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Operator Shifting for General Noisy Matrix Systems\ast 

Philip A. Etter\dagger and Lexing Ying\ddagger 

Abstract. In the computational sciences, one must often estimate model parameters from data subject to noise
and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with
noisy parameters, we consider the problem of reducing error in a linear system with the operator
corrupted by noise. Our contribution in this paper is to extend the elliptic operator shifting frame-
work from Etter and Ying, 2020 to the general nonsymmetric matrix case. Roughly, the operator
shifting technique is a matrix analogue of the James--Stein estimator. The key insight is that a shift
of the matrix inverse estimate in an appropriately chosen direction will reduce average error. In our
extension, we interrogate a number of questions---namely, whether or not shifting towards the origin
for general matrix inverses always reduces error as it does in the elliptic case. We show that this
is usually the case, but that there are three key features of the general nonsingular matrices that
allow for counterexamples not possible in the symmetric case. We prove that when these possibilities
are eliminated by the assumption of noise symmetry and the use of the residual norm as the error
metric, the optimal shift is always towards the origin, mirroring results from Etter and Ying, 2020.
We also investigate behavior in the small noise regime and other scenarios. We conclude by present-
ing numerical experiments (with accompanying source code) inspired by reinforcement learning to
demonstrate that operator shifting can yield substantial reductions in error.

Key words. operator shifting, random matrices, Monte Carlo, polynomial expansion, asymmetric matrices,
noise reduction
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1. Introduction. Numerical linear algebra is a crucial foundation for research across a
massive breadth of technical domains. It forms the computational bedrock of everything from
data science to computational physics. Even nonlinear problems are usually solved via linear
approximation. One typically writes such systems via matrix notation,

\bfA \bfx = \bfb ,(1.1)

where \bfA \in \BbbR n\times n and \bfx ,\bfb \in \BbbR n for n \in \BbbN .
However, linear systems are often imperfect. Scientific problems can be subject to noise in

the underlying data or model parameters, sampling error, or even epistemic uncertainty---each
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1321

potentially giving rise to errors in predictions or inferences (see, for example, [15, 13]). So in
reality, one is more often confronted by a system

\^\bfA \^\bfx = \bfb ,(1.2)

where one constructs \^\bfA from data to approximate the true \bfA . Hence, \^\bfx = \^\bfA  - 1\bfb \in \BbbR n is the
solution one actually obtains when solving the observed system naively. If the uncertainty or
noise is severe enough, the discrepancy between \^\bfx and \bfx may be a real practical concern.

These situations are fairly common in the computational sciences. As an example, \^\bfA 
might be a Laplacian for a Markov chain that is not known outright, but must be sampled via
trajectories through the state space. Or perhaps, \^\bfA might be the scattering operator through
a background that is estimated from data.

Regardless of the specific application, there are a wide variety of techniques available for
obtaining a better estimate of the true \bfx . For example, one may suppose a certain distribution
for \bfx , as is common in such techniques as Tikhonov regularization [18]. In this paper, however,
we take a fundamentally different tact. Instead of trying to apply postprocessing or Bayesian
regularization to \^\bfx , we will instead examine this problem from the standpoint of building an
improved estimator for the matrix \^\bfA  - 1. The fundamental question we seek to investigate in
this paper and the prequel [7] is whether there exist operations that can make \^\bfA  - 1 potentially
more accurate.

1.1. Operator shifting. As this paper is an extension of Etter and Ying 2020 [7], some
discussion of the previous results of operator shifting is inevitable. We will attempt to give
the high level details in this section.

The fundamental idea of operator shifting is to shift the estimator \^\bfA  - 1 by an appropriately
chosen function \^\bfK ( \^\bfA ) of \^\bfA ,

\~\bfA  - 1
\beta = \^\bfA  - 1  - \beta \^\bfK .(1.3)

In continuity with previous work, we refer to \^\bfK as the shift matrix and the scalar quantity
\beta \in \BbbR as the shift factor . After choosing the shift matrix, one optimizes \beta such that the error

\BbbE \| \~\bfA  - 1
\beta  - \bfA  - 1\| 2(1.4)

is minimized with respect to some matrix norm \| \cdot \| . The reader will note that performing
this optimization is impossible outright, as it requires knowledge of the quantity \bfA  - 1 we are
trying to estimate. This issue is not fatal, however, and can be effectively addressed via a
bootstrap procedure that we will discuss later.

With regards to the choice of shift matrix \^\bfK , the simplest choice is simply \^\bfK ( \^\bfA ) = \^\bfA  - 1.
For \beta \in (0, 1), this choice corresponds to shrinking the operator towards zero. Indeed, the
original intent behind operator shifting was to produce an analogue of the high-dimensional
James--Stein estimator [9] for matrices. The reasoning involved is that since the underlying
space is high-dimensional, the error \^\bfA  - \bfA will likely be close to orthogonal to \bfA in the
Frobenius inner product. Thus, shrinking \^\bfA towards the origin logically brings one closer to
\bfA in expectation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1322 PHILIP A. ETTER AND LEXING YING

Figure 1. An example of the upward bias induced by inversion. If we take a single sample of the scalar
random variable X \sim \Gamma (2, 1/2), and invert it, the probability distribution of 1/X has an expectation double that
of 1/\BbbE [X]. Hence, estimating 1/\BbbE [X] naively will likely give a significant overestimate. The same principle
can apply when X is a random matrix.

In contrast to the James--Stein setting, however, we must also contend with the presence
of the matrix inversion operator (\cdot ) - 1---as our goal is to estimate \bfA  - 1 and not \bfA . In this
respect, there is an extra wrinkle of complexity that one must deal with.

Fortunately, in the case of positive-definite symmetric matrices, matrix inversion has very
nice structure. Most importantly, it is convex with respect to the L\"owner order. This means
that the naive \^\bfA  - 1 will always dominate \bfA  - 1 if \^\bfA is unbaised (this is analogous to Jensen's
inequality; see Figure 1). The confluence of these two factors---high dimensionality and the
convexity of (\cdot ) - 1---suggest that shrinking towards the origin is the most natural operation to
perform on \^\bfA  - 1.

Indeed, the results of Etter and Ying, 2020 [7] bear this out. In particular, the results of
the this paper demonstrate that for positive-definite symmetric matrices, shrinking towards
the origin always reduces error.

Theorem 1.1 (informal, Etter and Ying [7]). For all distributions on \^\bfA for which \BbbE [ \^\bfA ] = \bfA 
and \BbbE [ \^\bfA  - 2] exists, when \^\bfK ( \^\bfA ) = \^\bfA  - 1 we have that \beta \ast \in (0, 1] for both the Frobenius norm
and residual1 norms.

The other primary contributions of Etter and Ying 2020 include the following:
\bullet Efficient Monte Carlo estimation of \beta with monotonic polynomial approximations in

the residual norm (to be defined in section 3).
\bullet Lower bounds relating the optimal reduction in error to the variance of the noise

in \^\bfA .
\bullet Lower bounds for how far \beta \ast is away from 0.

Of course, the shift \^\bfK ( \^\bfA ) = \^\bfA  - 1 is only one of a huge number of potential shifts. Still, a
simple dimensional analysis suggests that \^\bfK ( \^\bfA ) should always be a homogeneous function of
\^\bfA  - 1. So, it is natural to consider shifts of the form

\^\bfK ( \^\bfA ) = \bfB \^\bfA  - 1\bfR (1.5)

1Defined as \| \bfX \| 2 = \| \bfA \bfX \| 2F .
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1323

for constant matrices \bfB ,\bfR \in \BbbR n\times n. As it turns out, analogues of Theorem 1.1 and the bullet
points above are provable for this larger class of shifts (as proved in [7]).

1.2. Novel contributions and paper overview. We stress that, prior to the work done
herein, all of the above applies strictly to symmetric positive-definite matrices only. The
central question of this paper is to what extent the theory of operator shifting for positive-
definite matrices can be extended to general nonsingular matrices.

In particular, we will investigate the following questions:

1. Is it the case that shrinking the operator \^\bfA  - 1 towards zero always produces better
results as in the positive-definite case?
\bullet If not , what are the salient structural differences between the positive-definitive

cone and the general matrix group that allows for counterexamples?
\bullet What do these counterexamples look like?
\bullet What are the practical consequences of a potentially negative optimal shift factor?

2. How large of a class of operator shifts can we extend the theory to (i.e., does the theory
generalize to shifts of the form (1.5))?

3. Does bootstrapped operator shifting on general matrices empirically reduce error?
We partially answer question (1) in section 3. Our work shows that under certain con-

ditions, it is true that shrinking the operator always produces a reduction in error. We list
all of the conditions in subsection 3.1 and give a proof in subsection 3.2. Furthermore, as we
have discovered, each one of these conditions has a corresponding illustrative counterexample
that both exemplifies the critical structural features of the general matrix group and demon-
strates the necessity of the aforementioned conditions. We present these examples in section 4.
Some of these examples depend on the presence of ``large noise,"" hence, we dedicate section 5
to examining what happens when higher order noise terms are negligible. Then, we answer
question (2) in section 6 and provide the main theorem for this paper, Theorem 6.1.

In section 7, we introduce the machinery that we will use to approximate the optimal
shift factor \beta \ast using a bootstrap optimization procedure. We then use this machinery to
give practical algorithms for the approximation of \beta \ast using Monte Carlo in section 8. We
also provide a counterexample of how \beta \ast < 0 can cause the bootstrapping procedure to fail
arbitrarily badly in estimating \beta \ast in subsection 8.2.

For the numerical experiments section of this paper we draw upon problems from rein-
forcement learning (RL). RL problems frequently require one to approximately solve linear
systems (value function estimation for Markov decision processes2) and linear programs (policy
optimization for Markov decision processes). However, the underlying problems can usually
only be estimated from data due to both memory and sampling restrictions, making RL the
perfect domain in which to apply our technique. Our numerical experiments in section 9
demonstrate that operator shifting can provide substantial error reduction on simple value
function estimation problems.

2. Related work. As discussed in the previous section, operator shifting is heavily inspired
by the work of James and Stein. Stein's original paper [16] proved the relatively shocking

2Markov decision processes are Markov processes whose transition probabilities are determined by a
controller.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1324 PHILIP A. ETTER AND LEXING YING

conclusion that in dimensions \geq 3, the standard estimator is actually inadmissible for the
quadratic loss, as shrinking the estimate towards any fixed point by an appropriately chosen
amount will always reduce loss in expectation. This idea was later refined by James and Stein
in their paper on estimation under quadratic loss [9]. Fundamentally, we view our work as
taking this idea and applying it to the novel setting of matrices corrupted by noise.

We remark that there are a number of connections with the field of statistical inverse
problems. For example, one is often interested in estimating an object from incomplete or
noisy measurements. One relevant example is the area of semiblind deconvolution, where one
has measurements of a unknown function convolved with a kernel that is known with some
uncertainty (as opposed to blind deconvolution, where one knows nothing about the kernel).
This uncertainty in the underlying operator is a shared feature between our work and this body
of literature; however, we should note that both our formalism and the semiblind convolution
approach are quite different.

