〉S〈X̂k−j−1
α 〉S − k

k−1∑

j=0
ηj 〈X̂k−1

α 〉S 〈X̂k−j
α 〉S

+
k−1∑

j=0
ηj 〈X̂k

α〉S 〈X̂k−j−1
α 〉S − k ηk 〈X̂k−1

α 〉S 〈I〉S .

(123)

We now appeal to the following lemma, which allows us to compare terms across the
two sums above,

Lemma 4 Let X̂ be a random matrix such that X̂ � 0 a.s. For i ≥ j and r ≥ 0, and any
symmetric positive semi-definite matrix S � 0, we have that

〈X̂i+r〉S 〈X̂j−r〉S ≥ 〈X̂i〉S 〈X̂j〉S . (124)
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The proof of this fact is relegated to the “Appendix.” However, applying this lemma to the
above Eq. (123) gives us

akbk−1 − ak−1bk ≥
k−1∑

j=0
ηj 〈X̂k

α〉S 〈X̂k−j−1
α 〉S − k ηk 〈X̂k−1

α 〉S〈I〉S

=
k−1∑

j=0
〈X̂k

α〉S
(
ηj〈X̂k−j−1

α 〉S
)

−
k−1∑

j=0

(
η 〈X̂k−1

α 〉S
) (

ηk−1〈I〉S
)
.

(125)

Finally, we note that Eq. (112) gives us ηjE[X̂k−j−1
α ] � ηk−1I and therefore

ηj 〈X̂k−j−1
α 〉S ≥ ηk−1〈I〉S . (126)

Moreover, Eq. (112) also gives us that E[X̂k
α] � ηE[X̂k−1

α ] and therefore

〈X̂k
α〉S ≥ η 〈X̂k−1

α 〉S (127)

Noting the above two inequalities are between positive numbers and then substituting the
above two inequalities into Eq. (112) gives the desired result

akbk−1 − ak−1bk ≥ 0 . (128)

Thus, the truncated estimators βN form a positive monotonic sequence that converges to
β∗. To summarize, we restate the results we have just proved into a theorem,

Theorem 6 Under the assumptions in Sect. 3, consider operator shifting with shift K̂ = Â
in energy norm ‖ ·‖A,R . Suppose that the randommatrix Â ∈ S+(Rn) satisfies 0 ≺ Â ≺ αA
almost surely. Then let βN be the truncated approximations to the optimal shift factor β∗,
i.e.,

βN =
∑N

k=0 ωN
α (k)α−k 〈X̂k

α〉S∑N
k=0 ωN

α,∗(k)α−k 〈X̂k
α〉S

=
E

[∑N
k=0 ωN

α (k)α−k q̂TA−1(ẐαA−1)k q̂
]

E

[∑N
k=0 ωN

α,∗(k)α−k q̂TA−1(ẐαA−1)k q̂
] , (129)

where ωN
α (k) and ωN

α,∗(k) are given by

ωN
α (k) =

⎧
⎨

⎩
(k + 1) −∑N

j=k ηj−k k ≤ N

0 o.w.
, ωN

α,∗(k) =
⎧
⎨

⎩
k + 1 k ≤ N

0 o.w.
, (130)

and η = 1 − α−1. Under these assumptions, we have that

βN ↗ β∗ as N → ∞ ,
0 ≤ β1 ≤ β2 ≤ β3 ≤ ... ≤ βN ≤ ... ≤ β∗ ≤ 1 ,

EA,R(Â−1) ≥ EA,R((1 − β1)Â−1) ≥ ... ≥ EA,R((1 − βN )Â−1) ≥ ... ≥ EA,R((1 − β∗)Â−1) ,

where EA,R(X̂) denotes the mean squared error of matrix estimator X̂ in the ‖ · ‖A,R-norm.

10 Accelerating shifted base-point estimation
In practice,while the formulaEq. (129) provides a positive,monotonically increasing series
of estimatesβN for the optimalβ∗ which only useN powers of thematrix ẐαA−1, note that
the larger one takes the factor α, the poorer the accuracy of the truncated approximation
near the matrix A, where most of the probability distribution is concentrated. Therefore,
whileweget a guarantee of an estimate thatwill decrease the valueof theobjectiveEBayes

A (·),
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the convergence to the optimal factorβ∗ might be very slow as a result, necessitating larger
and larger powers of ẐαA−1. Thus, in practice, it is often a good idea to let the quantity α

be a function of the sample Â such that Â � α(Â)A. This means that, instead of using the
estimator βN in Eq. (129) above, we use

β̄N =
E

[
α(Â)−2∑∞

k=0 ωN
α(Â)

(k)α(Â)−k q̂TA−1(Ẑ
α(Â)A

−1)k q̂
]

E

[
α(Â)−2∑∞

k=0 ωN
α(Â),∗(k)α(Â)−k q̂TA−1(Ẑ

α(Â)A−1)k q̂
] , (131)

where one choice of α(Â) is

α(Â) = ‖A−1/2ÂA−1/2‖2 , (132)

i.e., the smallest value for which Â � α(Â)A, and the windowing functions ωN
α (k) and

ωN
α,∗(k) are defined as inEq. (130). In practice, onemay choose to approximateα(Â) instead

of computing it exactly. Note in Eq. (131) the reintroduction of the α(Â)−2 terms in the
numerator and denominator; originally, these terms passed out of the expectation and
canceled, but now the explicit dependence on Â prevents this cancelation fromhappening.
Computing ‖A−1/2ÂA−1/2‖2 can be done with powermethod. In particular, with prob-

ability 1, if v̂ ∈ R
n is sampled from a distribution continuous with respect to the Lebesgue

measure on its support, we have that

α(Â) = lim
k→∞

‖(A−1/2ÂA−1/2)k v̂‖2
‖(A−1/2ÂA−1/2)k−1v̂‖2

= lim
k→∞

√
v̂TA1/2(A−1Â)kA−1(ÂA−1)kA1/2v̂

v̂TA1/2(A−1Â)k−1A−1(ÂA−1)k−1A1/2v̂
.

