
How to Learn when Data Reacts to Your Model: Performative Gradient
Descent

Zachary Izzo 1 Lexing Ying 1 2 James Zou 3

Abstract
Performative distribution shift captures the setting
where the choice of which ML model is deployed
changes the data distribution. For example, a bank
which uses the number of open credit lines to de-
termine a customer’s risk of default on a loan may
induce customers to open more credit lines in or-
der to improve their chances of being approved.
Because of the interactions between the model
and data distribution, finding the optimal model
parameters is challenging. Works in this area
have focused on finding stable points, which can
be far from optimal. Here we introduce perfor-
mative gradient descent (PerfGD), an algorithm
for computing performatively optimal points. Un-
der regularity assumptions on the performative
loss, PerfGD is the first algorithm which provably
converges to an optimal point. PerfGD explicitly
captures how changes in the model affects the
data distribution and is simple to use. We support
our findings with theory and experiments.

1. Introduction
A common paradigm in machine learning is to assume ac-
cess to training and test datasets which are drawn indepen-
dently from a fixed distribution. In practice, however, this
is frequently not the case, and changes in the underlying
data distribution can lead to suboptimal model performance.
This problem is referred to as distribution shift or dataset
shift.

While there is an extensive body of literature on distribu-
tion shift (Quionero-Candela et al., 2009), most prior works
have focused on exogenous changes in the data distribu-
tion due to e.g. temporal or spatial changes. For instance,
such changes may occur when a model trained on medical

1Department of Mathematics, Stanford University 2Institute for
Computational and Mathematical Engineering, Stanford University
3Department of Biomedical Data Science. Correspondence to:
Zachary Izzo <zizzo@stanford.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

imaging data from one hospital is deployed at a different
hospital due to the difference in imaging devices. Time
series analysis is another plentiful source of these types of
dataset shift. A model trained on stock market data from
50 years ago is unlikely to perform well in the modern mar-
ket due to changing economic trends; similarly, a weather
forecasting model trained on old data will likely have poor
performance without accounting for macroscopic changes
in climate patterns.

More recently, researchers have sought to address endoge-
nous sources of distribution shift, i.e. where the change in
distribution is induced by the choice of model. This set-
ting, first explored in (Perdomo et al., 2020), is known as
performative distribution shift. Such effects can arise for
a variety of reasons. The modeled population may try to
“game the system,” causing individuals to modify some of
their features to receive a more favorable classification (e.g.
opening more credit lines to improve one’s likelihood of be-
ing approved for a loan). Performative effects may also arise
when viewing model output as a treatment. For instance, if a
bank predicts a customer’s default risk is high, the bank may
assign that customer a higher interest rate, thereby increas-
ing the customer’s chance of defaulting (Drusvyatskiy &
Xiao, 2020). As ML systems play an ever-increasing role in
daily life, accounting for performative effects will naturally
become more and more critical for both the development of
effective models and understanding the societal impact of
ML.

The original paper (Perdomo et al., 2020) and much of the
follow-up research (Mendler-Dünner et al., 2020; Drusvy-
atskiy & Xiao, 2020; Brown et al., 2020) has viewed the
performative setting as a dynamical system. The modeler
repeatedly observes (samples from) the distribution arising
from her choice of model parameters, then, treating this
induced distribution as fixed, updates her model by reducing
its loss on that fixed distribution. The primary question ad-
dressed by these works is under what conditions this process
stabilizes, i.e. when will this process converge to a model
which is optimal for the distribution it induces? A model
with this property is known as a performatively stable point.

While performatively stable points may be interesting from
a theoretical standpoint, focusing on this objective misses

How to Learn when Data Reacts to Your Model: Performative Gradient Descent

the primary objective of model training: namely, obtaining
the minimum performative loss, i.e. the loss of the deployed
model on the distribution it induces. The aforementioned
previous works show that, in certain settings, a performa-
tively stable point is a good proxy for a performatively
optimal point, by bounding the distance between these two
points in parameter space. In general, however, a performa-
tively stable point may be far from optimal. In other less
restrictive settings, a stable point may not even exist, and
algorithms designed to find such a point may oscillate or
diverge.