The operative approach of related papers in statistical inverse problems tends to be to
introduce regularization on both the operator and the recovery target. An example would
be the pioneering work of Golub and Van Loan on total least squares (TLS) [8]. Golub and
Van Loan optimize over both perturbations to linear features and feature weights themselves,
minimizing a residual term together with a regularization on the feature perturbations. An-
other example includes techniques from semiblind deconvolution, where one introduces a free
estimate of the kernel with an appropriate regularization term into the inverse problem opti-
mization [5]. Other approaches (i.e., double regularization) involve introducing a free estimate
of the operator but constraining the free estimate so that it doesn't differ from the observed
operator by too much [4]. In a gross oversimpliciation that we will perform for readability, we
will characterize the above approaches as roughly solving a variant of an optimization problem
that looks like

min
\bfx ,\bfE 

\| ( \^\bfA +\bfE )\bfx  - \bfb \| 2 +R1(\bfx ) +R2(\bfE ) ,(2.1)

where here \bfE denotes a correction to the linear features of \^\bfA , and R1 and R2 denote appro-
priate regularizers on the recovery target \bfx and the matrix correction \bfE .

But while these works are related, there are stark differences between our respective for-
malisms and approach. The primary difference between our setting and TLS is that we assume
we are operating in the regime where \^\bfA is nonsingular and square, whereas TLS is typically
applied in underdetermined scenarios. In semiblind deconvolution settings, the choice of regu-
larizer R2 and optimization process both depend heavily on the assumption that the operator
\^\bfA comes from a kernel convolution. We make no such assumptions about the specific charac-
ter of \^\bfA in our work, though it may certainly be the case that our technique functions better
for some problems than others. In addition, other works also do not frame error reduction in
terms of producing an estimator for a random matrix in the way that we do here, and hence
their analyses are focused more on the optimization methods themselves and less on the un-
derlying probabilistic effects that arise from noisy operators. As a final note, we observe that
optimizing over \bfE is in many practical scenarios infeasible. On most RL problems, for exam-
ple, even storing the operator in memory would be prohibitively expensive---however, this fact
is something that operator shifting can deal with fairly well, since it only needs to optimize

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1325

over a single parameter \beta rather than an entire matrix \bfE . Moreover, the sheer number of
degrees of freedom \bfE added to the optimization in our setting has a danger of contributing to
overfitting unless one is careful with regularization.

Other statistical inverse problems literature pertaining to noisy or uncertain operators
include situations where the forward operator is too computationally expensive to use in an
optimization procedure and is replaced by a learned proxy [11]. This is not directly relevant
to our problem at hand, but notable nonetheless. Another situation studied in the literature
is when one has a set of noisy input-output pairs of the underlying operator. One can use
these input-output pairs to construct a regularizer for solving the inverse problem [2]. These
works are both very different to the approach we take in this paper.

In addition to statistical inverse problems, the field of model uncertainty is tangentially
relevant. Model uncertainty---both its quantification and representation---is an important
topic in many branches of computational science, from structural dynamics [15] to weather
and climate prediction [13]. However, work in model uncertainty is typically tied very closely
to a specific domain. In contrast, our work here does not make domain specific assumptions.

Uncertainty quantification (UQ) is another relevant, but ultimately tangential subject.
UQ is concerned with quantifying the probability distributions associated with calculations or
physical processes. For example, one may be interested in the variance of a set of outputs given
a distribution of noise on a set of inputs. Practitioners can quantify this through a variety
of means---including, but not limited to, Monte Carlo techniques [12], stochastic Galerkin
projection [20], or collocation [19]. In our situation, however, we are more interested in the
reduction of error rather than quantifying its distribution.

The central problem in this paper is also not too dissimilar to the setting of matrix
completion seen in [6, 10]. In matrix completion, one usually seeks to recover a low-rank
ground truth matrix from observations that have been corrupted by additive noise. Regardless,
the respective settings of operator shifting and matrix completion are still different. The
operator shifting setting operates purely on full-rank matrices, and not those of low-rank.

We should briefly mention that the mathematical branch of random matrix theory (RMT)
studies the spectral properties of random matrix ensembles [1, 17]. However, RMT results
usually apply only when the entries of the random matrices are independent and in the large
matrix limit. We find these assumptions to be too stringent for the problem at hand.

In conclusion, we do not believe that the setting we introduce in this paper has been
studied in the proposed fashion before. There is little precedent in the literature for the
operator shifting method beyond the original paper [7].

3. Theoretical guarantees. In order to provide a theory for nonsymmetric operator shift-
ing that mirrors the theory for symmetric operator shifting, we focus on the inverse operator
error

\scrE \bfB ,\bfR ( \~\bfA 
 - 1
\beta ) \equiv \BbbE 

\Bigl[ 
\| \~\bfA  - 1

\beta  - \bfA  - 1\| 2\bfB ,\bfR 

\Bigr] 
.(3.1)

Here, the \| \cdot \| \bfB ,\bfR is a generalized version of a matrix inner product norm for symmetric
positive-definite \bfB and \bfR . The corresponding matrix inner product, \langle \cdot , \cdot \rangle \bfB ,\bfR , we define as

\langle \bfX ,\bfY \rangle \bfB ,\bfR \equiv tr(\bfR \bfX T\bfB \bfY ) = tr(\bfR 1/2\bfX T\bfB \bfY \bfR 1/2) ,

\| \bfX \| 2\bfB ,\bfR \equiv \langle \bfX ,\bfX \rangle \bfB ,\bfR = tr((\bfB 1/2\bfX \bfR 1/2)T (\bfB 1/2\bfX \bfR 1/2)) = \| \bfB 1/2\bfX \bfR 1/2\| 2F ,
(3.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1326 PHILIP A. ETTER AND LEXING YING

where \| \cdot \| F denotes the Frobenius norm. Note that when \bfB and \bfR are the identity, this simply
becomes the standard Frobenius inner product. In this way, the above norm is a natural
generalization of the Frobenius norm for matrix operators. Just like with the Frobenius norm,
one can interpret the \bfB ,\bfR norm via the use of expectations. Namely, if \bfb \sim P is a random
vector with second moment matrix \BbbE [\bfb \bfb T ] = \bfR , then it is the case that

\| \bfX \| 2\bfB ,\bfR = \BbbE \bfb \sim P \| \bfX \bfb \| 2\bfB ,(3.3)

where \| \cdot \| 2\bfB is the vector norm induced by the symmetric positive-definite matrix \bfB , i.e.,
\| \bfx \| 2\bfB = \bfx T\bfB \bfx . This means that one may interpret (3.1) as being the average squared error
of the solution of the linear noisy linear system (1.2) if the right-hand side is sampled from
the distribution P . In mathematical notation, we may write

\scrE \bfB ,\bfR ( \~\bfA 
 - 1
\beta ) = \BbbE \^\bfA \BbbE \bfb \sim P

\Bigl[ 
\| \~\bfA  - 1

\beta \bfb  - \bfA  - 1\bfb \| 2\bfB 
\Bigr] 
.(3.4)

The goal of operator shifting is to approximate the value of \beta \ast that minimizes the above error,
namely,

\beta \ast \equiv argmin
\beta 

\scrE \bfB ,\bfR ( \~\bfA 
 - 1
\beta ) .(3.5)

While exact optimization of this quantity is out of reach for the aforementioned reason that
one does not explicitly know \bfA , one can develop intuition for how \beta \ast should behave through
the use of mathematical theory, and then use bootstrap Monte Carlo to approximate it.

In accordance with our discussion of the previous work on symmetric operator shifting
from our introduction, the primary theoretical question we seek to answer is whether shifting
towards the origin (i.e., \beta \ast > 0) can be expected to always decrease error as it does in the
symmetric positive-definite case.

To begin to answer this question, we perform a simple calculation,

\beta \ast =
\BbbE \langle \^\bfK , \^\bfA  - 1  - \bfA  - 1\rangle \bfB ,\bfR 

\BbbE \| \^\bfK \| 2\bfB ,\bfR 

,(3.6)

hence the sign of \beta \ast is equivalent to the sign of \BbbE \langle \^\bfK , \^\bfA  - 1 - \bfA  - 1\rangle \bfB ,\bfR , and we would therefore
like a shift method to exhibit \BbbE \langle \^\bfK , \^\bfA  - 1  - \bfA  - 1\rangle \bfB ,\bfR \geq 0. We will begin by studying the
simplest choice of operator shift,

\^\bfK = \^\bfA  - 1 .(3.7)

The overshooting effect demonstrated in Figure 1 gives one reason to believe that this choice
of shift is a reasonable one, as it shrinks the inverse operator towards zero.

3.1. Conditions. Unlike the symmetric case, to prove a rigorous statement about the sign
of \beta \ast for (3.7) in the nonsymmetric case, one must place a number of additional conditions on
the constituent components of the model. We will discuss the necessity of these conditions in
more detail in section 4---in short, each of these conditions has a counterexample associated

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1327

with it that causes the theory to fail when the conditions are not assumed. Throughout the
following proofs and discussion we will denote the noise in the matrix \^\bfA with the symbol \^\bfZ ,

\^\bfZ \equiv \^\bfA  - \bfA .(3.8)

In order to prove nonnegativity of \beta \ast , we introduce the following constraints:

1. Mean-zero noise: We assume that the noise matrix \^\bfZ is mean zero, i.e., \BbbE [ \^\bfA ] = \bfA .
2. Isotropy : We assume that \bfR = \BbbE P [\bfb \bfb 

T ] = \bfI . This means that there is no preferred
direction in which we care about the accuracy of the estimator \~\bfA  - 1

\beta .

3. Noise symmetry : We assume that the distribution of the matrix \^\bfA is symmetric about
its mean, namely, that \^\bfZ has the same distribution as  - \^\bfZ .

4. Residual norm: We specifically choose our norm of interest \bfB to be the residual norm
\bfB = \bfA T\bfA . The residual norm is often used as an objective in nonsymmetric iterative
methods.

We note that for the theory of elliptic operator shifting, items (2) through (4) are not
necessary---and so their apparent necessity in the nonsymmetric case is a curious mathematical
phenomenon of the general nonsingular matrices GL(\BbbR n).

3.2. Proof. With the conditions outlined above, we proceed to prove the positivity of the
shift factor \beta \ast .

Theorem 3.1. Let \^\bfA be a random matrix, invertible almost everywhere, such that \BbbE [ \^\bfA  - 2]
exists. Under the conditions outlined in subsection 3.1, the optimal shift factor is always
nonnegative.

Proof. We must verify

\BbbE \langle \^\bfA  - 1, \^\bfA  - 1  - \bfA  - 1\rangle \bfA T\bfA ,\bfI \geq 0 .(3.9)

Expanding,

\BbbE \langle \^\bfA  - 1, \^\bfA  - 1  - \bfA  - 1\rangle \bfA T\bfA ,\bfI = tr\BbbE 
\Bigl[ 
\^\bfA  - T\bfA T\bfA ( \^\bfA  - 1  - \bfA  - 1)

\Bigr] 
.(3.10)

Since \bfA is invertible and \^\bfA is invertible almost everywhere, let us define the matrix \^\bfY ,

\^\bfY = \^\bfA \bfA  - 1  - \bfI = \^\bfZ \bfA  - 1 .(3.11)

Note that this definition implies that \BbbE [ \^\bfY ] = \bfzero as well as that the distribution of \^\bfY is
symmetric, since the distribution of \^\bfZ is symmetric by condition (3).