(133)

Since A is non-singular, transforming the random variable v̂ by A1/2 transforms the
corresponding distribution into a distribution continuous with respect to the Lebesgue
measure on its support. Therefore, it is sufficient to compute/approximate

α(Â) = lim
k→∞

√
v̂T (A−1Â)kA−1(ÂA−1)k v̂

v̂T (A−1Â)k−1A−1(ÂA−1)k−1v̂
= lim

k→∞
‖(ÂA−1)k v̂‖A−1

‖(ÂA−1)k−1v̂‖A−1
, (134)

and as a result, we do not actually need to know A1/2 or A−1/2 to be able to compute the
correct value of α.
Now, to produce an algorithm, we follow the template of Sect. 7—we bootstrap A by

replacing it with our sampled Â and bootstrap the expectation by using the distribution
Dω̂ instead of the true distribution Dω∗ . This nets us the approximate estimator

β̃N (Â) =
Eq̂∼N (0,L),Âb∼Dω̂

[∑∞
k=0 ωN

α(Âb)
(k)α(Âb)−k−2 q̂T Â−1(Ẑb,α(Âb)Â

−1)k q̂
]

Eq̂∼N (0,L),Âb∼Dω̂

[∑∞
k=0 ωN

α(Âb),∗(k)α(Âb)−k−2 q̂T Â−1(Ẑb,α(Âb)Â
−1)k q̂

] ,

(135)

where Ẑb,α(Âb) = Â − α(Âb)Âb. The above quantity can be estimated by Monte Carlo by
computing

β̂N (Â) =
∑M

i=0
∑∞

k=0 ωN
α(Âb,i)

(k)α(Âb,i)−k−2 q̂Ti Â
−1(Ẑb,α(Âb,i)Â

−1)k q̂i
∑M

i=0
∑∞

k=0 ωN
α(Âb,i),∗(k)α(Âb,i)−k−2 q̂Ti Â−1(Ẑb,α(Âb,i)Â

−1)k q̂i
, (136)

where
Âb,1, ..., Âb,M ∼ Dω̂

q̂1, ..., q̂M ∼ N (0,R)

i.i.d.,

i.i.d.
(137)
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The full algorithm is presented in algorithm 3.
Unfortunately, we do not believe that the monotonic guarantees of the previous two

sections carry over when acceleration is applied. While it is not difficult to prove that
the terms underneath the expectations in Eq. (131) become more accurate point-wise in
Â (as we are shifting the base point of the Taylor expansion closer to the point we are
evaluating), it may be possible to construct contrived examples where this produces less
accurate estimates of the expectations. However, we strongly believe that in almost all
practical use cases, one should expect a significant improvement in accuracy in using this
technique, as the reduction in truncation error is extremely substantial.

Algorithm 3 Accel. Shifted Truncated En.-Norm Augmentation (ES-TRA)
Input: A right-hand side b, an operator sample Â ∼ Dω∗ with corresponding parameters

ω̂ ∈ �, a choice of second moment matrix R, a choice of matrix C satisfying the compatibility
conditions, sample countM.

Output: An estimate x̃ of A−1b.

1: Factorize/preprocess Â to precompute Â−1 if necessary.
2: DrawM i.i.d. bootstrap samples Âb,1, ..., Âb,M ∼ Dω̂ .
3: For each Âb,i, perform power method to assign

α(Âb,i) ← lim
k→∞

‖(Âb,iÂ−1)k v̂‖Â−1

‖(Âb,iÂ−1)k−1v̂‖Â−1
.

4: DrawM i.i.d. bootstrap samples q̂1, ..., q̂M ∼ N (0,R).
5: Assign

β̂∗ ←
∑M

i=0
∑∞

k=0 ωN
α(Âb,i)

(k)α(Âb,i)−k−2 q̂T
i C

T Â−1(I − α(Âb,i)Âb,iÂ−1)k q̂i
∑M

i=0
∑∞

k=0 ωN
α(Âb,i),∗(k)α(Âb,i)−k−2 q̂T

i CT Â−1(I − α(Âb,i)Âb,iÂ−1)kCq̂i
,

where

ωN
α (k) =

{
(k + 1) −∑N

j=k (1 − α−1)j−k k ≤ N
0 o.w.

, ωN
α,∗(k) =

{
k + 1 k ≤ N
0 o.w.

,

6: Clamp β̂∗ ← max(0, β̂∗).
7: Assign x̃ ← (Â−1 − β̂∗Â−1C)b
8: Return x̃.

11 Numerical experiments
In this section, we present numerical experiments to benchmark the above methods. We
compare a number of different variations of operator shifting:

1. Naive: Naive solve of the system Âx̂ = b, by inverting the system directly without
modifying the operator Â.

2. GS (General Operator Shifting): The method presented in Sect. 4 and algorithm 1,
where we take R = B = I and let the prior on b be the standard normal distribution.
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3. ES (Energy-Norm Operator Shifting): The method presented in Sect. 8 without any
truncation (i.e., computing the shift factor β∗ directly using bootstrap and Monte-
Carlo), where we take R = I and let the distribution of b be the standard normal
distribution.

4. ES-T (Truncated EnergyOperator Shifting): Themethodpresented in Sect. 8.1. In the
numerical results, we test different orders of truncation. The order here denotes the
highest power of a bootstrapped matrix sample which appears in the computation
for the approximate shift factor. Furthermore, we will also test both soft (ES-T-S)
and hard (ES-T-H) truncation windows, as discussed in Sect. 8.2.

5. ES-TRA (Truncated Rebased Accelerated Energy Operator Shifting): The method
presented in Sect. 10 and algorithm 3. The order of truncation denotes the highest
power of a bootstrappedmatrix sample that appears in the computation. Unlike with
ES-T, we will only benchmark the windowing function presented in 130. Like above,
we take R = I and let the distribution of b be the standard normal distribution.

