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Abstract. This note shows that the matrix forms of several one-parameter distribution families
satisfy a hierarchical low-rank structure. Such families of distributions include binomial, Poisson, and
χ2 distributions. The proof is based on a uniform relative bound of a related divergence function.
Numerical results are provided to confirm the theoretical findings.
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1. Introduction
This note is concerned with the matrix or operator form f(x,λ) of a one-parameter

distribution family indexed by the parameter λ. Such objects have long been considered
in Bayesian statistics [2,3,13]. More recently, these matrices have played an important
role in estimating distributions of distributions (also called fingerprints) [11, 12] and
computing functionals of unknown distributions from samples [7, 8, 14]. When solving
these problems, the computation often requires solving linear systems and optimization
problems associated with these matrices and operators.

In this note, we prove that, for several one-parameter family of distributions, in-
cluding binomial, Poisson, and χ2 distributions, f(x,λ) exhibits a hierarchical low-rank
structure. Roughly speaking, when viewed as a two-dimensional array, the off-diagonal
blocks of f(x,λ) are numerically low-rank, i.e., for a fixed accuracy ε, the numerical
rank is bounded by a poly-logarithmic function of 1/ε. Such a structure ensures opti-
mal complexity while approximating these matrices or performing basic linear algebra
operations such as matrix-vector multiplications. In order to demonstrate the existence
of such low-rank approximations, we first prove a new relative bound for a related
divergence function, which might be of independent interest.

Similar hierarchical low-rank properties have been demonstrated for integral kernels
[1,4–6,9] related to partial differential equations. For those kernels, the difficulty comes
from the singularity along the diagonal. For the problems considered in this note, the
location of the singularity is often near the boundary of the matrix/operator and thus
the proof technique is quite different.

The rest of the note is organized as follows. Section 2 proves a relative bound of a
related divergence function. Section 3 discusses the hierarchical low-rank structure of
the exponentials of the divergence functions. Finally Section 4 extends this result to
parameterized distributions, including the binomial, Poisson, and χ2 squared distribu-
tions.
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2. A relative bound for a divergence function
Consider the divergence function

E(p||q)≡p ln(p/q)−(p−q) (2.1)

for 0≤p,q<∞, which is convex and positive away from p= q. Let us first focus on the
square (p,q)∈ (1,2)×(0,1).

Theorem 2.1. For any M>0, define pM and qM as follows:

• qM <1 is the value such that

E(1||qM ) = ln1/qM −(1−qM ) =M, (2.2)

• pM = min(2,p′) where p′>1 is the number such that

E(p′||1) =p′ lnp′−(p′−1) =M. (2.3)

There exists a uniform constant C>0 such that for any M>0

E(pM ||qM )

M
<C.

Fig. 2.1. Locations of pM and qM for the case (p,q)∈ (1,2)×(0,1). Left: small M . Right: large M .

Proof. Since the ratio E(pM ||qM )/M depends continuously on M , in order to show
it is bounded by a uniform constant, it is sufficient to show that the ratio E(pM ||qM )/M
has a finite limit as M goes to zero and to infinity.

When M goes to zero, the Taylor approximation of E(p||q) near p= 1 and q= 1 is
valid. The first-order derivatives of E(p||q) are

Ep= lnp− lnq, Eq =−p/q+1,

while the second-order derivatives are

Epp= 1/p, Epq =−1/q, Eqq =p/q2.

At the point (p,q) = (1,1),

Ep|(1,1) =Eq|(1,1) = 0, Epq|(1,1) =Eqq|(1,1) = 1, Epq|(1,1) =−1.

The monotonicity in the definitions (2.2) and (2.3) of qM and p′ implies the uniqueness
of qM and p′. When M goes to zero, both qM and p′ approach to one, thus pM =p′ in
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this limit. By Taylor expanding (2.2) and (2.3) at value 1 and matching the powers in
terms of M , we obtain

pM = 1+
√

2M+h.o.t. qM = 1−
√

2M+h.o.t.

where h.o.t. stands for higher order terms (see Figure 2.1 (left)). Plugging them back
to E(pM ||qM ) and using the second-order Taylor approximation shows

E(pM ||qM ) = 4M+h.o.t.

Therefore, when M goes to zero, the ratio E(pM ||qM )/M goes to 4.
When M goes to infinity, pM goes to 2. From the definition, qM satisfies

ln(1/qM )−(1−qM ) =M.

Therefore, qM =e−(M+1)(1+h.o.t.) (see Figure 2.1 (right)). Plugging them back to
E(pM ||qM ) shows that

E(pM ||qM ) =pM lnpM/qM −(pM −qM ) = 2ln2+2(M+1)−2+h.o.t.