One can rearrange to obtain an expression for \^\bfA  - 1,

\^\bfA  - 1 = \bfA  - 1(\bfI + \^\bfY ) - 1 .(3.12)

And we substitute the above expression into (3.10),

\BbbE \langle \^\bfA  - 1, \^\bfA  - 1  - \bfA  - 1\rangle \bfA T\bfA ,\bfI = tr\BbbE 
\Bigl[ 
(\bfI + \^\bfY ) - T (\bfI + \^\bfY ) - 1  - (\bfI + \^\bfY ) - T

\Bigr] 
.(3.13)
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1328 PHILIP A. ETTER AND LEXING YING

Since the distribution of \^\bfY is symmetric, it suffices to verify that

tr
\bigl[ 
(\bfI +\bfY ) - T (\bfI +\bfY ) - 1  - (\bfI +\bfY ) - T

\bigr] 
+ tr

\bigl[ 
(\bfI  - \bfY ) - T (\bfI  - \bfY ) - 1  - (\bfI  - \bfY ) - T

\bigr] 
\geq 0(3.14)

or, alternatively,

tr
\bigl[ 
(\bfI +\bfY ) - T (\bfI +\bfY ) - 1 + (\bfI  - \bfY ) - T (\bfI  - \bfY ) - 1

\bigr] 
\geq tr

\bigl[ 
(\bfI +\bfY ) - T + (\bfI  - \bfY ) - T

\bigr] 
(3.15)

for all matrices \bfY for which \bfI +\bfY and \bfI  - \bfY are nonsingular.
In order to verify (3.15), we begin by considering the matrix

((\bfI  - \bfY ) - T  - (\bfI +\bfY ) - 1)((\bfI  - \bfY ) - 1  - (\bfI +\bfY ) - T ) \succeq \bfzero .(3.16)

Since this matrix is positive-definite (by virtue of the fact that it has the form \bfM T\bfM ), it
follows that the trace of the above matrix is positive,

tr
\bigl[ 
((\bfI +\bfY ) - T  - (\bfI  - \bfY ) - 1)((\bfI +\bfY ) - 1  - (\bfI  - \bfY ) - T )

\bigr] 
\geq 0 .(3.17)

The above inequality can be rearranged,

tr
\bigl[ 
(\bfI +\bfY ) - T (\bfI +\bfY ) - 1 + (\bfI  - \bfY ) - 1(\bfI  - \bfY ) - T

\bigr] 
\geq tr

\bigl[ 
(\bfI  - \bfY 2) - T + (\bfI  - \bfY 2) - 1

\bigr] 
.(3.18)

Note that, by the cyclic property of the trace, that the left-hand sides of both (3.15) and
(3.18) are identical. Therefore, it suffices to prove that

tr
\bigl[ 
(\bfI  - \bfY 2) - T + (\bfI  - \bfY 2) - 1

\bigr] 
= tr

\bigl[ 
(\bfI +\bfY ) - T + (\bfI  - \bfY ) - T

\bigr] 
,(3.19)

from which (3.15) will follow.
To prove (3.19), we note that

tr
\bigl[ 
(\bfI +\bfY ) - T + (\bfI  - \bfY ) - T

\bigr] 
= tr

\bigl[ 
(\bfI +\bfY ) - T (\bfI  - \bfY )T (\bfI  - \bfY ) - T + (\bfI +\bfY ) - T (\bfI +\bfY )T (\bfI  - \bfY ) - T

\bigr] 
= tr

\bigl[ 
(\bfI +\bfY ) - T (\bfI  - \bfY + \bfI +\bfY )T (\bfI  - \bfY ) - T

\bigr] 
= 2tr

\bigl[ 
(\bfI +\bfY ) - T (\bfI  - \bfY ) - T

\bigr] 
= 2tr

\bigl[ 
(\bfI  - \bfY 2) - T

\bigr] 
= tr

\bigl[ 
(\bfI  - \bfY 2) - T + (\bfI  - \bfY 2) - 1

\bigr] 
.

(3.20)

This proves the nonnegativity of the optimal shift factor.

We remark that the critical step that requires isotropy is the assertion that the left-hand
sides of both (3.15) and (3.18) are equal, namely, that

tr
\bigl[ 
(\bfI  - \bfY ) - 1(\bfI  - \bfY ) - T

\bigr] 
= tr

\bigl[ 
(\bfI  - \bfY ) - T (\bfI  - \bfY ) - 1

\bigr] 
.(3.21)

This is no longer necessarily true if we replace the isotropic trace operator tr(\cdot ) with an
anisotropic operator tr(\bfR 1/2(\cdot )\bfR 1/2) for general \bfR .
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1329

We also note that the theorem above only proves \beta \ast \geq 0 and not \beta \ast > 0. Getting to
\beta \ast > 0 requires an additional condition.

Corollary 3.2. Under the conditions of Theorem 3.1, the optimal shift factor is positive if
and only if \BbbP (( \^\bfA \bfA  - 1  - \bfI )T \not =  - ( \^\bfA \bfA  - 1  - \bfI )) > 0.

Proof. Note that the sole inequality in Theorem 3.1 is

\BbbE tr
\Bigl[ 
((\bfI + \^\bfY ) - T  - (\bfI  - \^\bfY ) - 1)((\bfI + \^\bfY ) - 1  - (\bfI  - \^\bfY ) - T )

\Bigr] 
\geq 0 .(3.22)

It thus suffices to show the equivalence between the two events\Bigl\{ 
tr
\Bigl[ 
((\bfI + \^\bfY ) - T  - (\bfI  - \^\bfY ) - 1)((\bfI + \^\bfY ) - 1  - (\bfI  - \^\bfY ) - T )

\Bigr] 
= 0

\Bigr\} 
(3.23)

and \Bigl\{ 
( \^\bfA \bfA  - 1  - \bfI )T =  - ( \^\bfA \bfA  - 1  - \bfI )

\Bigr\} 
=

\Bigl\{ 
\^\bfY T =  - \^\bfY 

\Bigr\} 
.(3.24)

Clearly, if \^\bfY is antisymmetric, then this implies (3.23). Conversely, if (3.23) holds, then
because the matrix inside the trace is positive semidefinite, the only way that the trace can
be zero is if

(\bfI + \^\bfY ) - T  - (\bfI  - \^\bfY ) - 1 = \bfzero .(3.25)

Rearranging the above gives \^\bfY T =  - \^\bfY . Therefore (3.22) is strictly positive in expectation if
and only if \BbbP (( \^\bfA \bfA  - 1  - \bfI )T \not =  - ( \^\bfA \bfA  - 1  - \bfI ))) > 0, proving the corollary.

It is interesting to note that juxtaposition of the above result with the results for SPD
matrices from Etter and Ying, 2020 [7]. For SPD matrices, the optimal shift factor is always
positive unless \^\bfA = \bfA almost surely. On the other hand, Corollary 3.2 tells us that for general
matrices, the further \^\bfA \bfA  - 1  - \bfI is on average from its negative transpose  - ( \^\bfA \bfA  - 1  - \bfI )T , the
larger the gap in (3.22) and, hence, the larger the value of \beta \ast and the better operator shifting
will perform. In the worst case scenario, it is possible to force \^\bfA \bfA  - 1  - \bfI to be antisymmetric
almost surely, in which case, operator shifting will be no better than the naive estimate.

4. The necessity of conditions. In this section, we provide counterexamples of how vi-
olating the conditions in subsection 3.1 can lead to situations where the optimal shift factor
\beta \ast for \^\bfK = \^\bfA  - 1 is negative. This provides a concrete lens of how the group GL(\BbbR n) differs
from the SPD cone S(\BbbR n)+, as such situations are not possible in the SPD case. These exam-
ples demonstrate how one might use the structure of GL(\BbbR n) to construct situations where
increasing the ``noise"" in our estimator can actually lead to more accurate results.

4.1. The necessity of isotropy. First, we investigate the necessity of the isotropy condi-
tion. Suppose that \bfA = \bfI and \^\bfZ has a two-atom distribution with atoms

\bfZ 1 =

\biggl[ 
0 k
0  - k

\biggr] 
, \bfZ 2 =

\biggl[ 
0  - k
0 k

\biggr] 
,(4.1)

where each atom occurs with equal probability, and k \gg 1. Clearly in this situation, the error
distribution of \^\bfZ is symmetric and has mean zero. Therefore, all of the other conditions in
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1330 PHILIP A. ETTER AND LEXING YING

subsection 3.1 are met. The shifted operator \~\bfA  - 1
\beta is given by \~\bfA  - 1

\beta = (1  - \beta ) \^\bfA  - 1 and the

random matrix \^\bfA has two outcomes with equal probability,

\bfA 1 =

\biggl[ 
1 k
0  - k + 1

\biggr] 
, \bfA 2 =

\biggl[ 
1  - k
0 k + 1

\biggr] 
.(4.2)

These outcomes have inverses

\bfA  - 1
1 =

\biggl[ 
1 k/(k + 1)
0  - 1/(k  - 1)

\biggr] 
, \bfA  - 1

2 =

\biggl[ 
1 k/(k + 1)
0 1/(k  - 1)

\biggr] 
.(4.3)

This means that in either case, we have

\^\bfA  - 1 =

\biggl[ 
1 1
0 0

\biggr] 
+O(1/k).(4.4)

With this matrix ensemble, we can take the distribution P to be deterministic, such that

\bfb =

\biggl[ 
2
 - 1

\biggr] 
.(4.5)

This immediately makes the problem with this setup evident, as

\^\bfA  - 1\bfb =

\biggl[ 
1
0

\biggr] 
+O(1/k), \bfA  - 1\bfb =

\biggl[ 
2
 - 1

\biggr] 
.(4.6)

It is therefore clear that the objective

\scrE \bfA T\bfA ( \~\bfA \beta ) = \scrE \bfI ( \~\bfA \beta ) = \BbbE \| (1 - \beta ) \^\bfA  - 1\bfb  - \bfA  - 1\bfb \| 22(4.7)

must achieve its minimum at

\beta \ast =  - 1 +O(1/k).(4.8)

One might initially conclude that the ability of this example to undermine Theorem 3.1 has
something to do with the assumption that k is very large. This is not the case. The largeness
of k is assumed only for illustrative purposes. One can verify numerically (see Figure 2) for
the above choice of \^\bfA , that \BbbE [ \^\bfA  - T \^\bfA  - 1  - \^\bfA  - T ] has a negative eigenvalue for all k \not = \pm 1, 0.
This means that if we let \bfv be the corresponding eigenvector and take \bfR = \bfv \bfv T , the quantity
determining the sign of \beta \ast (see (3.9)) becomes

\BbbE \langle \^\bfA  - 1, \^\bfA  - 1  - \bfA  - 1\rangle \bfA T\bfA ,\bfR = \bfv T\BbbE [ \^\bfA  - T \^\bfA  - 1  - \^\bfA  - T ]\bfv < 0 .(4.9)

Therefore, for any k \not = \pm 1, 0, one can find a \bfb such that \beta \ast is negative.
In particular, one should note that without a requirement of positive-definiteness, it is

possible to create a situation where \^\bfA is always ``larger"" than \bfA . This runs counter to
the intuition behind operator shifting in the SPD case [7], where such a situation is not
possible.
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Figure 2. The lowest eigenvalue of \BbbE [ \^\bfA  - T \^\bfA  - 1  - \^\bfA  - T ] as defined in subsection 4.1.