1.1. Our contributions

Motivated by these shortcomings, we introduce a new al-
gorithm dubbed performative gradient descent (PerfGD)
which provably converges to the performatively optimal
point under realistic assumptions on the data generating pro-
cess. We demonstrate, both theoretically and empirically,
the advantages of PerfGD over existing algorithms designed
for the performative setting.

1.2. Related work

Dataset shift is not a new topic in ML, but earlier works fo-
cused primarily on exogenous changes to the data generating
distribution. For a comprehensive survey, see (Quionero-
Candela et al., 2009).

Performativity in machine learning was first introduced by
(Perdomo et al., 2020). The authors introduced two algo-
rithms (repeated risk minimization and repeated gradient
descent) as methods for finding a performatively stable point,
and showed that under certain smoothness assumptions on
the loss and the distribution map, a performatively stable
point must lie in a small neighborhood of the performa-
tively optimal point. Their results relied on access to a
large-batch or population gradient oracle. In the follow up
work (Mendler-Dünner et al., 2020), the authors showed
similar results for the stochastic optimization setting. The
authors in (Drusvyatskiy & Xiao, 2020) analyze a general
class of stochastic optimization methods for finding a per-
formatively stable point. They view these algorithms as
performing biased stochastic optimization on the fixed dis-
tribution introduced by the performatively stable point, and
show that the bias decreases to zero as training proceeds. In
(Brown et al., 2020), the authors give results analogous to
those in (Perdomo et al., 2020) when the distribution map
also depends on the previous distribution. This models situa-
tions in which the population adapts to the model parameters
slowly. In this case and under certain regularity conditions,
RRM still converges to a stable point, and a stable point
must lie within a small neighborhood of the optimum. We
note that all of these works aim at finding a performatively
stable, rather than performatively optimal, point.

Performativity in ML is closely related to the concept of
strategic classification (Hardt et al., 2016; Cai et al., 2015;
Shavit et al., 2020; Kleinberg & Raghavan, 2019; Khajehne-
jad et al., 2019). Strategic classification is a specific mech-
anism by which a population adapts to a choice of model
parameters; namely, each member of the population alters
their features by optimizing a utility function minus a cost.
Performativity includes strategic classification as a special
case, as we make no assumptions on the specific mechanism
by which the distribution changes.

At the time of writing, the only other work which com-
puted the performatively optimal point is (Munro, 2020).
However, this work differs from ours in several important
ways. First, in (Munro, 2020), the planner may deploy a
different model on each individual from the sample at each
time step. In our setting, as in (Perdomo et al., 2020), the
model deployment must be uniform across all agents in
each time step; testing different models constitutes different
deployments, and we also seek the optimal uniform model.
Second, (Munro, 2020) assumes that the performative shift
results from strategic classification on the part of the agents.
We trade these assumptions for parametric assumptions on
the data generating process, but allow for a more general
change in the data distribution (i.e. the change need not
arise from a utility maximization problem.) In short, while
superficially similar, our papers address unique settings and
the results are in fact complementary.

Concurrently with our work, (Miller et al., 2021) studied
necessary and sufficient conditions for a convex performa-
tive loss, as well as some specific families of performative
shifts where these conditions hold. They then propose using
black-box derivative-free optimization (DFO) methods to
find the performative optimum.

Finally, training under performative distribution shift can
be seen as a special instance of a zeroth-order optimization
problem (Flaxman et al., 2005; Duchi et al., 2015; Lattimore,
2020), and our use of finite differences to approximate a gra-
dient is a technique also employed by these works. However,
the additional structure of our problem leads to algorithms
better suited for the particular case of performative distribu-
tion shift. Generic zeroth-order optimization algorithms are
sensitive to noise in the function value oracle, but PerfGD
is capable of handling the noise resulting from evaluating
the performative loss on a finite sample.