In our numerical experiments, we measure two metrics of error:

1. R. MSE (Relative Mean Squared Error): This is a normalized version of the error
function E(·) with norm matrix B = I,

R. MSE ≡ EF (x̃)
‖A−1‖2F

= E‖(Â−1 − βK̂) − A−1‖2F
‖A−1‖2F

. (138)

Therefore, this quantitymeasures both the relative error of x̃ from the true solution x
in L2, as well as the relative error from our augmented operator Â−1−βK̂ to the true
operator A−1 in the Frobenius norm. We evaluate this quantity with Monte-Carlo
and provide a 2σ estimate of the error of the Monte-Carlo procedure.

2. Rel. EMSE (Relative Energy-Norm Mean Squared Error): This is defined like the
above, except it is defined using the Energy norm ‖ · ‖A,

Rel. EMSE ≡ EA,I(x̃)
‖A−1‖2A,I

, (139)

this quantity may be of more interest than Rel. MSE in many problems, as for many
elliptic systems, it more heavily penalizes high-frequency noise.

11.1 1D and 2D Poisson equation on a noisy background

Our first benchmark will be the Poisson equation, given by

∇ · (a(x)∇u(x)) = b(x), on D ,

u(x) = 0, on ∂D ,
(140)

where a(x) > 0 is a function determined by the physical background of the system. We
discretize this equation using finite differences as follows: letGD = (V, E) be a regular grid
on the domainD, with vertices V and edges E. Let E ∈ R

V×E be the (arbitrarily oriented)
incidence operator of the grid, i.e.,

Ev,e =
⎧
⎨

⎩
±1 v is incident to e

0 otherwise
, (141)
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Table 1 Comparison of augmentation methods for a 1D Poisson problem on 128 grid points,
where a(x) = 1 and ẑe ∼ U{0.5, 1.5}
Method Order Window R. MSE (%) ±2σ (%) R. EMSE (%) ±2σ (%)

Naive – – 12 ±0.0352 55.1 ±0.1

GS – – 0.59 ±0.0203 24.6 ±0.448

ES – – 4.32 ±0.124 20 ±0.362

ES-T 2 Soft 4.77 ±0.155 39.7 ±0.723

ES-T 4 Soft 1.26 ±0.044 21.5 ±0.39

ES-T 6 Soft 3.11 ±0.0946 20.1 ±0.364

ES-T 2 Hard 0.79 ±0.0319 22.9 ±0.42

ES-T 4 Hard 2.71 ±0.0855 20.3 ±0.367

ES-TRA 2 – 0.798 ±0.029 22.7 ±0.406

ES-TRA 4 – 2.88 ±0.0913 20.2 ±0.366

ES-TRA 6 – 4.01 ±0.117 20 ±0.354

Ev,e is positive for one of the v incident to e and negative for the other. The discrete
approximation for the differential operator in Eq. (140) is given by

L = −EWET , (142)

whereW ∈ R
E×E is a diagonal matrix whose e, eth entry is the function a evaluated at the

midpoint of e.
We suppose that we only have noisymeasurements of the physical background, i.e., that

the matrix W is subject to some randomness. Hence, in practice, we only have access to
an approximate

L̂ = −EŴET , (143)

where L̂ is drawn from a distribution Dω∗ , where ω∗ = (a(xe))e∈E , i.e., the background
a evaluated at all the edge midpoints xe. Note, to use the operator shifting method, one
must prescribe a class of distributions Dω that we may sample from given background
samples ω.
In particular, the noisy background model we use for this benchmark perturbs every

observation with independent multiplicative noise,

Ŵe,e = ω̂e = ẑeωe , (144)

where ẑe ∼ Z i.i.d. for some positive distribution Z to be specified. To enforce Dirichlet
boundary conditions, we solve

L̂int(GD),int(GD)uint(GD) + L̂int(GD),∂GDu∂GD = b ,

u∂GD = 0 ,
(145)

where int(GD) ⊂ V denotes the interior of the grid GD and ∂GD ⊂ V denotes the
boundary, and L̂A,B for A ⊂ V and B ⊂ V denotes the A, B-minor of L̂. Hence, this
becomes

Âx̂ = b , (146)

where Â = L̂int(GD),int(GD) and b is the function b(x) sampled at the interior vertices of
GD .
In Tables 1, 2, and 3, we see the results of operator shifting applied to the above Poisson

equation problem. As we can see, all our methods produce a substantial improvement in
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Table 2 Comparison of augmentation methods for a 1D Poisson problem on 128 grid points,
where a(x) = 1 and ẑe ∼ �(μ = 1, σ = 0.45)

Method Order Window R. MSE (%) ±2σ (%) R. EMSE (%) ±2σ (%)

Naive – – 7.52 ±0.0247 58 ±0.145

GS – – 0.802 ±0.0317 32.5 ±0.803

ES – – 6.5 ±0.189 24.9 ±0.546

ES-T 2 Soft 3.28 ±0.161 46.6 ±2.75

ES-T 4 Soft 1.15 ±0.0384 29.4 ±0.721

ES-T 6 Soft 5.22 ±0.177 25.1 ±0.524

ES-T 2 Hard 1.07 ±0.0385 29.7 ±0.716

ES-T 4 Hard 6.27 ±0.183 25 ±0.541

ES-TRA 2 – 1.28 ±0.0435 29 ±0.801

ES-TRA 4 – 7.04 ±0.203 24.7 ±0.507

ES-TRA 6 – 22.9 ±0.633 31.8 ±0.586

Table 3 Comparison of augmentation methods for a 2D Poisson problem on 128 x 128 grid points,
where a(x) = 1 and ẑe ∼ U{0.4, 1.6}
Method Order Window R. MSE (%) ±2σ (%) R. EMSE (%) ±2σ (%)