4.2. Outlier masking and the importance of noise symmetry. The second condition
that one needed to prove the results in section 3 is the presence of symmetry in the noise
distribution. In this section, we will see how if this is not required, it is possible to construct
a counterexample where \beta \ast < 0 for the shift (3.7). For this example, we take \bfA = \bfI and let
\^\bfZ have a distribution of three equally probable atoms, given by

\bfZ 1 = \bfI , \bfZ 2 = k\bfI , \bfZ 3 =  - (k + 1)\bfI ,(4.10)

where k \gg 1. Note that this distribution is mean zero. Computing the atoms of the distribu-
tion \^\bfA  - 1,

\bfA  - 1
1 =

1

2
\bfI , \bfA  - 1

2 =
1

k + 1
\bfI , \bfA  - 1

3 =  - 1

k
\bfI .(4.11)

Now, note that in order to minimize the quantity

\scrE \bfA T\bfA ( \~\bfA \beta ) = \BbbE \| \~\bfA  - 1
\beta  - \bfI \| 2F =

2

3

\biggl( 
1 - \beta 

2
 - 1

\biggr) 2

+
2

3

\biggl( 
1 - \beta 

k + 1
 - 1

\biggr) 2

+
2

3

\biggl( 
 - 1 - \beta 

k
 - 1

\biggr) 2

,

(4.12)

one can verify by taking the derivative and setting it to zero that

\beta \ast =  - 1 +O(1/k) .(4.13)

Therefore, the optimal shift will grow the inverse operator instead of shrinking it.
The message of this example is that outliers in the matrix noise can mask distribution

imbalances in the region near \bfA that can cause \BbbE [ \^\bfA  - 1] to both lie in the direction of\bfA  - 1 while
at the same time being dominated by \bfA  - 1. Indeed, we have that \BbbE [ \^\bfA  - 1] \approx 1

2\bfI \preceq \bfI = \bfA  - 1

(it bears repeating that such a feat is impossible in the SPD setting where \BbbE [ \^\bfA  - 1] \succeq \bfA  - 1

[7]). The importance of noise symmetry is that it forces the distribution of \^\bfZ to be balanced
in the region around \bfA , even if the distribution contains large outliers.

4.3. The importance of conditioning and a counterexample for the Frobenius norm.
Our final counterexample concerns the use of the Frobenius norm in the objective rather than
the residual norm. In the SPD case, one can prove the positivity of the optimal shift factor for
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1332 PHILIP A. ETTER AND LEXING YING

a large range of different objective norms [7]. However, as we will see in this section, there are
ways to break norms other than the residual norm in the nonsymmetric case. We will focus
here on giving an example that shows how using the Frobenius norm instead of the residual
norm makes it possible to have a negative optimal shift factor for the shift (3.7).

To begin, consider the ground truth matrix

\bfA =

\biggl[ 
1  - \epsilon 
\epsilon 0

\biggr] 
,(4.14)

where 0 < \epsilon \ll 1. For the noise \^\bfZ , we reuse the noise distribution from subsection 4.1---
consider a two-atom distribution with atoms

\bfZ 1 =

\biggl[ 
0 1
 - 1 0

\biggr] 
, \bfZ 2 =

\biggl[ 
0  - 1
1 0

\biggr] 
,(4.15)

where each atom has equal probability. Note that this distribution is symmetric and mean
zero. Since \epsilon is extremely small, this means that the distribution of \^\bfA will have two atoms
whose inverses are approximately

\bfA  - 1
1 \approx 

\biggl[ 
1 1
 - 1 0

\biggr]  - 1

=

\biggl[ 
0 1
 - 1 1

\biggr] 
, \bfA  - 1

2 \approx 
\biggl[ 
1  - 1
1 0

\biggr]  - 1

=

\biggl[ 
0  - 1
1 1

\biggr] 
.(4.16)

Note that the inverses of these atoms have the same Frobenius norm as the atoms themselves.
In sharp contrast, the ill-conditioning of \bfA means that \bfA  - 1 is an order of magnitude larger
than \bfA ,

\bfA  - 1 =

\biggl[ 
0  - \epsilon  - 1

\epsilon  - 1 \epsilon  - 2

\biggr] 
.(4.17)

Immediately, we see that in order for \beta \ast to minimize

\scrE \bfI ( \~\bfA \beta ) =
1

2
\| (1 - \beta )\bfA  - 1

1  - \bfA  - 1\| 2F +
1

2
\| (1 - \beta )\bfA  - 1

2  - \bfA  - 1\| 2F ,(4.18)

one must therefore have \beta \ast \sim  - \epsilon  - 2, for which \scrE \bfI ( \~\bfA \beta \ast ) \sim \epsilon  - 1. For other growth orders of \beta ,
one has \scrE \bfI ( \~\bfA \beta ) \gg \epsilon  - 1 as \epsilon grows small. It is therefore clear that for \epsilon small enough, \beta \ast will
be negative.

In contrast to the L2 norm, note that the residual norm matrix for this problem is
given by

\bfA T\bfA =

\biggl[ 
1 + \epsilon 2 \epsilon 

\epsilon 0

\biggr] 
.(4.19)

Therefore, we see that the reason why Theorem 3.1 holds in the residual norm but not in
the L2 norm, is because the residual norm places significantly less weight on the part of the
matrix \bfA  - 1 that contributes to the \bfA  - 1's large increase of magnitude over \bfA . This means
that the residual norm \bfA T\bfA accounts for ill-conditioning on \bfA in a way that the L2 norm
does not.
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1333

This example therefore also demonstrates the importance of conditioning in the ground
truth matrix \bfA . It is perfectly possible that \bfA lies close to a singular matrix, while the
outcomes of \^\bfA are moved away from singularity by the noise imparted by \^\bfZ . If this is the
case, \BbbE [ \^\bfA  - 1] will be small in magnitude compared to \bfA  - 1 and shrinking the operator \^\bfA  - 1

further will not reduce the average error in the Frobenius sense.
Note that SPD setting [7] avoids this issue, since if \^\bfA is SPD everywhere, it is impossible

for \BbbE [ \^\bfA ] to be close to the origin without a significant chunk of the probability distribution
also lying close to the origin. This ensures that \BbbE [ \^\bfA  - 1] will always spectrally dominate \^\bfA  - 1,
and shifting the operator \^\bfA  - 1 towards \bfzero will reduce error.

5. The small noise regime allows for nonsymmetric noise. As we saw in subsection 4.2,
the presence of large outliers can completely mask local imbalances in the noise distribution
near \bfA . These local imbalances can be severe enough to invalidate Theorem 3.1. Naturally,
the example presented in subsection 4.2 is quite extreme, so one might ask if the issue inherent
is not necessarily the symmetry of the noise, but rather the magnitude of the noise. To answer
this question, we consider the small noise regime, where deviations in \^\bfY = \^\bfA \bfA  - 1  - \bfI are
very small relative to \bfI . It turns out, that if one assumes that terms of order O(\BbbE [\| \^\bfY \| 3F ]) are
negligible---what we term the small noise regime---then the symmetry assumption is unneces-
sary, as we will see momentarily.

For this discussion, we duplicate the setting of Theorem 3.1, except we replace the condi-
tion that the noise distribution is symmetric with the condition that noise terms of the order
O(\BbbE [\| \^\bfY \| 3F ]) are negligible. Recall that the statement necessary for Theorem 3.1 to be true
was

\BbbE \langle \^\bfA  - 1, \^\bfA  - 1  - \bfA  - 1\rangle \bfA T\bfA ,\bfI = tr\BbbE 
\Bigl[ 
(\bfI + \^\bfY ) - T (\bfI + \^\bfY ) - 1  - (\bfI + \^\bfY ) - T

\Bigr] 
\geq 0 .(5.1)

We define the function f ,

f(\bfY ) \equiv tr
\bigl[ 
(\bfI +\bfY ) - T (\bfI +\bfY ) - 1  - (\bfI +\bfY ) - T

\bigr] 
.(5.2)

Taking a second order Taylor expansion of f about \bfY = \bfzero , we obtain

f( \^\bfY ) = f(\bfzero ) + \delta f(\bfzero ) \^\bfY +
1

2
\delta 2f(\bfzero ) ( \^\bfY , \^\bfY ) +O(\| \^\bfY \| 3F ).(5.3)

Note that f(\bfzero ) = 0 and that the first term is linear in \^\bfY . Hence, in expectation, both of these
terms vanish and we are left with

\BbbE [f( \^\bfY )] =
1

2
\BbbE [\delta 2f(\bfzero ) ( \^\bfY , \^\bfY )] +O(\BbbE [\| \^\bfY \| 3F ]).(5.4)

A calculation of \delta 2f(\bfzero ) ( \^\bfY , \^\bfY ) gives

\BbbE [\delta 2f(\bfzero ) ( \^\bfY , \^\bfY )] = \BbbE tr
\Bigl[ 
2 \^\bfY T \^\bfY T + 2 \^\bfY T \^\bfY + 2 \^\bfY \^\bfY  - 2 \^\bfY T \^\bfY T

\Bigr] 
= 2\BbbE tr

\Bigl[ 
\^\bfY T \^\bfY + \^\bfY \^\bfY 

\Bigr] 
= \BbbE tr

\Bigl[ 
\^\bfY T \^\bfY T + \^\bfY T \^\bfY + \^\bfY \^\bfY T + \^\bfY \^\bfY 

\Bigr] 
= \BbbE tr

\Bigl[ 
( \^\bfY + \^\bfY T )T ( \^\bfY + \^\bfY T )

\Bigr] 
\geq 0 .

(5.5)
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1334 PHILIP A. ETTER AND LEXING YING

Indeed, if \^\bfY is not antisymmetric almost surely, then the above is in fact a strict inequality.
This mirrors the result of Corollary 3.2. Regardless, we know that (5.1) must be true to
second order.

6. Main theorem for more general shifts. As mentioned in the introduction, in the el-
liptic case [7], one can prove a reduction in error for a variety of different shifts. In particular,
the energy norm in the elliptic shifting setting has an extensive theory regarding the approxi-
mation of \beta \ast . This therefore begs the question, do more general shifts of the form (1.5) retain
their nice properties in the nonsymmetric shifting setting---where the residual norm plays the
role of the energy norm in the elliptic shifting setting? Subsection 4.1 provides a definitive
answer to this question: it is not possible unless the modified second moment is isotropic and
the chosen norm is the residual norm.

Nonetheless, while the wide number of choices regarding norms and shifts do not translate
to the nonsymmetric shifting setting, the operator shifting framework does provide a way for
handling anisotropic \bfR \not = \bfI , namely, one chooses the operator shift

\^\bfK \equiv \^\bfA  - 1\bfR  - 1 .(6.1)

It is immediate that the results of Theorem 3.1 hold for this choice of shift---as the \bfR  - 1 will
cancel the \bfR in the error objective. We restate this conclusion into the main theorem of this
paper.