The rest of the paper is structured as follows. In Section 2,
we introduce the problem framework as well as notation
that we will use throughout the paper. We also discuss
previous algorithms for performative ML and explore their
shortcomings. In Section 3, we introduce our algorithm,
performative gradient descent (PerfGD). In Section 4, we
prove quantitative results on the accuracy and convergence
of PerfGD. Section 5 considers several specific applications

How to Learn when Data Reacts to Your Model: Performative Gradient Descent

of our method and verifies its performance empirically. We
conclude in Section 6 and introduce possible directions for
future work.

2. Setup and notation
We introduce notation which will be used throughout the
rest of the paper.

• Z ⊆ Rd denotes the sample space of our data.

• Θ ⊆ Rp denotes the space of model parameters, which
we assume is closed and convex. For notational con-
venience, we also assume that p = d, though this
assumption is not necessary.

• D : Θ→ P(Z) denotes the performative distribution
map. That is, when we deploy a model with parameters
θ, we receive data drawn iid from D(θ). We will as-
sume that D is unknown; we only observe it indirectly
from the data.

• `(z; θ) denotes the loss of the model with parameters
θ on the point z. For regression problems, this will
typically be the (regularized) square loss; for (binary)
classification problems, this will typically be the (regu-
larized) cross-entropy loss.

• L(θ1, θ2) denotes the decoupled performative loss:

L(θ1, θ2) = ED(θ2)[`(z; θ1)].

Note that θ1 denotes the model’s parameters, while θ2

denote’s the distribution’s parameters.

• L(θ) = L(θ, θ) denotes the performative loss.

• It will be convenient to distinguish the two compo-
nents of the performative gradient ∇θL(θ). We de-
note ∇1L(θ) = ∇θ1L(θ1, θ2)|θi=θ and ∇2L(θ) =
∇θ2L(θ1, θ2)|θi=θ, so ∇L = ∇1L+∇2L.

• We denote θOPT = argminθ∈Θ L(θ).

• θALG denotes the final output of the algorithm ALG.
The three algorithms we will consider in this paper
are repeated risk minimization (RRM), repeated gra-
dient descent (RGD), and our algorithm, performative
gradient descent (PerfGD).

Using the above notation, our interaction model is as follows.
Start with some initial model parameters θ0 and observe data
(zti)

n
i=1

iid∼ D(θ0). Then for t = 0, 1 . . . T−1, compute θt+1

using only information from the previous model parame-
ters θs, s ≤ t and datasets (zsi)

n
i=1, s ≤ t. The goal of

performative ML is to efficiently compute model parame-
ters θ̂ ≈ θOPT. For our purposes, we will mainly consider

the number of model deployments T as our measure of
efficiency, and our goal is to keep this number of deploy-
ments low. This corresponds to a setting where deploying a
new model is costly, but once the model has been deployed
the marginal cost of obtaining more data and performing
computations is low.

2.1. Previous algorithms

The authors of (Perdomo et al., 2020) formalized the perfor-
mative prediction problem and introduced two algorithms—
repeated risk minimization (RRM) and repeated gradient
descent (RGD)—for computing a near-optimal point. We
introduce these algorithms below.

Algorithm 1 Repeated gradient descent (RGD) (Perdomo
et al., 2020)

while not converged do
Draw z

(t)
i

iid∼ D(θt), i = 1, . . . , nt.
∇̂1L(θt)← 1

nt

∑nt
i=1∇`(z

(t)
i ; θt)

θt+1 ← θt − ηt∇̂1L(θt)
t← t+ 1

end while

Algorithm 2 Repeated risk minimization (RRM) (Perdomo
et al., 2020)

while not converged do
Draw z

(t)
i

iid∼ D(θt), i = 1, . . . , nt.
θt+1 ← argminθ

∑nt
i=1 `(z

(t)
i ; θ)

t← t+ 1
end while

The authors show that under certain assumptions on the
loss and distribution shift, RRM and RGD converge to
a stable point (i.e. model parameters θSTAB such that
θSTAB = argminθ L(θ, θSTAB)), and that θSTAB ≈ θOPT.
When these assumptions fail, however, RRM and RGD may
converge to a point very far from θOPT, or may even fail to
converge at all.