When M goes to infinity, the ratio E(pM ||qM )/M goes to 2.
Putting these two cases together proves the statement.

Next, consider the square (p,q)∈ (0,1)×(1,2).

Theorem 2.2. For any M>0, now define pM and qM as follows:

• qM = min(2,q′) where q′>1 satisfies E(1||q′) = ln(1/q′)−(1−q′) =M .

• pM is the minimum p′≥0 with E(p′||1) =p′ lnp′−(p′−1)≤M .

There exists a uniform constant C>0 such that for any M>0

E(pM ||qM )

M
<C.

Fig. 2.2. Locations of pM and qM for the case (p,q)∈ (0,1)×(1,2). Left: small M . Right: large M .

Proof. Following the proof of the previous theorem, it is sufficient to show that
the ratio has a limit as M goes to zero and infinity.

When M goes to zero, one can again use the second-order Taylor expansion. Ap-
plying the definition of pM and qM , for sufficiently small M ,

pM = 1−
√

2M+h.o.t. qM = 1+
√

2M+h.o.t.
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(see Figure 2.2 (left)). Plugging them back to E(pM ||qM ) and using again the Taylor
approximation shows

E(pM ||qM ) = 4M+h.o.t.

Therefore, when M goes to zero, the ratio E(pM ||qM )/M goes to 4.
When M goes to infinity, pM goes to 0 and qM goes to 2 (see Figure 2.2 (right)).

Plugging them back to E(pM ||qM ) shows that

E(pM ||qM ) = 2+h.o.t.

Therefore, when M goes to infinity, the ratio E(pM ||qM )/M goes to 0.
Putting these two cases together proves the statement.

Remark 2.1. Theorems 2.1 and 2.2 also hold for the dual divergence of E defined as

E∗(p||q) = q ln(q/p)−(q−p) (2.4)

for 0<p,q<∞ by simply switching the roles of p and q.

3. Hierarchical low-rank structure of exponential of divergence

3.1. Exponential of E(p||q). Consider now the negative exponential of the
divergence E(p||q)

exp(−nE(p||q)) = exp(−n(pln(p/q)−(p−q))) (3.1)

for 0≤p,q<∞ and any n>0.
We consider a hierarchical decomposition that partitions the domain (p,q)∈ (0,∞)2

into non-overlapping squares in a multiscale way. For each level ` indexed by integers,
introduce the blocks B`,k defined as follows for k= 0,1,. ..,

B`,k =

{
[k/2`,(k+1)/2`]× [(k+1)/2`,(k+2)/2`], for k even,

[k/2`,(k+1)/2`]× [(k−1)/2`,k/2`], for k odd.

An illustration of this partitioning is shown in Figure 3.1 (left).
The main goal of this section is to prove the following theorem concerning the

numerical rank of (3.1) restricted to each B`,k.

Theorem 3.1. For any ε>0, there exists a constant Tε=O(polylog(1/ε)) such that
for any n>0,`,k the restriction of exp(−nE(p||q)) to B`,k has an O(ε)-accurate Tε-term
separated approximation. More precisely, there exist functions {αi(p)} and {βi(q)} for
1≤ i≤Tε such that in B`,k

exp(−nE(p||q)) =

Tε∑
i=1

αi(p)βi(q)+O(ε).

Proof. Consider first the blocks B`,k with k odd. These blocks are below the
diagonal p= q. The top-left corner of B`,k is (c,c) with c=k/2`. Let us make two key
observations.

• It is sufficient to prove the theorem for the restriction of exp(−nE(p||q)) to
(c,2c)×(0,c) as the latter contains B`,k.
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Fig. 3.1. Left: Hierarchical decomposition for exp(−nE(p||q)) for (p,q)∈ (0,∞)2. Right: Hierar-
chical decomposition for exp(−nD(p||q)) for (p,q)∈ (0,1)2.

• The second observation is that, as the statement is uniform in n, it is sufficient to
scale the box (c,2c)×(0,c) to (1,2)×(0,1) by scaling the value of n accordingly.

Based on these two observations, it is sufficient to consider the box (1,2)×(0,1) for any
ε>0 and any n>0.

For fixed ε>0 and n>0, define M = 1
n ln 1

ε . Applying Theorem 2.1 along with the
definition of pM and qM gives

E(pM ||qM )≤CM =C
1

n
ln

1

ε

and by monotonicity

E(p||q)≤CM =C
1

n
ln

1

ε
, ∀(p,q)∈ [1,pM ]× [qM ,1].

In order to construct a separated approximation of exp(−n(pln(p/q)−(p−q))), we re-
sort to the polynomial expansion for (p,q)∈ [1,pM ]× [qM ,1].