Theorem 6.1 (main theorem). Let \^\bfA be a random matrix, invertible almost everywhere,
such that \BbbE [ \^\bfA  - 2] exists. Suppose that the distribution of \^\bfA is symmetric about its mean, and
that \BbbE [ \^\bfA ] = \bfA . Let \bfb \sim P with nonsingular second moment matrix \BbbE [\bfb \bfb T ] = \bfR . Consider
the residual error

\scrE \bfA T\bfA ( \~\bfA \beta ) = \BbbE \^\bfA \BbbE \bfb \sim P

\Bigl[ 
\| \~\bfA  - 1

\beta \bfb  - \bfA  - 1\bfb \| 2\bfA T\bfA 

\Bigr] 
= \BbbE 

\Bigl[ 
\| \~\bfA  - 1

\beta  - \bfA  - 1\| 2\bfA T\bfA ,\bfR 

\Bigr] 
.(6.2)

Consider the operator shift

\~\bfA  - 1
\beta = \^\bfA  - 1  - \beta \^\bfA  - 1\bfR  - 1 .(6.3)

Then the \beta minimizing (6.2) is always nonnegative. Furthermore, the optimal \beta is strictly
positive if and only if \BbbP (( \^\bfA \bfA  - 1  - \bfI )T \not =  - ( \^\bfA \bfA  - 1  - \bfI )) > 0.

Proof. As in Theorem 3.1, we must verify

\BbbE \langle \^\bfA  - 1\bfR  - 1, \^\bfA  - 1  - \bfA  - 1\rangle \bfA T\bfA ,\bfR \geq 0 .(6.4)

But note, by the definition in (3.2) and symmetry of \bfR , that

\langle \^\bfA  - 1\bfR  - 1, \^\bfA  - 1  - \bfA  - 1\rangle \bfA T\bfA ,\bfR = \langle \^\bfA  - 1, \^\bfA  - 1  - \bfA  - 1\rangle \bfA T\bfA ,\bfI .(6.5)

The condition (6.4) is therefore equivalent to

\BbbE \langle \^\bfA  - 1, \^\bfA  - 1  - \bfA  - 1\rangle \bfA T\bfA ,\bfI \geq 0 ,(6.6)

which we proved in Theorem 3.1. Likewise, the claim about positivity was proved in
Corollary 3.2.
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1335

7. Bootstrap formalism. In this section, we prepare to give an algorithm for estimating
\beta \ast by providing a mathematical formalism that will enable us to write down an algorithm
using bootstrap Monte Carlo. In our formalism, we assume that there exists some underlying
parameter space \Omega (with a sigma algebra \Sigma ) that produces matrices \bfM = \scrM (\omega ) through
a measurable mapping \scrM : \Omega  - \rightarrow GL(\BbbR n). Here GL(\BbbR n) denotes the group of nonsingular
matrices in \BbbR n\times n. Elements \omega \in \Omega may represent any number of things, e.g., measurements of
a scattering background, edge weights, vertex positions, etc., that carry sufficient information
to generate their respective matrices \bfM = \scrM (\omega ). For example, \omega \in \Omega may be a weighted
graph, and \scrM (\omega ) may denote its Laplacian.

In this parameter space \Omega , we assume that there exists some unobserved true system
parameters \omega \ast \in \Omega that produce the true matrix \bfA = \scrM (\omega \ast ). The central assumption of
our bootstrap procedure is the ability to sample \^\bfA if the unobserved true parameters \omega \ast were
known---much in the same way one can use sufficient statistics to bootstrap samples from a
distribution.

To codify this, there must exist a parameterized family of distributions D\omega over GL(\BbbR n)
that describes the observed randomness in the system if \omega were to be the true system param-
eters. In practice, the following algorithms tend to be easier to implement if one takes the
view that noise acts on parameter space \Omega rather than directly on the matrices themselves.
For most problems, this makes intrinsic sense, i.e., there may be noise in the edge weights in
a graph, noise in measured scattering background, etc. Therefore, we assume the existence of
a parameterized family of distributions \BbbP \omega on \Omega whose pushforward under \scrM gives D\omega . That
is, we use \BbbP \omega to talk about the noise as distributed over parameters, whereas we use D\omega to
talk about noise as distributed over the corresponding matrices.

Now given the (unobserved) true parameters \omega \ast , we suppose that we are charged with the
following restatement of the central problem of this paper: we observe a single noisy parameter
sample \^\omega \sim \BbbP \omega \ast and the corresponding noisy matrix \^\bfA = \scrM (\^\omega ) (which has distribution D\omega \ast ),
and would like to generate a better estimate of the true matrix inverse\bfA  - 1, where\bfA = \scrM (\omega \ast ).
Because we do not have access to the unobserved \omega \ast , we cannot draw additional samples from
D\omega \ast . However, we do have access to the observed \^\omega , so we are free to draw bootstrap samples
from D\^\omega ---as we will in the subsequent section.

A concrete example of this formalism is given in subsection 8.2.

8. Monte Carlo estimation. To build an algorithm from this theory, we attempt to esti-
mate the optimal shift factor with bootstrap Monte Carlo. The quantity of interest is

\beta \ast =
\BbbE D\omega \ast \langle \^\bfK , \^\bfA  - 1  - \bfA  - 1\rangle \bfA T\bfA ,\bfR 

\BbbE D\omega \ast \| \^\bfK \| 2\bfA T\bfA ,\bfR 

.(8.1)

As mentioned previously, it is not possible to compute this quantity directly, since we only
have a single sample \^\bfA and we do not have access to the ground truth \bfA or the distribution
D\omega \ast of \^\bfA . We must therefore try to approximate these quantities as best as possible with
the available information. Suppose that \^\omega \in \Omega is the parameter instance that generates the
matrix \^\bfA = \scrM (\^\omega ). To bootstrap (8.1), we replace all instances of \bfA with \^\bfA and draw random
instances from D\^\omega instead of D\omega \ast . We get

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

1/
23

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1336 PHILIP A. ETTER AND LEXING YING

\~\beta =
\BbbE D\^\omega 

\langle \^\bfK b, \^\bfA 
 - 1
b  - \^\bfA  - 1\rangle \^\bfA T \^\bfA ,\bfR 

\BbbE D\^\omega 
\| \^\bfK b\| 2\^\bfA T \^\bfA ,\bfR 

,(8.2)

where \^\bfK b = \^\bfK ( \^\bfA b) and \^\bfA b is drawn from D\^\omega . This can then be discretized using Monte
Carlo (i.i.d. is independent and identically distributed):

\^\beta =

\sum m
i=1 \bfb 

T
i
\^\bfK T
b,i

\^\bfA T \^\bfA ( \^\bfA  - 1
b,i  - \^\bfA  - 1)\bfb i\sum m

i=1 \bfb 
T
i
\^\bfK T
b,i

\^\bfA T \^\bfA \^\bfK b,i\bfb i

, \bfb i \sim P i.i.d., \^\bfA b,i \sim D\^\omega i.i.d. .(8.3)

If one opts to use the shift provided by (6.1), the expression simplifies to

\^\beta = 1 - 
\sum m

i=1 \bfb 
T
i
\^\bfA  - T
b,i

\^\bfA T\bfb i\sum m
i=1 \bfq 

T
i
\^\bfA  - T
b,i

\^\bfA T \^\bfA \^\bfA  - 1
b,i \bfq i

,

\bfb i \sim \scrN (\bfzero , \bfI ) i.i.d.,

\bfq i \sim \scrN (\bfzero ,\bfR  - 1) i.i.d.,

\^\bfA b,i \sim D\^\omega i.i.d.

(8.4)

Note that \bfb i and \bfq i do not necessarily have to be normal---they must just have the same
second moment matrix as the normal distributions specified. For good measure, one might
also threshold the above expression to guarantee \^\beta \geq 0. Finally, one can now estimate the
true solution to the system (1.1) via

\~\bfx \^\beta = \~\bfA  - 1
\^\beta 
\bfb = ( \^\bfA  - 1  - \^\beta \^\bfA  - 1\bfR  - 1)\bfb = \^\bfA  - 1(\bfb  - \^\beta \bfR  - 1\bfb ) .(8.5)

Figure 3 presents a flowchart of the process.

8.1. Approximation via Taylor expansion. Note that every Monte Carlo sample in (8.4)
requires inverting a matrix system. There are times where this may be too computationally
expensive to be feasible. However, if we are in the small noise regime, one may take a Taylor
expansion of \^\bfA  - 1 about \bfA  - 1---as this means one only has to factorize an operator once for
the whole estimation process. The expansion to second order is given by

\^\bfA  - 1 = \bfA  - 1  - \bfA  - 1\^\bfZ \bfA  - 1 + 2\bfA  - 1\^\bfZ \bfA  - 1\^\bfZ \bfA  - 1 +O(\| \^\bfZ 3\| F ).(8.6)

Inserting this expression into (8.4) yields

\^\beta \approx 1 - 
\sum m

i=1 \bfb 
T
i [\bfI + 2(\^\bfZ b,i

\^\bfA  - 1)2]\bfb i\sum m
i=1 \bfq 

T
i [\bfI + (\^\bfZ b,i

\^\bfA  - 1)T (\^\bfZ b,i
\^\bfA  - 1) + 4(\^\bfZ b,i

\^\bfA  - 1)2]\bfq i

;(8.7)

note that we have omitted linear terms, because terms linear in \^\bfZ will be zero in expectation,
by virtue of the fact that \BbbE [\^\bfZ ] = 0. It is possible that higher orders of truncation may
produce better results; however, unlike the elliptic shifting setting [7], it is difficult to prove
guarantees about the quality of these truncated expansions---as one cannot use the machinery
of positive-definite polynomials available in the elliptic case.
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True Parameters

True Distribution

Observed Parameters

Bootstrap Distribution

Observed Matrix

Bootstrap Parameters

Bootstrap Matrices

Augmentation Matrix Shift Factor

Shifted Operator

Unobserved

Observed

Our Algorithm

Chosen

!⇤
<latexit sha1_base64="MYz5SZoeRkNxQHx9VexIsJSfd44=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMgHsJuFPQY9OIxgnlAEsPsZDYZMo91ZlYIS37CiwdFvPo73vwbJ8keNLGgoajqprsrjDkz1ve/vdzK6tr6Rn6zsLW9s7tX3D9oGJVoQutEcaVbITaUM0nrlllOW7GmWIScNsPRzdRvPlFtmJL3dhzTrsADySJGsHVSq6MEHeCHs16x5Jf9GdAyCTJSggy1XvGr01ckEVRawrEx7cCPbTfF2jLC6aTQSQyNMRnhAW07KrGgppvO7p2gE6f0UaS0K2nRTP09kWJhzFiErlNgOzSL3lT8z2snNrrqpkzGiaWSzBdFCUdWoenzqM80JZaPHcFEM3crIkOsMbEuooILIVh8eZk0KuXgvFy5uyhVr7M48nAEx3AKAVxCFW6hBnUgwOEZXuHNe/RevHfvY96a87KZQ/gD7/MHrrSPuw==</latexit>