Naive – – 6.43 ±0.105 45.3 ±0.11

GS – – 0.234 ±0.00974 25 ±0.64

ES – – 4.31 ±0.772 20 ±0.456

ES-T 2 Soft 2.57 ±0.465 35.6 ±0.908

ES-T 4 Soft 0.876 ±0.133 21.8 ±0.504

ES-T 6 Soft 2.59 ±0.515 20.3 ±0.561

ES-T 2 Hard 0.422 ±0.039 23.1 ±0.464

ES-T 4 Hard 2.13 ±0.353 20.5 ±0.519

ES-TRA 2 – 0.845 ±0.117 22 ±0.503

ES-TRA 4 – 3.62 ±0.586 20.1 ±0.499

ES-TRA 6 – 5.61 ±0.887 20.2 ±0.471

both relative MSE and relative energy-norm MSE—with GS obtaining the largest reduc-
tion in L2 error and ES obtaining the largest reduction in energy-norm error, as is to be
expected.Moreover, note that the truncatedmethods ES-T and ES-TRAquickly approach
the efficacy of ES as one increases the truncation order, with an order of 6 usually being
enough to obtain an error comparable to baseline ES (which requires significantly more
computation for large-scale problems). Note also, that the energy error of ES-T is always
monotonically decreasing, which agrees with Theorem 5. Moreover, note that the error
of ES-TRA is not always monotonically decreasing. The unfortunate reality is that, while
ES-TRA is guaranteed to converge to ES as the order becomes large, this convergencemay
be uneven and is not guaranteed to be monotonic like ES-T with a soft window. We also
note that the performance of our technique is comparable across different problems (i.e.,
1D vs. 2D), as well as across different models of randomness (i.e., discrete vs. gamma).

11.2 Graph Laplacian systems with noisy edge weights

One may extend the model in the above section to general graphs G = (V, E). However,
convention typically dictates that the Laplacian should be positive definite instead of
negative definite, i.e.,

L̂ = EŴET . (147)
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Fig. 3 A visualization of the fb-pages-food graph used in our numerical experiments. We give our
performance results on this graph in Tables 4 and 6

Table 4 Comparison of augmentation methods for a graph
Laplacian system

Method Order Window R. MSE (%) ±2σ (%) R. EMSE (%) ±2σ (%)

Naive – – 46.9 ±0.386 46.2 ±0.14

GS – – 17.5 ±1.27 19.1 ±0.464

ES – – 18.1 ±1.37 19.1 ±0.502

ES-T 2 Soft 34.9 ±2.79 34.6 ±0.999

ES-T 4 Soft 18.9 ±1.1 20 ±0.433

ES-T 6 Soft 16.9 ±1.03 18.6 ±0.407

ES-T 2 Hard 20.1 ±1.11 21 ±0.438

ES-T 4 Hard 17.8 ±1.2 19 ±0.452

ES-TRA 2 – 20.6 ±1.18 21.6 ±0.451

ES-TRA 4 – 18 ±1.13 19.3 ±0.431

ES-TRA 6 – 18.2 ±1.17 19.3 ±0.449

This particular weighted graph is the fb-pages-food graph [17], visualized in Fig. 3. In this benchmark we have
ẑe ∼ U{0.5, 1.5}

In this model, we suppose that we are given a weighted graph G; however, the true edge
weights of the graph, denoted by we, are unknown to us—but we have access to a noisy
observation ŵe of we. Like in the previous setting, we suppose that the observations are
independent. Therefore, the diagonal weight matrix Ŵ again has entries given by

Ŵe,e = ω̂e = ẑeωe , (148)

where ẑe ∼ Z i.i.d. for somedistributionZ to be specified. Like in theprevious example,we
solve a Dirichlet problem, arbitrarily selecting approximately six vertices as our boundary
∂G, whose values we set to zero. Thus, Â = L̂int(G),int(G) with int(G) = V \ ∂G like before,
and we again solve Eq. (146) with operator shifting.
We see the results of this computation in Tables 4 and 5. The graphs shown are from

the Network Repository [16]. We note that the method performs quite similarly on this
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Fig. 4 A visualization of the fb-pages-company graph used in our numerical experiments. We give our
performance results on this graph in Tables 4 and 6

Table 5 Comparison of augmentation methods for a graph
Laplacian system

Method Order Window R. MSE (%) ±2σ (%) R. EMSE (%) ±2σ (%)

Naive – – 33.8 ±3.16 32.4 ±1.28

GS – – 13.3 ±4.92 16.8 ±2.22

ES – – 13.7 ±5.7 16.1 ±2.15

ES-T 2 Soft 32.5 ±17.9 27.8 ±7.67

ES-T 4 Soft 18 ±11.3 18.1 ±4.78

ES-T 6 Soft 22.3 ±12 20.1 ±4.76

ES-T 2 Hard 11.8 ±4.59 15.3 ±2.18

ES-T 4 Hard 13.1 ±4.49 14.9 ±1.7

ES-TRA 2 – 11.6 ±4.08 15.8 ±1.81

ES-TRA 4 – 19.8 ±5.88 22 ±2.13

ES-TRA 6 – 35.4 ±11.3 34.7 ±4.17

This particular weighted graph is the fb-pages-company graph [17], visualized in Fig. 4. In this benchmark we have
ẑe ∼ U{0.5, 1.5}
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Table 6 Comparison of augmentation methods for a
sparsified graph Laplacian system

Method Order Window R. MSE (%) ±2σ (%) R. EMSE (%) ±2σ (%)

Naive – – 18.5 ±0.0843 26.2 ±0.125

GS – – 12.6 ±0.386 16.9 ±0.613

ES – – 13.8 ±0.258 16.9 ±0.38

ES-T 2 Soft 16.9 ±0.771 23.7 ±1.18

ES-T 4 Soft 12.7 ±0.448 17.5 ±0.737

ES-T 6 Soft 13 ±0.379 17.2 ±0.611

ES-T 2 Hard 14.1 ±0.528 20.1 ±0.802

ES-T 4 Hard 12.2 ±0.326 16.4 ±0.498

ES-TRA 2 – 12.6 ±0.404 17 ±0.627

ES-TRA 4 – 13.7 ±0.315 17 ±0.493

ES-TRA 6 – 15.3 ±0.318 17.8 ±0.367

This particular weighted graph is the fb-pages-food graph [17], visualized in Fig. 3. In this benchmark we have
ẑe ∼ 1

0.75 Ber(0.75)with γ = 1

problem as it does on the grid Laplacian case—this shows that the performance of the
method is consistent across different types of problems.