2.2. Why aren’t previous algorithms sufficient?

As an example, letZ = R, Θ = [−R,R] for some 0 < R <
∞, and `(z; θ) = zθ. Define the distribution map D(θ) =
N (a1θ + a0, σ

2) for some fixed σ2. The performative loss
is then given by

min
θ∈[−1,1]

EN (a1θ+a0,σ2)[θz] = min
θ∈[−1,1]

a1θ
2 + a0θ.

The optimal solution is at θOPT = −a0/2a1. Let us ana-
lyze the behavior of RRM. Letting (zti)

n
i=1 denote the data

sampled from D(θt) and z̄ti = 1
n

∑n
i=1 z

t
i , RRM will set

How to Learn when Data Reacts to Your Model: Performative Gradient Descent

θt+1 = 1{z̄ti < 0}−1{z̄ti ≥ 0}. If a1 > a0 ≥ 0 and a suffi-
cient number of samples are drawn at each deployment, and
assuming σ2 is small, with high probability when θt = R,
we will have z̄ti ≈ a1 + a0 > 0⇒ θt+1 = −R, and when
θt = −R, we will have z̄ti ≈ −a1 + a0 < 0 ⇒ θt+1 = R.
That is, RRM will oscillate between θ = ±R and fail to
converge even to a stable point.

Next we analyze RGD. At each step, we update θt+1 =
θt−ηED(θt)∇[θtz]. If this procedure converges, it will con-
verge to a point θSTAB such that ED(θSTAB)∇[θSTABz] = 0.
We can evaluate this expectation explicitly, and we see that
θSTAB = −a0/a1 = 2θOPT. Indeed, if R and |θOPT| are
large enough, this example shows that θSTAB can be arbi-
trarily far from θOPT. Thus we see that in this simple case,
RRM and RGD fail to find the optimal point, motivating
our search for improved algorithms. In Section 5.2, we will
return to a more general version of the problem introduced
above and verify that our method, PerfGD, does indeed
converge to θOPT.

3. General formulation of PerfGD
Our main goal is to devise a more accurate estimate for the
true performative gradient∇L = ∇1L+∇2L. We already
have a good stochastic estimate for ∇1L (this is just the
gradient used by RGD), so we just need to estimate ∇2L,
i.e. the part of the gradient which actually accounts for the
shift in the distribution.

In order to accomplish this, we make some parametric as-
sumptions on D(θ). Namely, we will assume that D(θ) has
a continuously differentiable density p(z; f(θ)), where the
functional form of p(z;w) is known and the quantity f(θ)
is easily estimatable from a sample drawn from D(θ). For
instance, if D(θ) is in an exponential family, it has a density
of the form h(z) exp[η(θ)>T (z)]∫

h(y) exp[η(θ)>T (y)] dy
, which corresponds to

the known function

p(z;w) =
h(z) exp[w>T (z)]∫
h(y) exp[w>T (y)] dy

and unknown function f(θ) = η(θ). For standard expo-
nential families, there is a simple method of estimating the
natural parameters η(θ) from a sample fromD(θ). Thus any
continuous exponential family fits within this framework.

For concreteness, for the majority of the paper we will as-
sume that D(θ) =

∑K
i=1 γiN (fi(θ),Σi),

∑k
i=1 γi = 1,

γi ≥ 0 is a mixture of normal distributions with varying
means and fixed covariances. As any probability distribu-
tion with a smooth density can be approximated to arbitrary
precision via a mixture of Gaussians, this parametric as-
sumption on D(θ) still gives rise to a powerful method.