P!⇤
<latexit sha1_base64="vJrGD4C0YCAbKnGY804MY1v8faA=">AAAB/nicbVDLSsNAFJ34rPUVFVduBosgLkpSBV0W3bisYB/QxDCZTtqhM5kwMxFKCPgrblwo4tbvcOffOGmz0NYDA4dz7uWeOWHCqNKO820tLa+srq1XNqqbW9s7u/befkeJVGLSxoIJ2QuRIozGpK2pZqSXSIJ4yEg3HN8UfveRSEVFfK8nCfE5GsY0ohhpIwX2oceRHoVh1sqDzBOcDNHDWR7YNafuTAEXiVuSGijRCuwvbyBwykmsMUNK9V0n0X6GpKaYkbzqpYokCI/RkPQNjREnys+m8XN4YpQBjIQ0L9Zwqv7eyBBXasJDM1mEVfNeIf7n9VMdXfkZjZNUkxjPDkUpg1rAogs4oJJgzSaGICypyQrxCEmEtWmsakpw57+8SDqNunteb9xd1JrXZR0VcASOwSlwwSVoglvQAm2AQQaewSt4s56sF+vd+piNLlnlzgH4A+vzB4WNldc=</latexit>

!̂
<latexit sha1_base64="JJNrIdo+TaEafHD1V0jMCRhObhg=">AAAB83icbVDLSgNBEJz1GeMr6tHLYBA8hd0o6DHoxWME84DsEmYns8mQeSwzvUJY8htePCji1Z/x5t84SfagiQUNRVU33V1xKrgF3//21tY3Nre2Szvl3b39g8PK0XHb6sxQ1qJaaNONiWWCK9YCDoJ1U8OIjAXrxOO7md95YsZyrR5hkrJIkqHiCacEnBSGIwJ5qCUbkmm/UvVr/hx4lQQFqaICzX7lKxxomkmmgApibS/wU4hyYoBTwablMLMsJXRMhqznqCKS2Sif3zzF504Z4EQbVwrwXP09kRNp7UTGrlMSGNllbyb+5/UySG6inKs0A6boYlGSCQwazwLAA24YBTFxhFDD3a2YjoghFFxMZRdCsPzyKmnXa8Flrf5wVW3cFnGU0Ck6QxcoQNeoge5RE7UQRSl6Rq/ozcu8F+/d+1i0rnnFzAn6A+/zB2gPkew=</latexit>

P!̂
<latexit sha1_base64="CfO7pWz6EZbLnFO44qD2YGC6mic=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEVyWpgi6LblxWsA9oQphMJ+3QmUyYmQglBDf+ihsXirj1K9z5N07aLLT1wIXDOfdy7z1hwqjSjvNtVVZW19Y3qpu1re2d3T17/6CrRCox6WDBhOyHSBFGY9LRVDPSTyRBPGSkF05uCr/3QKSiIr7X04T4HI1iGlGMtJEC+8jjSI/DMGvnQeaNkc48wckI5Xlg152GMwNcJm5J6qBEO7C/vKHAKSexxgwpNXCdRPsZkppiRvKalyqSIDxBIzIwNEacKD+bvZDDU6MMYSSkqVjDmfp7IkNcqSkPTWdxsFr0CvE/b5Dq6MrPaJykmsR4vihKGdQCFnnAIZUEazY1BGFJza0Qj5FEWJvUaiYEd/HlZdJtNtzzRvPuot66LuOogmNwAs6ACy5BC9yCNugADB7BM3gFb9aT9WK9Wx/z1opVzhyCP7A+fwBVhZgI</latexit>

Â
<latexit sha1_base64="y5WlIWe8Y0ZZxmnnjnGDrILBMMk=">AAAB+XicbVDLSsNAFJ34rPUVdelmsAiuSlIFXVbduKxgH9CEMplO2qGTSZi5KZSQP3HjQhG3/ok7/8ZJm4W2Hhg4nHMv98wJEsE1OM63tba+sbm1Xdmp7u7tHxzaR8cdHaeKsjaNRax6AdFMcMnawEGwXqIYiQLBusHkvvC7U6Y0j+UTzBLmR2QkecgpASMNbNsbE8i8iMA4CLPbPB/YNafuzIFXiVuSGirRGthf3jCmacQkUEG07rtOAn5GFHAqWF71Us0SQidkxPqGShIx7Wfz5Dk+N8oQh7EyTwKeq783MhJpPYsCM1lE1MteIf7n9VMIb/yMyyQFJuniUJgKDDEuasBDrhgFMTOEUMVNVkzHRBEKpqyqKcFd/vIq6TTq7mW98XhVa96VdVTQKTpDF8hF16iJHlALtRFFU/SMXtGblVkv1rv1sRhds8qdE/QH1ucPA4mT5w==</latexit>

!̂b,1, ..., !̂b,N
<latexit sha1_base64="XA6Db2k448ePkc3S5Zzu/cl1qeE=">AAACFnicbVDLSsNAFJ34rPUVdelmsAguakiqoMuiG1dSwT6gCWEynbZDJzNhZiKUkK9w46+4caGIW3Hn3zhts9DWAxcO59zLvfdECaNKu+63tbS8srq2Xtoob25t7+zae/stJVKJSRMLJmQnQoowyklTU81IJ5EExREj7Wh0PfHbD0QqKvi9HickiNGA0z7FSBsptE/9IdKZL2IyQHmYRVXo5VXoOE4VLji3eWhXXMedAi4SryAVUKAR2l9+T+A0JlxjhpTqem6igwxJTTEjedlPFUkQHqEB6RrKUUxUkE3fyuGxUXqwL6QpruFU/T2RoVipcRyZzhjpoZr3JuJ/XjfV/csgozxJNeF4tqifMqgFnGQEe1QSrNnYEIQlNbdCPEQSYW2SLJsQvPmXF0mr5nhnTu3uvFK/KuIogUNwBE6ABy5AHdyABmgCDB7BM3gFb9aT9WK9Wx+z1iWrmDkAf2B9/gALKZ4I</latexit>

Âb,1, ..., Âb,N
<latexit sha1_base64="0O0ADVhNWRa7RbEPG1ofRHwQ/+Q=">AAACHnicbVDLSsNAFJ34rPUVdelmsAguSkiqosuqG1dSwT6gCWUynbRDJ5MwMxFKyJe48VfcuFBEcKV/46TNQtseuHA4517uvcePGZXKtn+MpeWV1bX10kZ5c2t7Z9fc22/JKBGYNHHEItHxkSSMctJUVDHSiQVBoc9I2x/d5H77kQhJI/6gxjHxQjTgNKAYKS31zHN3iFTqhkgN/SC9yrJe6lehk1WhZVlVuNC9y3pmxbbsCeA8cQpSAQUaPfPL7Uc4CQlXmCEpu44dKy9FQlHMSFZ2E0lihEdoQLqachQS6aWT9zJ4rJU+DCKhiys4Uf9OpCiUchz6ujO/VM56ubjI6yYquPRSyuNEEY6ni4KEQRXBPCvYp4JgxcaaICyovhXiIRIIK51oWYfgzL48T1o1yzm1avdnlfp1EUcJHIIjcAIccAHq4BY0QBNg8ARewBt4N56NV+PD+Jy2LhnFzAH4B+P7F76PoZw=</latexit>

K̂
<latexit sha1_base64="Bu0GdvIKO9QOS0Up6co99SGKFGg=">AAAB+XicbVDLSsNAFJ34rPUVdelmsAiuSlIFXRbdCG4q2Ac0oUymk3boZBJmbgol5E/cuFDErX/izr9x0mahrQcGDufcyz1zgkRwDY7zba2tb2xubVd2qrt7+weH9tFxR8epoqxNYxGrXkA0E1yyNnAQrJcoRqJAsG4wuSv87pQpzWP5BLOE+REZSR5ySsBIA9v2xgQyLyIwDsLsIc8Hds2pO3PgVeKWpIZKtAb2lzeMaRoxCVQQrfuuk4CfEQWcCpZXvVSzhNAJGbG+oZJETPvZPHmOz40yxGGszJOA5+rvjYxEWs+iwEwWEfWyV4j/ef0Uwhs/4zJJgUm6OBSmAkOMixrwkCtGQcwMIVRxkxXTMVGEgimrakpwl7+8SjqNuntZbzxe1Zq3ZR0VdIrO0AVy0TVqonvUQm1E0RQ9o1f0ZmXWi/VufSxG16xy5wT9gfX5AxLFk/E=</latexit>

�̂
<latexit sha1_base64="PfHXxVsOCUE4O1d5KLVPRc0CgMw=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/YAklMl22y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3IzBcCsVbKFDybqo5xJHknWh8N/M7T1wbkahHnKQ8jGGoxEAwQCv5wQgwDyKOMO1Vqm7NnYOuEq8gVVKg2at8Bf2EZTFXyCQY43tuimEOGgWTfFoOMsNTYGMYct9SBTE3YT4/eUrPrdKng0TbUkjn6u+JHGJjJnFkO2PAkVn2ZuJ/np/h4CbMhUoz5IotFg0ySTGhs/9pX2jOUE4sAaaFvZWyEWhgaFMq2xC85ZdXSbte8y5r9YerauO2iKNETskZuSAeuSYNck+apEUYScgzeSVvDjovzrvzsWhdc4qZE/IHzucPmSeRdQ==</latexit>

Â�1 � �̂K̂
<latexit sha1_base64="QHsVHQm4BDxGePnzjVUqI6z3jq4=">AAACHXicbVC7SgNBFJ2Nrxhfq5Y2g0GwSdiNAS2jNoJNBPOA7BpmJ7PJkNkHM3eFsOyP2PgrNhaKWNiIf+PkUZjEAwOHc85l7j1eLLgCy/oxciura+sb+c3C1vbO7p65f9BUUSIpa9BIRLLtEcUED1kDOAjWjiUjgSdYyxtej/3WI5OKR+E9jGLmBqQfcp9TAlrqmlVnQCB1AgIDz08vs+whLdkZLuGp7jEgGZ7L3GZZ1yxaZWsCvEzsGSmiGepd88vpRTQJWAhUEKU6thWDmxIJnAqWFZxEsZjQIemzjqYhCZhy08l1GT7RSg/7kdQvBDxR/06kJFBqFHg6OV5RLXpj8T+vk4B/4aY8jBNgIZ1+5CcCQ4THVeEel4yCGGlCqOR6V0wHRBIKutCCLsFePHmZNCtl+6xcuasWa1ezOvLoCB2jU2Sjc1RDN6iOGoiiJ/SC3tC78Wy8Gh/G5zSaM2Yzh2gOxvcvYmOiuw==</latexit>

Figure 3. A flowchart of the probabilistic setting of operator shifting as well as the algorithm itself. Operator
shifting aims to find a \beta that gives an optimal reduction in error given a shift matrix \^\bfK .

8.2. How bootstrap can fail when \bfitbeta \ast < 0. To offer a concrete example of why \beta \ast >
0 is a desirable trait to have when performing operator shifting,we offer a counterexample
where bootstrapping can be made arbitrarily bad at estimating \beta \ast when \beta \ast is allowed to be
negative. Naturally, since there are three primary modes of failure for \beta \ast \geq 0 (namely, the
cases discussed in section 4), the example will be a bootstrapped version of subsection 4.3.