11.3 Heat steady-state with sparsified graph Laplacians

In many areas of computer science, one can use graph sparsification techniques to reduce
the complexity of a Laplacian system solve if one is able to tolerate some degree of approx-
imation. These graph sparsification techniques work by randomly selecting some subset
of the edges of the graph G to remove and then re-weighting the remaining edges to
obtain a sparsified graph Ĝ. We consider the problem of approximating the solution to a
Laplacian system on G using the Laplacian of Ĝ. In particular, suppose we are interested
in the steady-state heat distribution given by

(L + γ I)u = b , (149)

where γ > 0 is the coefficient of heat decay and b is the vector describing heat introduced
to the system per unit time. However, we only have access to the topology of the sparsified
Ĝ and its Laplacian L̂. Naively, one could solve

(L̂ + γ I)û = b . (150)

Of course, this naive solution carries a certain amount of error. Note that we can apply
operator shifting to L̂ + γ I to obtain a more accurate solution.
In particular, for this numerical experiment, we use the sparsification model

Ŵe,e = ω̂e = ẑeωe (151)

where ẑe ∼ p−1Ber(p) i.i.d., for p ∈ (0, 1).
We see in Table 6 that our methods allow for a substantial reduction in energy-norm

mean squared error like in the previous two scenarios. However, this scenario seems to be
more difficult for the augmentation process. Particularly, the L2 reduction is not as high
as in previous examples. Regardless, the fact that operator shifting functions under this
regime of noise shows us that operator shifting is a technique that can be broadly applied
to various problems.
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Table 7 Comparison of pros/cons of different augmentation
methods presented in this paper

Method Computation L2 Energy Convergence Monotone

Naive Lowest – – – –

GS High Best Good – –

ES High Good Best – –

ES-T-S Low Good Better When Â ≺ 2A Always

ES-T-H Low Good Better+ When Â ≺ 2A Empirically

ES-TRA Moderate Good- Better- Pointwise No

L2 and energy denote reduction in L2 and energy-norm error, respectively. (S) and (H) denote hard and soft windows,
respectively. Convergence denotes whether or not the method converges to ES when the order is taken to be large,
monotone denotes whether or not the truncated shift factors βN of the method are monotonic

12 Conclusion
In this paper, we have presented a novel method for reducing error in elliptic systems
corrupted by noise that requires only a single sample of a corrupted system. We have
introduced theGSandESmethods, aswell as theES-TandES-TRAmethods, for efficiently
approximating ES. Moreover, we have proved multiple important theorems that underlie
our methods—this includes the error reduction bounds in Theorems 2 and 4 for the GS
and ES methods, respectively, as well as monotone convergence guarantees Theorems 5
and 6 that provide justification and intuition for the ES-T and ES-TRA methods.
Furthermore, we have demonstrated in our numerical experiments that the operator

shiftingmethodswe presented are effective inmany different scenarios and different noise
models—consistently providing a 2× reduction in energy mean-squared error, and often
a significantly higher reduction in L2 error. We have also shown that ES-T and ES-TRA
converge relatively quickly to ES, whichmakes these truncatedmethods good alternatives
when solving a large number of matrix systems is computationally intractable.
Our numerical results alsomake clear the relative benefits and trade-offs of the different

augmentation methods; these are seen in Table 7. As per these trade-offs, we recommend
using ES if computation is not an issue. If computation is an issue, we recommend using
hard-window (or soft-window) ES-T, depending on the scenario, and if this approxima-
tion seems not to be performing well, or the noise distribution is heavy-tailed, then we
recommend using ES-TRA.
While the operator shifting framework offers a new approach to reducing error in noisy

elliptic systems, there are still a number of interesting avenues for further exploration. The
most obvious is, of course, the extension of the operator shifting framework machinery to
the case of asymmetric systems.Unfortunately, while there is nothing preventing one from
using the same approach for asymmetric systems, the question of how one would analyze
such an algorithm remains open. The machinery developed within does not relatively
apply, since the move from symmetric to asymmetric systems breaks a number of core
tools used throughout. Since many systems of interest are indeed asymmetric, this is an
important direction for future research. In addition, while we leave the optional choice of
matrices B,R,C,D up to the reader—it is yet unclear how one should approach making a
choice for these optional parameters in general. Finally, to judge the performance of the
method in real-world problems, one could apply the techniques we’ve developed within
to an application area where elliptic systems are corrupted by randomness—possible
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aforementioned applications include structural dynamics [18] or whether modeling [15],
among a plethora of others.
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A Proofs of miscellaneous lemmas and theorems
Lemma 1 (Löwner Order Inversion) Suppose that A ∈ S+(Rn) and Â ∈ S+(Rn) almost
surely. Moreover, suppose that, A spectrally dominates Â in expectation, i.e.,

E[Â] � A , (20)

then, matrix inversion inverts the expected Löwner order, i.e.,

E[Â−1] � A−1 (21)

Proof Consider the exact second-order Taylor expansion of the inverse functional on the
space of positive definite matrices,

Â−1 = A−1 − A−1(Â − A)A−1 + A−1∗ (Â − A)A−1∗ (Â − A)A−1∗ , (152)

where A∗ is a matrix between A and Â. Note that the last term is positive semi-definite
because A∗ is positive definite. Therefore,