In order for this, consider the function exp(−x) in x∈ [0,L] for some L>0. Using
the Lagrange interpolation at the Chebyshev grids in [0,L] and the uniform bound of
the derivatives of exp(−x) (see for example Theorem 8.7 of [10]), we know that there
exists a degree d=O(lnL+ln(1/ε)) polynomial hd(x) such that

exp(−x)−hd(x) =O(ε).

Plugging x=nE(p,q) for (p,q)∈ [1,pM ]× [qM ,1] with the bound L=n ·C 1
n ln 1

ε =
C ln(1/ε), one arrives at

exp(−nE(p||q))−hd(nE(p||q)) =O(ε),

with d=O(ln(1/ε)). As E(p||q) =p lnp−p lnq−p+q, by expanding the polynomial
hd(·), we obtain a O(polylog(1/ε))-term separated approximation to exp(−nE(p||q)) for
(p,q)∈ [1,pM ]× [qM ,1]. The individual terms define the functions {αi(p)} for p∈ [1,pM ]
and {βi(q)} for q∈ [qM ,1], respectively.

For any point (p,q)∈ (1,2)×(0,1) but outside [1,pM ]× [qM ,1], exp(−nE(p||q))≤ ε
due to the monotonicity. Therefore, we can simply approximate it by zero without
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introducing an error larger than ε. In terms of the functions αi(p) and βi(q), we simply
define αi(p) to be zero in [pM ,2] and βi(q) to be zero in q∈ [0,qM ], respectively.

Next, we consider the blocks B`,k with k even. These are the blocks above the
diagonal p= q. The above argument goes through except that Theorem 2.2 is invoked.

Remark 3.1. The same theorem is true for

exp(−nE∗(p||q))≡ exp(−n(q ln(q/p)−(q−p))), (3.2)

for 0<p,q<∞ by switching the roles of p and q. It also holds for

exp(−nE(1−p||1−q))

for −∞<p,q<1 with a similar hierarchical partitioning of the domain −∞<p,q<1.

3.2. Exponential of the Kullback-Leibler divergence. The Kullback-Leibler
(KL) divergence of two Bernoulli distributions with parameters p,q∈ [0,1] is defined as

D(p||q)≡pln(p/q)+(1−p)ln((1−p)/(1−q)). (3.3)

This section proves the hierarchical low-rank property for

exp(−nD(p||q)≡ exp(−n(p ln(p/q)+(1−p)ln((1−p)/(1−q)))) (3.4)

with 0<p,q<1. For the domain (p,q)∈ [0,1]× [0,1], the hierarchical decomposition
needs to be restricted to

`≥1, k= 0,1,. ..,2`−1.

An illustration of this partitioning is shown in Figure 3.1 (right).

Theorem 3.2. For any ε>0, there exists a constant Sε=O(polylog(1/ε)) such that
for any n>0,`≥1,k= 0,1,. ..,2`−1, the restriction of exp(−nD(p||q)) to B`,k has an
O(ε)-accurate Sε-term separated approximation. More precisely, there exist functions
{αi(p)} and {βi(q)} for 1≤ i≤Sε such that in B`,k

exp(−nD(p||q)) =

Sε∑
i=1

αi(p)βi(q)+O(ε).

Proof. The proof is based on a simple observation: D(p||q) =E(p||q)+E(1−p||1−
q), which implies

exp(−nD(p||q)) = exp(−nE(p||q))exp(−nE(1−p||1−q)).

From Theorem 3.1 and the remarks right after, the following two estimates hold for
each B`,k.

exp(−nE(p||q)) =

Tε∑
i=1

αi(p)βi(q)+O(ε),

exp(−nE(1−p||1−q)) =

Tε∑
j=1

α′j(p)β
′
j(q)+O(ε),
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Taking the product of these two expansions and using the fact that each expansion is
bounded by 1+O(ε) results in

exp(−nD(p||q)) =

Tε∑
i,j=1

(αi(p)α
′
j(p))(βi(q)β

′
j(q))+O(ε).

Noticing that T 2
ε is still of order O(polylog(1/ε)), setting Sε=T 2

ε completes the proof.

4. Parameterized distributions
In this section, we apply the theorems in Section 3 to demonstrate the hierarchical

low-rank property for three commonly-encountered distribution families.