To convert the example from subsection 4.3 into a bootstrap problem we consider the
sample space \Omega = \BbbR and let the mapping \scrM be given by

\scrM : \omega \mapsto \rightarrow 
\biggl[ 

1 \omega 
 - \omega 0

\biggr] 
.(8.8)

For parameter \omega , the noise distribution is given by

\BbbP \omega =
1

2
[\delta \omega  - 1 + \delta \omega +1],(8.9)

where \delta \omega is the Dirac delta distribution at \omega . In Figure 4 below, we see that bootstrapping
the optimal shift factor in this example always returns an average shift factor that is positive,
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Figure 4. This is an example of where bootstrapping can misestimate the optimal shift factor \beta \ast when
\beta \ast < 0. In particular, we note that the bootstrapped algorithm always returns a positive shift factor on average.
On the left: a plot of the error of the naive estimator \^\bfA  - 1 versus the error of the estimator \~\bfA  - 1

\~\beta \ast . On the right:

the true optimal shift factor \beta \ast versus the average shift factor returned by bootstrapping. We observe that the
error becomes slightly worse when bootstrapped operator shifting is applied because the algorithm shrinks the
matrix rather than enlarging it.

telling the algorithm to shrink the inverse operator, whereas the true optimal shift factor is
unboundedly negative as one takes \omega \ast = \epsilon \rightarrow 0, meaning that it would have been optimal to
enlarge the inverse operator instead.

Notably, the examples in section 6 and subsection 4.2 do not exhibit similar failure when
bootstrapped. We have tested them both and bootstrapping does quite well in recovering the
optimal shift factor of \beta \ast \approx  - 1. We believe that this discrepancy in the effectiveness of boot-
strapping has to do with the fact that the above example is substantially worse conditioned.

9. Numerical experiments. To confirm our theoretical results, we will examine the asym-
metric operator shift algorithm applied to the problem of more accurately computing a value
function for a Markov chain whose probability transition function must be estimated from
data.

9.1. Background. For context, a discrete Markov chain Xi for i \in \BbbZ \geq 0 on a finite state
set V is a stochastic process that satisfies the Markov property

\BbbP (Xi = vi | Xi - 1 = vi - 1, . . . , X1 = v1) = \BbbP (Xi = vi | Xi - 1 = vi - 1) .(9.1)

A discrete Markov chain is time homogeneous if the right-hand side of (9.1) does not depend
on the time i. In this situation, the Markov chain is completely characterized by its probability
transition matrix

\bfP v,u = \BbbP (Xi = u | Xi - 1 = v) ,(9.2)

as well as a distribution \BbbP (X0 = v) of the initial state X0. There are countless examples of
such Markov chains from the fields of probability, statistics, RL, and physics. Good references
for the RL flavored problems we will be introducing shortly include [14, 3].

One is often interested in computing or approximating functionals of the process Xi. For
example, one may think of Xi as an agent navigating through the set V via the means of
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1339

some fixed policy, where the agent obtains a fixed reward r(v) whenever it transitions from
the state v. In many situations in RL, one is often interested in the average discounted reward
Q(v) the agent obtains over its life cycle when beginning at X0 = v, namely,

Q(v) = \BbbE 

\Biggl[ \infty \sum 
i=0

\gamma ir(Xi) | X0 = v

\Biggr] 
.(9.3)

Q(v) is typically referred to as the value function of Xi with respect to reward function r(v).
It is used to gauge the quality of the agent's policy at maximizing the discounted reward it
receives over its lifetime. The quantity \gamma \in (0, 1) is known as a discount factor and determines
how much immediate reward is valued against future reward. One notes that the function Q
is linear in r. One may use first transition analysis to express the relationship between Q and
r in matrix form. Isolating the first term in the infinite sum (9.3) gives

Q(v) = r(v) + \gamma 
\sum 
u

\BbbP (X1 = u | X0 = v)Q(u) .(9.4)

Alternatively,

\bfq = \bfr + \gamma \bfP \bfq ,(9.5)

where \bfq is the vector with entries \bfq v = Q(v) and \bfr is the vector with entries \bfr v = r(v). This
finally produces a linear system for the value function

\bfA \bfq \equiv (\bfI  - \gamma \bfP )\bfq = \bfr .(9.6)

However, there are many situations where the transition matrix \bfP may not be known exactly.
In RL, for example, one does not have access to \bfP itself, but rather a number of finite
realizations of the process Xi as it traverses the state space. Therefore, instead of having
access to the ground truth \bfP , one usually has access to a noisy version \^\bfP thereof. A naive
solve will give

(\bfI  - \gamma \^\bfP )\^\bfq = \bfr .(9.7)

We will see how operator shifting can be used to reduce the average error between our estimate
\^\bfq and the ground truth \bfq in the residual norm.

9.2. Noise model. One popular way to approximate a Markov chain's probability tran-
sition matrix from a sample \^X0, \^X1, . . . , \^Xt of the Markov chain is to approximate the proba-
bility \BbbP (Xi = v | Xi - 1 = u) by examining the fraction of times Xi transitions to v from u out
of the total number of times Xi transitions from u, i.e.,

\BbbP (Xi = v | Xi - 1 = u) =
\BbbP (Xi = v and Xi - 1 = u)

\BbbP (Xi - 1 = u)
\approx \#\{ i | \^Xi = v and \^Xi - 1 = u\} 

\#\{ i | \^Xi = u and i \geq 1\} 
.(9.8)

But while this estimator is commonly used---it is difficult to ensure coverage of the state space
in a way that is natural, as one must take care to ensure that \#\{ i | \^Xi = u and i \geq 1\} is
positive for every u.
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1340 PHILIP A. ETTER AND LEXING YING

Therefore, to model the uncertainty in a Markov chain constructed from data, we assume
that, instead of observing the first t states of the Markov chain Xi, we instead observe the first
N transitions of the Markov chain Xi out of every state v. We denote the first N transitions
out of a state v as \^Yv,1, \^Yv,2, . . . , \^Yv,N . If the Markov chain is irreducible, \^Yv,1, \^Yv,2, . . . , \^Yv,N
are well-defined almost surely, and have distribution

\^Yv,1, \^Yv,2, . . . , \^Yv,N \sim \BbbP (Xi | Xi - 1 = v) , i.i.d.(9.9)

One may then easily estimate the probability transition matrix by using the empirical distri-
bution of \BbbP (Xi | Xi - 1 = v) to construct each row of \^\bfP ,

\^\bfP v,u \equiv \#\{ \^Yv,i = u\} 
N

\approx \BbbP (Xi = u | Xi - 1 = v) = \bfP v,u.(9.10)

Note that \^\bfP is unbiased and hence that

\BbbE [ \^\bfA ] = \bfA .(9.11)

We pose the question: is it possible to use operator shifting to increase the accuracy of the
naive estimate of the value function Q? Our numerical results suggest that the answer to this
question is yes.

Before delving into our numerical results, however, we should remark that this noise model
is almost always not symmetric about its expectation. Nonetheless, our numerical results
suggest that even though this assumption is violated, operator shifting can still substantially
reduce error in practice.

9.3. Numerical results. To test the theory, we consider three different Markov chains on
one dimensional (1D), two dimensional (2D), and three dimensional (3D) grids, respectively.
For our experiments, we use the operator shift \^\bfK = \^\bfA  - 1,

x \~\bfA  - 1 = \^\bfA  - 1  - \^\beta \^\bfK = (1 - \^\beta ) \^\bfA  - 1 = (1 - \^\beta )(\bfI  - \gamma \^\bfP ) - 1 ,(9.12)

where we use the bootstrapped Taylor expanded approximation \^\beta from (8.7), i.e.,

\^\beta \approx 1 - 
\sum m

i=1 \bfb 
T
i [\bfI + 2(\^\bfZ b,i

\^\bfA  - 1)2]\bfb i\sum m
i=1 \bfq 

T
i [\bfI + (\^\bfZ b,i

\^\bfA  - 1)T (\^\bfZ b,i
\^\bfA  - 1) + 4(\^\bfZ b,i

\^\bfA  - 1)2]\bfq i

,

\bfb i \sim \scrN (\bfzero , \bfI ) i.i.d.,

\bfq i \sim \scrN (\bfzero ,\bfR  - 1) i.i.d.,

\^\bfA b,i \sim D\^\omega i.i.d.

(9.13)

We compute our shifted solution via

\~\bfq = \~\bfA  - 1\bfr .(9.14)

Note that in principle, one could use the full Monte Carlo expression (i.e., (8.4)) instead of
the Taylor expanded version above. However, for practical problems, the full Monte Carlo
expression in (8.4) requires a matrix inversion for every sample. This is usually prohibitively
expensive for large-scale computation. We will therefore focus our numerical results solely on
the Taylor expanded version, as we expect it to have more utility in practice. Furthermore, in
agreement with results from [7], the descrepancy between 2nd order Taylor approximation and
full approximation for the subsequent problems is quite marginal. The reader may execute
the provided source code to observe this for themself.
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1341

9.3.1. Random walk with drift on a 1D grid. For this example, we consider the Markov
chain of a lazy random walk with drift on a 1D periodic grid graph. We let the state space V
be the set of integers \{ 1, 2, . . . ,K\} , where K = 16 and take the probability transition matrix
to be

\BbbP (1\mathrm{D})
\ell ,r (Xi = u | Xi - 1 = v) =

\left\{           
\ell , u = v  - 1 mod K,

1 - \ell  - r, u = v mod K,

r, u = v + 1 mod K,

0, otherwise.

(9.15)

We test a handful of different values for (\ell , r) as well as a handful of different values for the
sample count N that determines the noise in the matrix \^\bfP (higher N means less noise). For
the reward function,we consider two cases: for the first, we consider a deterministic reward
function given by

r(1\mathrm{D})(v) = sin(4\pi v/K) .(9.16)

For the second, we consider a random isotropic reward vector distribution, where \bfr (1\mathrm{D}) \sim 
\scrN (\bfzero , \bfI ).

In addition to the above collection of transition matrices, we also consider random walks
with the ability to skip a vertex in the grid,

\BbbP (1\mathrm{D})
\ell 1,\ell 2,r1,r2

(Xi = u | Xi - 1 = v) =

\left\{                     

\ell 1, u = v  - 2 mod K,

\ell 2, u = v  - 1 mod K,

1 - \ell 1  - \ell 2  - r1  - r2, u = v mod K,

r1, u = v + 1 mod K,

r2, u = v + 2 mod K,

0, otherwise,

(9.17)

as well as transition matrices corresponding to a random walk on a complete graph,

\BbbP (1\mathrm{D})
\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}(Xi = u | Xi - 1 = v) =

1

K
.(9.18)

For these 1D experiments, we use the discount factor

\gamma (1D) = 0.99 .(9.19)

We present the results of our numerical experiments for the specified reward vectors (aniso-
tropic) in Table 1 as well as for isotropic reward vectors in Table 2.

9.3.2. Random walk with drift on 2D and 3D grids. Now let us consider the Markov
chain of a lazy random walk with nonuniform drift on a 2D periodic grid graph. We let the
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1342 PHILIP A. ETTER AND LEXING YING

Table 1
Deterministic reward function comparison: A performance comparison between the accuracy of the shifted

estimator \~\bfx for the solution \bfx versus the naive estimator \^\bfx . The error is measured as a percentage with respect
to the residual norm of the true solution. Since the error is calculated via Monte Carlo, we provide a 95\%
confidence interval in the \pm 2\sigma column.