Â−1 � A−1 − A−1(Â − A)A−1 . (153)

Taking expectations of both sides and using the fact that E[Â − A] � 0 yields

E[Â−1] � A−1 − A−1
E[Â − A]A−1 � A−1 . (154)

��
Theorem 2 Under the assumptions in Sect. 3, consider operator shifting in the ‖ · ‖B,R-
norm. Any operator shift K̂ = CÂ−1D such that C,D ∈ R

n×n satisfy the compatibility
conditions Eq. (30) has an optimal shift factor that satisfies:

√√√√ EB,R(Â−1)
E‖Â−1‖2CTBC,DRDT

≥ β∗ ≥ ECTB,RDT (Â−1)
E‖Â−1‖2CTBC,DRDT

≥ 0 . (31)

And the corresponding optimal reduction in error is given by

max
β∈R

EB,R(Â−1) − EB,R(Â−1 − βK̂)
EB,R(Â−1)

≥ ECTB,RDT (Â−1)2

E‖Â−1‖2CTBC,DRDT EB,R(Â−1)
, (32)

where EB,R(X̂) is the mean squared error of matrix estimator X̂ in the ‖ · ‖B,R-norm.

Proof Wewould like to repeat the results of the previous section, except now we want to
choose the shift factor β that optimizes the (B,R)-error. Just like in the previous section,
we obtain

EB,R(Â−1 − βK̂) = EB,R(Â−1) − 2β E〈K̂, Â−1 − A−1〉B,R + β2
E‖K̂‖2B,R , (155)

https://github.com/UniqueUpToPermutation/OperatorShifting
https://github.com/UniqueUpToPermutation/OperatorShifting
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and hence, the optimal shift factor β∗ is given by

β∗ = E〈K̂, Â−1 − A−1〉B,R
E‖K̂‖2B,R

, (156)

and the corresponding optimal error is

EB,R(Â−1 − β∗K̂) = EB,R(Â−1) − (E〈K̂, Â−1 − A−1〉B,R)2
E‖K̂‖2B,R

, (157)

Let us expand the quantity

E〈K̂, Â−1 − A−1〉B,R = E〈CÂ−1D, Â−1 − A−1〉B,R
= E〈Â−1, Â−1 − A−1〉DTB,RCT

(158)

We want to repeat the argument of the theorem in the previous section. Namely, we
would like to have

E〈A−1, Â−1 − A−1〉DTB,RCT ≥ 0 , (159)

so that we can complete the square in Eq. (158). To prove this fact, we will useM = MT

to denote DTB = RCT � 0. Now, we simply need to do some manipulations inside the
trace,

E〈A−1, Â−1 − A−1〉M,M = E tr(MA−1M(Â−1 − A−1))

= E tr(MA−1MÂ−1) − tr(MA−1MA−1)

= E tr(A−1/2MÂ−1MA−1/2) − tr(A−1/2MA−1MA−1/2)

= tr(A−1/2ME[Â−1]MA−1/2) − tr(A−1/2MA−1MA−1/2) .

(160)

Since E[Â−1] � A−1 by Lemma 1, it follows that:

E〈A−1, Â−1 − A−1〉M,M ≥ 0 . (161)

Using this fact and returning to Eq. (158), we obtain

E〈K̂, Â−1 − A−1〉B,R = E〈Â−1, Â−1 − A−1〉DTB,RCT

≥ E〈Â−1, Â−1 − A−1〉DTB,RCT

− E〈A−1, Â−1 − A−1〉DTB,RCT

= E〈Â−1 − A−1, Â−1 − A−1〉DTB,RCT

= ECTB,RDT (Â−1) .

(162)

Similarly, an expansion of the term E‖K̂‖2B,R gives:

E‖K̂‖2B,R = E tr(R1/2DT Â−1CTBCÂ−1DR1/2)

= E‖Â−1‖2CTBC,DRDT

(163)

For a bound in the opposite direction, we simply invoke Cauchy-Schwarz:

E〈K̂, Â−1 − A−1〉B,R ≤
√
E‖K̂‖2B,R E‖Â−1 − A−1‖2B,R

=
√
E‖Â−1‖2CTBC,DRDT EB,R(Â−1)

(164)

Therefore, the desired result follows immediately from Eqs. (156) and (157). ��
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Theorem 4 Under the assumptions in Sect. 3, consider operator shifting in energy norm
‖ · ‖A,R . Any operator shift K̂ = Â−1C such that C satisfies the compatibility conditions
Eq. (39) has an optimal shift factor that satisfies:

1 ≥
√√√√ EA,R(Â−1)

E‖Â−1‖2A,CTRC
≥ β∗ ≥ EA,RCT (Â−1)

E‖Â−1‖2A,CTRC
≥ 0 . (40)

And the corresponding optimal reduction in relative error is given by

max
β∈R

EA,R(Â−1) − EA,R(Â−1 − βK̂)
EA,R(Â−1)

≥ EA,RCT (Â−1)2

E‖Â−1‖2A,CTRC EA,R(Â−1)
(41)

where EA,R(X̂) is the mean squared error of matrix estimator X̂ in the ‖ · ‖A,R-norm.

Proof This proof is more or less a carbon copy of the proof of Theorem 2. The only
difference is when lower bounding

E〈K̂, Â−1 − A−1〉A,R = E〈Â−1C, Â−1 − A−1〉A,R

= E〈Â−1, Â−1 − A−1〉A,RCT
(165)

The crucial inequality we need to complete the square as in the previous proof is

E〈A−1, Â−1 − A−1〉A,RCT ≥ 0 . (166)

expanding the quantity on the left-hand side

E〈A−1, Â−1 − A−1〉A,RCT

= E tr((RCT )1/2Â−1(RCT )1/2) − tr((RCT )1/2A−1(RCT )1/2)

= tr((RCT )1/2 E[Â−1](RCT )1/2) − tr((RCT )1/2A−1(RCT )1/2) ≥ 0 .