4.1. Binomial distribution. The binomial distribution with parameter q∈
[0,1] and n trials is

f(k,q) =

(
n

k

)
qk(1−q)n−k (4.1)

for k∈{0,. ..,n}. By introducing p=k/n, we can rewrite the binomial distribution in
the form

f(p,q) =

(
n

np

)
qnp(1−q)n−np

with p= 0, 1n ,. ..,1. Applying the Stirling formula to the factorials results in

f(p,q) = cn,p
qnp(1−q)n−np

pnp(1−p)n−np
= cn,pexp

(
−n
(
p ln

p

q
+(1−p)ln

1−p
1−q

))
, (4.2)

where cn,p≈ 1√
2πn

1√
p(1−p)

except at p= 0 and p= 1. Note that cn,p only depends on

the parameter p and therefore it does not affect the separation rank of f(p,q).
Applying Theorem 3.2 to this case shows that f(p,q) for p= 0, 1n ,. ..,1 and q∈ [0,1]

has the hierarchical low-rank property. Here the two points p= 0 and 1 can be treated
separately without affecting the rank estimates. The same rank estimate also applies
to the original binomial distribution f(k,q) in (4.1). In Figure 4.1, we set n= 210 and
sample f(k,q) with k= 0,. ..,n and q from a uniform grid of size n in [0,1]. The plots
show the numerical ranks of different blocks of f(k,q) for the specific choice ε= 10−9

(left) and how the maximum rank depends on ε (right). Note that the maximum rank
is bounded by 10 even for ε= 10−9 and its dependence on ln(1/ε) is linear.

4.2. Poisson distribution. The Poisson distribution with parameter λ>0 is

f(k,λ) =e−λ
λk

k!
(4.3)

for k∈{0,1,. ..}. Applying the Stirling formula to k! gives for k>0

f(k,λ) = ck exp(−(k log(k/λ)−(k−λ))), (4.4)

where ck≈ 1√
2πk

. Note that since ck only depends on the parameter k it does not

affect the separation rank of f(k,λ). By identifying p=k and q=λ, this is the negative
exponential of the divergence E(p||q) with n= 1 in Section 3.1, modulus the term ck.

Applying Theorem 3.1 shows that the Poisson distribution f(k,λ) for k= 0,1,. ..
and λ>0 exhibits the hierarchical low-rank property. In Figure 4.2, we sample f(k,λ)
with k,λ= 1,. ..,n= 210. The plots show the numerical ranks of different blocks for the
specific choice ε= 10−9 (left) and how the maximum rank grows with ε (right).
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Fig. 4.1. Binomial distribution. Left: the numerical ranks Tε of different blocks with n= 210, q
uniformly from [0,1], and ε= 10−9. Right: the maximum rank over Tε as a function of ε with n= 210.

T

200 400 600 800 1000

k

100

200

300

400

500

600

700

800

900

1000

0

1

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9

log
10

(1/ )

4

5

6

7

8

9

10
m

a
x
(T

)

Fig. 4.2. Poisson distribution. Left: the numerical ranks Tε of different blocks with 1≤k,λ≤n=
210 and ε= 10−9. Right: the maximum rank over Tε as a function of ε.

4.3. χ2 distribution. The χ2 distribution, parameterized by integer k≥1 is

f(x,k) =
1

2k/2Γ(k/2)
xk/2−1e−x/2 (4.5)

for x>0. Applying again the Stirling formula shows that

f(x,k) = ck exp

(
−
(
x

2
−
(
k

2
−1

)
+

(
k

2
−1

)
ln

(
k/2−1

x/2

)))
, (4.6)

where ck≈ 1

2
√

2π( k2−1)
. Since ck only depends on the parameter k it does not affect the

separation rank of f(x,k). By identifying x/2 =p and k/2−1 = q, this is

exp(−(q ln(q/p)−(q−p)))

modulus the factor 1

2
√

2π(k/2−1)
.

Applying the remark after Theorem 3.1 shows that the χ2 distribution exhibits the
hierarchical low-rank property. In Figure 4.3, we set n= 210 and sample f(x,k) with
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x= 0,. ..,n−1 and k= 2,. ..,n+1. The plots show the numerical rank of different blocks
for the specific choice of ε= 10−9 (left) and how the maximum rank depends on ε (right).
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Fig. 4.3. χ2 distribution. Left: the numerical ranks Tε of different blocks with n= 210 and
ε= 10−9. Right: the maximum rank over Tε as a function of ε.

5. Discussions

The hierarchical low-rank property has significant numerical implications for these
distribution families. Naive approaches for representing the matrix form of these dis-
tributions would require O(n2) numbers. Even by thresholding small entries, it would
still need at least O(n3/2) storage space for most of these distributions. The hierar-
chical low-rank property proved here allows for storing the matrix with no more than
O(n logn ·polylog(1/ε)) entries. By combining the low-rank property with thresholding,
this can potentially be brought down to O(n ·polylog(1/ε)).

The theorems proved here show an O(polylog(1/ε)) upper bound for the numerical
ranks. However, the numerical results suggest that the actual dependence on log(1/ε)
seems to be linear. An immediate direction for future work is to obtain sharper bounds
for the rank growth.
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