Chain Samples (N) Naive Error \pm 2\sigma Shifted Error \pm 2\sigma 

\BbbP (1\mathrm{D})

1/4,1/4 16 166\% \pm 13.5\% 53.5\% \pm 1.35\%

32 48.8\% \pm 1.50\% 30.1\% \pm 0.53\%
64 20.1\% \pm 0.45\% 16.0\% \pm 0.27\%

\BbbP (1\mathrm{D})

1/6,2/6 16 115\% \pm 10.2\% 42.2\% \pm 1.57\%

32 31.7\% \pm 1.11\% 20.8\% \pm 0.47\%
64 12.7\% \pm 0.31\% 10.4\% \pm 0.20\%

\BbbP (1\mathrm{D})

0,1/2 16 11.7\% \pm 1.06\% 8.70\% \pm 0.67\%

32 4.02\% \pm 0.12\% 3.49\% \pm 0.04\%
64 1.75\% \pm 0.04\% 1.63\% \pm 0.03\%

\BbbP (1\mathrm{D})

1/8,1/8,1/8,1/8 16 55.2\% \pm 2.61\% 29.9\% \pm 0.59\%

32 19.5\% \pm 0.44\% 15.0\% \pm 0.24\%
64 8.55\% \pm 0.15\% 7.55\% \pm 0.12\%

\BbbP (1\mathrm{D})
\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e} 16 6.63\% \pm 0.18\% 6.09\% \pm 0.09\%

32 3.25\% \pm 0.05\% 3.10\% \pm 0.04\%
64 1.43\% \pm 0.02\% 1.41\% \pm 0.02\%

\BbbP (2\mathrm{D})
\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f} 12 206\% \pm 42.4\% 66.9\% \pm 3.26\%

24 91.3\% \pm 14.3\% 47.5\% \pm 3.00\%
48 43.3\% \pm 5.63\% 30.1\% \pm 2.29\%

\BbbP (2\mathrm{D})
\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f} 12 113\% \pm 20.8\% 52.7\% \pm 7.91\%

24 51.7\% \pm 7.91\% 33.8\% \pm 3.08\%
48 24.7\% \pm 3.40\% 19.7\% \pm 2.05\%

\BbbP (3\mathrm{D})
\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f} 4 92.7\% \pm 30.9\% 48.3\% \pm 7.25\%

8 38.8\% \pm 9.09\% 27.8\% \pm 4.12\%
16 18.0\% \pm 3.66\% 15.2\% \pm 2.36\%

\BbbP (3\mathrm{D})
\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f} 4 77.8\% \pm 22.6\% 44.3\% \pm 7.00\%

8 33.4\% \pm 7.86\% 25.1\% \pm 4.04\%
16 15.7\% \pm 3.20\% 13.5\% \pm 2.29\%

state space V be the set of tuples \{ 1, 2, . . . ,K\} \times \{ 1, 2, . . . ,K\} , where K = 16 and we consider
two probability transition matrices: the first a standard uniform random walk,

\BbbP (2\mathrm{D})
\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f} (Xi = u | Xi - 1 = v) =

\Biggl\{ 
1/4, | u - v| = 1,

0, otherwise,
(9.20)

and the second a random walk with a nonuniform drift,

\BbbP (2\mathrm{D})
\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}(Xi = u | Xi - 1 = v) =

\left\{     
1
4 \pm 1

8 sin(2\pi vx/K), u = v \mp (1, 0),
1
4 \pm 1

8 sin(2\pi vy/K, ) u = v \mp (0, 1),

0, otherwise.

(9.21)
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1343

Table 2
Frobenius error comparison: A performance comparison between the accuracy of the shifted operator esti-

mator \~\bfx for the solution \bfx versus the naive estimator \^\bfx . The reward function is sampled from the distribution
\scrN (\bfzero , \bfI ) (hence, the error is the Frobenius operator error in expectation). The error is measured as a percentage
with respect to the average residual norm of the true solutions from the prior. Since the error is calculated via
Monte Carlo, we provide a 95\% confidence interval in the \pm 2\sigma column.

Chain Samples (N) Naive Error \pm 2\sigma Shifted Error \pm 2\sigma 

\BbbP (1\mathrm{D})

1/4,1/4 16 105\% \pm 25.4\% 48.4\% \pm 6.16\%

32 30.8\% \pm 2.95\% 22.8\% \pm 1.70\%
64 12.7\% \pm 1.00\% 11.1\% \pm 0.77\%

\BbbP (1\mathrm{D})

1/6,2/6 16 64.1\% \pm 16.0\% 33.9\% \pm 5.52\%

32 17.2\% \pm 1.77\% 13.5\% \pm 1.14\%
64 6.84\% \pm 0.52\% 6.13\% \pm 0.41\%

\BbbP (1\mathrm{D})

0,1/2 16 11.0\% \pm 3.30\% 8.49\% \pm 2.40\%

32 3.77\% \pm 0.33\% 3.34\% \pm 0.26\%
64 1.64\% \pm 0.11\% 1.54\% \pm 0.10\%

\BbbP (1\mathrm{D})

1/8,1/8,1/8,1/8 16 55.1\% \pm 2.62\% 29.9\% \pm 0.59\%

32 19.5\% \pm 0.44\% 15.0\% \pm 0.24\%
64 8.55\% \pm 0.15\% 7.55\% \pm 0.12\%

\BbbP (1\mathrm{D})
\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e} 16 6.21\% \pm 0.29\% 5.81\% \pm 0.25\%

32 2.98\% \pm 0.13\% 2.89\% \pm 0.12\%
64 1.46\% \pm 0.06\% 1.43\% \pm 0.06\%

\BbbP (2\mathrm{D})
\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f} 12 25.7\% \pm 7.51\% 20.4\% \pm 4.89\%

24 11.3\% \pm 2.93\% 10.2\% \pm 2.38\%
48 5.35\% \pm 1.31\% 5.07\% \pm 1.19\%

\BbbP (2\mathrm{D})
\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f} 12 20.2\% \pm 6.17\% 16.7\% \pm 4.89\%

24 8.96\% \pm 2.43\% 8.20\% \pm 2.04\%
48 4.26\% \pm 1.09\% 4.07\% \pm 1.00\%

\BbbP (3\mathrm{D})
\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f} 4 35.3\% \pm 35.0\% 26.2\% \pm 20.8\%

8 14.6\% \pm 11.8\% 12.7\% \pm 9.11\%
16 6.76\% \pm 5.03\% 6.33\% \pm 4.43\%

\BbbP (3\mathrm{D})
\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f} 4 33.4\% \pm 35.4\% 25.1\% \pm 21.6\%

8 13.9\% \pm 12.0\% 1.22\% \pm 9.36\%
16 6.43\% \pm 5.12\% 6.03\% \pm 4.53\%

For the reward function, we consider both a deterministic reward

r(2\mathrm{D})(v) =  - sin(2\pi vx/K) sin(2\pi vy/K) ,(9.22)

as well as an isotropic reward vector distribution, where \bfr (2\mathrm{D}) \sim \scrN (\bfzero , \bfI ). For these 2D
experiments, we use the discount factor

\gamma (2D) = 0.99 .(9.23)
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1344 PHILIP A. ETTER AND LEXING YING

We define similar transition matrices on 3D periodic grid graphs, where V = \{ 1, . . . ,K\} 3 and
K = 8:

\BbbP (3\mathrm{D})
\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f} (Xi = u | Xi - 1 = v) =

\Biggl\{ 
1/6, | u - v| = 1,

0, otherwise,
(9.24)

as well as an analogous 3D random walk with a nonuniform drift:

\BbbP (3\mathrm{D})
\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}(Xi = u | Xi - 1 = v) =

\left\{           
1
6 \pm 1

8 sin(2\pi vx/K), u = v \mp (1, 0, 0),
1
6 \pm 1

8 sin(2\pi vy/K), u = v \mp (0, 1, 0),
1
6 \pm 1

8 sin(2\pi vz/K), u = v \mp (0, 0, 1),

0 otherwise.

(9.25)

For the reward function, we consider both a deterministic reward

r(3\mathrm{D})(v) =  - sin(2\pi vx/K) sin(2\pi vy/K) sin(2\pi vz/K) ,(9.26)

as well as an isotropic reward vector distribution, where \bfr (3\mathrm{D}) \sim \scrN (\bfzero , \bfI ). For these 3D
experiments, we use the discount factor

\gamma (3D) = 0.9 .(9.27)

We present the results of our numerical experiments for the specified reward vectors (aniso-
tropic) in Table 1 as well as for isotropic reward vectors in Table 2.

9.4. Discussion. As we see in Tables 1 and 2, operator shifting can provide significant
reductions in error for a variety of different Markov chain problems, measured by the reduc-
tion of residual norm error for both deterministic and random value functions (Table 1). As
predicted by the theory, the method also reduces the error in isotropic residual matrix norm,
as seen in Table 2, but these improvements seem more marginal. This behavior is present
for all different levels of sample count N we tested. Therefore, while there are theoretical
limitations in the nonsymmetric case of operator shifting that make the theory less powerful
than the SPD case, operator shifting still functions quite well on the Markov chain problems
we've tested it on. However, we note that the set of Markov chain matrices is only a small
subset of possible matrices; hence, how well operator shifting performs in practice on other
nonsymmetric problems with noise remains to be seen and is a potential avenue for future
work.

Note that the confidence intervals for the 2D and 3D problems in the isotropic setting seen
in Table 2 are quite large. This is despite the fact that we use a very large number of samples
(256,000 for 2D, and 25,600 for 3D) to estimate the isotropic error. However, the theory tells
us that the naive isotropic error will always be greater than the shifted isotropic error, so this
chart is provided more-so as a way to gauge the magnitude of the error reduction, rather than
the existence of an error reduction.
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OPERATOR SHIFTING FOR GENERAL NOISY MATRIX SYSTEMS 1345

10. Conclusion. We conclude this paper by noting that we have accomplished two main
goals. First, we have investigated the extent to which the SPD operator shifting theory of
[7] can be applied to the general nonsymmetric matrix case. We have found that under the
assumptions of noise symmetry and right-hand side isotropy, the optimal shift factor is always
positive. This answers the question of whether or not operator shifting towards the origin
always reduces error as it does in the positive-definite symmetric case. Moreover, we have
fully characterized the pathological situations in which this does not happen. We have also
investigated the small noise regime, where we showed that it is possible to discard the noise
symmetry assumption.

Second, we have shown empirically that operator shifting can still reduce error for noisy
Markov chain problems, even when the aforementioned theoretical assumptions are not sat-
isfied. In particular, our numerical experiments do not satisfy the symmetry assumption,
and the results for the deterministic reward function (Table 1) do not satisfy the isotropic
assumption. Moreover, this reduction holds true across a number of different Markov chains.

One may continue this work by attempting to apply some form of operator shifting to real
problems---for example, in control theory or RL, where the underlying Markov decision process
may not be fully known and must be estimated from data. Another more theoretical possibility
would be to investigate if the operator shifting framework can be applied to optimization to
create optimization algorithms that are less vulnerable to noise in the objective function, as is
common in many real world applications. Other potentially interesting avenues of work may
include extending operator shifting to an infinite dimensional setting, or trying to learn an
appropriate shift \^\bfK from data.

11. Source code. For reproducibility and reference purposes, we provide an accompa-
nying implementation of our algorithms and numerical experiments at https://github.com/
UniqueUpToPermutation/OperatorShifting.
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