(167)

Thus, the result follows as in Theorem 2. ��

Lemma 5 Let Ŵ be a symmetric random matrix that satisfies (1 − ε)I � Ŵ ≺ I almost
surely and E[(I − Ŵ)−2] exists. Then it is the case that:

E‖Ŵk‖2F = o(1/k2) . (168)

Proof Note that Ŵ is symmetric and hence can always has a spectral decomposition

Ŵ = Q̂�̂Q̂T . (169)

Using the above decomposition, for any positive γ > 0, we can split the matrix Ŵ into
two matrices Ŵ≥γ + Ŵ<γ with the properties

γ I � Ŵ≥γ ≺ I , −(1 − ε) � Ŵ<γ ≺ γ I . (170)

We do this by defining �̂≥γ and �̂<γ to be �̂ but with all entries zeroed that don’t fall
within the ranges [γ , 1) and [−1+ ε, γ ), respectively. Then we have that �̂ = �̂≥γ + �̂<γ

and therefore, we can define:

Ŵ≥γ ≡ Q̂�̂≥γ Q̂T , Ŵ<γ ≡ Q̂�̂<γ Q̂T . (171)

Moreover, since �̂
k = �̂

k
≥γ + �̂

k
<γ , we have that

Ŵk = Ŵk≥γ + Ŵk
<γ . (172)
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Hence, it follows that:

k2‖Ŵk‖2F ≤ 2k2‖Ŵk≥γ ‖2F + 2k2 ‖Ŵk
<γ ‖2F . (173)

Furthermore, since ‖Ŵk
<γ ‖2F is the sum of the eigenvalues of Ŵ2k

<γ , which are all bounded
by max(1 − ε, γ )2k , it follows again that:

k2‖Ŵk‖2F ≤ 2k2 ‖Ŵk≥γ ‖2F + 2nk2 · max(1 − ε, γ )2k . (174)

For the remaining term ‖Ŵk≥γ ‖2F , we note that for x ∈ [0, 1),

k2xk ≤ 2
k∑

i=1
ixk ≤ 2

k∑

i=1
ixi , (175)

whereas the exact Taylor expansion for 1/(1 − x)2 to k + 1th order has the form:

1
(1 − x)2

=
k∑

i=1
ixi + (k + 1)yk+1 ≥

k∑

i=1
ixi , (176)

where 0 ≤ y ≤ x. Thus, for x ∈ [0, 1),

k2xk ≤ 2
(1 − x)2

. (177)

Hence, since all eigenvalues of Ŵk≥γ lie in the range [γ , 1), it follows that

k2Ŵ2k≥γ = k2Ŵ2k≥γ (1 − 1(Ŵ � γ I))

� 1
2
(I − Ŵ≥γ )−2 (1 − 1(Ŵ � γ I))

� 1
2
(I − Ŵ)−2 (1 − 1(Ŵ � γ I)) ,

(178)

where 1(Ŵ � γ I) is the indicator function for the event {Ŵ � γ I}. The first line is by
virtue of the fact that Ŵ2k≥γ is zero on the set {Ŵ � γ I}. Thus, we may substitute this into
Eq. (174) to obtain:

k2E‖Ŵk‖2F ≤ 2E[tr((I − Ŵ)−2) (1 − 1(Ŵ � γ I)))] + 2nk2 · max(1 − ε, γ )2k .

(179)

Now, we choose γ to be γ = 1 − 1/
√
k . This gives

k2E‖Ŵk‖2F � E[tr((I − Ŵ)−2) (1 − 1(Ŵ � (1 − 1/
√
k)I))] + k2(1 − 1/

√
k)2k .

(180)

The two terms above are quite easy to bound, note that

k2(1 − 1/
√
k)2k ≤ k2 exp(−2k/

√
k) = k2 exp(−2

√
k) = o(1) . (181)

Conversely, we have

tr((I − Ŵ)−2)1(Ŵ � (1 − 1/
√
k)I) ↗ tr((I − Ŵ)−2) . (182)

Therefore, it follows from the monotone convergence theorem and the convergence of
E[(I − Ŵ)−2] that

E[tr((I − Ŵ)−2) (1 − 1(Ŵ � (1 − 1/
√
k)I))] = o(1) . (183)

Plugging Eqs. (181) and (183) into Eq. (180) gives the desired result,

E‖Ŵk‖2F = o(1/k2) . (184)

��
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Lemma 2 Let X̂ ∈ S+(Rn) be a randommatrix such that E[X̂−2] exists and X̂ � (2− ε)Y
almost surely for Y ∈ S+(Rn) and ε > 0. Consider the infinite Taylor series for X̂−1 and
X̂−2, respectively, about base-point Y, i.e.,

X̂−1 ∼ Y−1/2
[ ∞∑

k=0
(−Y−1/2(X̂ − Y)Y−1/2)k

]
Y−1/2 ,

X̂−2 ∼ Y−1/2
[ ∞∑

k=0
(k + 1)(−Y−1/2(X̂ − Y)Y−1/2)k

]
Y−1/2 .

(56)

Both series converge in mean-squared Frobenius norm to their respective limits.

Proof Via a transformation of variables, it suffices to prove the statements

(I − Ŵ)−1 =
∞∑

k=0
Ŵk , (I − Ŵ)−2 =

∞∑

k=0
(k + 1)Ŵk , (185)

in the mean squared Frobenius norm when −(1 − ε)I ≺ Ŵ ≺ I almost surely and
E[(I − Ŵ)−2] ≺ ∞. Let us write:

E

∥∥∥∥∥(I − Ŵ)−1 −
N∑

k=0
Ŵk

∥∥∥∥∥

2

F

≤
(
E
∥∥(I − Ŵ)−1∥∥2

F

)
⎛

⎝E

∥∥∥∥∥I − (I − Ŵ)
N∑

k=0
Ŵk

∥∥∥∥∥

2

F

⎞

⎠

=
(
E
∥∥(I − Ŵ)−1∥∥2

F

)(
E

∥∥∥ŴN+1
∥∥∥
2

F

)

= tr(E(I − Ŵ)−2)
(
E

∥∥∥ŴN+1
∥∥∥
2

F

)

� E

∥∥∥ŴN+1
∥∥∥
2

F
→ 0 .

(186)

The first inequality above is by Cauchy–Schwarz and convergence in the last line is by
Lemma 5.

E

∥∥∥∥∥(I − Ŵ)−2 −
N∑

k=0
(k + 1)Ŵk

∥∥∥∥∥

2

F

≤
(
E
∥∥(I − Ŵ)−1∥∥2

F

)2
⎛

⎝E
∥∥∥∥∥I − (I − Ŵ)2

N∑

k=0
(k + 1)Ŵk

∥∥∥∥∥

2

F

⎞

⎠

= (
tr(E(I − Ŵ)−2)

)2
⎛

⎝E

∥∥∥∥∥I − (I − Ŵ)2
N∑

k=0
(k + 1)Ŵk

∥∥∥∥∥

2

F

⎞

⎠

�

⎛

⎝E

∥∥∥∥∥I − (I − Ŵ)2
N∑

k=0
(k + 1)Ŵk

∥∥∥∥∥

2

F

⎞

⎠

= E

∥∥∥∥∥I − (I − 2Ŵ + Ŵ2)
N∑

k=0
(k + 1)Ŵk

∥∥∥∥∥

2

F

= E

∥∥∥(N + 1)ŴN+1 − NŴN+2
∥∥∥
2

F

≤ 2E‖(N + 1)ŴN+1‖2F + 2E‖NŴN+2‖2F → 0 ,

(187)

where we have once again invoked Lemma 5 for the convergence on the last line. Note
that we use Cauchy–Schwarz twice on the first line above. ��
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Lemma 3 Let a1, a2, ..., ak , ... ∈ R≥0 and b1, b2..., bk , ... ∈ R≥0 be two sequences of nonneg-
ative real numbers with b1 > 0, and consider the truncated sum ratios

βN ≡
∑N

k=1 ak∑N
k=1 bk

, (67)

then, if it is the case that
ak
bk

≥ ak−1
bk−1

, (68)

for all k (e.g., the ratios ak/bk are monotonically increasing), then the sequence
β1,β2, ...,βk , ... is monotonically increasing.

Proof Consider the following series of equivalent inequalities,

βN ≥ βN−1 ,
∑N

k=1 ak∑N
k=1 bk

≥
∑N−1

k=1 ak
∑N−1

k=1 bk
,

( N∑

k=1
ak

)(N−1∑

k=1
bk

)
≥
( N∑

k=1
bk

)(N−1∑

k=1
ak

)
,

(
aN +

N−1∑

k=1
ak

)(N−1∑

k=1
bk

)
≥
(
bN +

N−1∑

k=1
bk

)(N−1∑

k=1
ak

)
,

N−1∑

k=1
aNbk ≥

N−1∑

k=1
bNak

(188)

The last inequality above is clearly true because the terms in the sum on the left dominate
their corresponding terms on the right. Therefore, the first inequality is also true. ��
Lemma 4 Let X̂ be a random matrix such that X̂ � 0 a.s. For i ≥ j and r ≥ 0, and any
symmetric positive semi-definite matrix S � 0, we have that

〈X̂i+r〉S 〈X̂j−r〉S ≥ 〈X̂i〉S 〈X̂j〉S . (124)

Proof We make a series of simplifications. The first assumption is that X̂ is a uniform
random variable over a set of (not necessarily distinct) outcomes {X1, . . . ,XN }, i.e., has
distribution

D = 1
N

N∑

i=1
δXi , (189)

where δXk is the delta distribution supported at Xk . Since any continuous distribution
can be approximated by a series of discrete distributions of this above form, it suffices to
prove the statement for discrete distributions of the form above. Under this assumption,
the inequality Eq. (124) becomes

∑

k,l
〈Xi

l〉S 〈Xj
k〉S ≤

∑

i,l
〈Xi+r

l 〉S 〈Xj−r
k 〉S . (190)

Therefore, it suffices to consider individual pairs {i, l} under the sum and show that for
any A,B � 0,

〈Bi〉S 〈Aj〉S + 〈Ai〉S 〈Bj〉S
≤ 〈Aj−r〉S 〈Bi+r〉S + 〈Bj−r〉S 〈Ai+r〉S .

(191)
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Let λi(A) and λi(B) denote the eigenvalues of A,B, respectively. Note that since 〈·〉S is a
linear functional it satisfies

〈Aj〉S =
∑

i
siλi(A)j , (192)

for some si ≥ 0 that don’t depend on j. Therefore, Eq. (191) amounts to
∑

i,l
sis′l

[
λi(A)jλl(B)k + λi(B)jλl(A)k

]

≤
∑

i,l
sis′l

[
λi(A)j−rλl(B)k+r + λi(B)j−rλl(A)k+r

]
.

(193)

Since si and s′i are nonnegative, it suffices to prove that for any nonnegative a, b ≥ 0,

ajbk + bjak ≤ aj−rbk+r + bj−rak+r (194)

To prove Eq. (194), define the function

Ca,b,s(	) = as−	bs+	 + bs−	as+	 = 2asbs cosh (	 log(a/b)) . (195)

If we take s = (k + j)/2, the claim Eq. (194) can be rephrased as

Ca,b,s

(
k − j
2

)
≤ Ca,b,s

(
k − j
2

+ r
)

, (196)

so it suffices to prove Ca,b,s is monotonic in 	 for 	 ≥ 0—and this follows from the
fact that cosh(x) is monotonically increasing for x ≥ 0 and monotonically decreasing for
x ≤ 0. ��
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