3.1. Algorithm description

To describe the algorithm, it will be convenient to introduce
some notation. For any collection of vectors v0, v1, . . . ∈
Rd and any two indices i < j, we will denote by vi:j the
matrix whose columns consist of vi, vi+1, . . . , vj , i.e.

vi:j =

 | | |
vi vi+1 · · · vj
| | |

 ∈ Rd×(j−i+1). (1)

We also define 1H ∈ RH to be the vector consisting of H
ones. Recalling that the space of model parameters Θ is
assumed to be closed and convex, we define projΘ(θ) to be
the Euclidean projection of θ onto Θ. Using this notation
the pseudocode for PerfGD is given by Algorithm 3.

Algorithm 3 PerfGD
Input: Learning rate η; gradient estimation horizon H;
parametric estimator function f̂ ; gradient estimator func-
tion ∇̂L2

// Take first H updates via RGD
for t = 0 to H − 1 do

// Draw a new sample and compute estimate for f(θt)

(zi)
n
i=1

iid∼ D(θt)

ft ← f̂((zi)
n
i=1)

// Compute naive gradient estimate and update parame-
ters
∇1L ← 1

n

∑n
i=1∇`(zi; θt)

θt+1 ← projΘ(θt − η∇1L)
end for

// Run gradient descent with full gradient estimate
while not converged do

// Draw a new sample and compute estimate for f(θt)

(zi)
n
i=1

iid∼ D(θt)

ft ← f̂((zi)
n
i=1)

// Estimate the first part of the performative gradient
∇1L ← 1

n

∑n
i=1∇`(zi; θt)

// Estimate the second part of the performative gradient

∆θ ← θt−H:t−1 − θt1>H
∆f ← ft−H:t−1 − ft1>H
∆f
∆θ ← (∆f)(∆θ)†

∇2L ← ∇̂L2(ft,
∆f
∆θ)

// Update the model parameters
θt+1 ← projΘ(θt − η(∇1L+∇2L))
t← t+ 1

end while

How to Learn when Data Reacts to Your Model: Performative Gradient Descent

3.2. Derivation

Assume that D(θ) has density p(z; f(θ)) with p(z;w)
known for arbitrary w. The performative loss is given by
L(θ) =

∫
`(z; θ)p(z; f(θ)) dz. Assuming that p and f are

continuously differentiable, we can compute the performa-
tive gradient:

∇L(θ) =

∇1L︷ ︸︸ ︷∫
∇`(z; θ)p(z; f(θ)) dz (2)

+

∫
`(z; θ)

df

dθ

>
∂2p(z; f(θ)) dz︸ ︷︷ ︸
∇2L

.

Note that ∇1L = ED(θ)[∇`(z; θ)] and we can obtain an
estimate for this quantity by simply averaging∇` over our
sample from D(θ). For ∇2L, the only unknown quantities
are f(θ) and df/dθ. By assumption, f(θ) should be easily
estimatable from our sample, i.e. there exists an estimator
function f̂ which, given a sample (zi)

n
i=1

iid∼ D(θ) returns
f̂((zi)

n
i=1) ≈ f(θ).

To estimate df/dθ, we use a finite difference approximation.
By Taylor’s theorem, we have ∆f ≈ df

dθ∆θ. By taking a
pseudoinverse of ∆θ, we obtain an estimate for the deriva-
tive: df

dθ ≈ ∆f(∆θ)†. We require that this this system is
overdetermined, i.e. H ≥ p, to avoid overfitting to noise
in the estimates of f and bias from the finite difference ap-
proximation to the derivative. (Recall that H is the number
of previous finite differences used to estimate df/dθ, and p
is the dimension of θ.)

Substituting these approximations for f(θ) and df/dθ into
the expression for ∇2L, we can then evaluate or approx-
imate the integral using our method of choice. One uni-
versally applicable option is to use a REINFORCE-style
approximation (Williams, 1992):

∇2L =

∫
`(z; θ)

df

dθ

>
∂2[log p(z; f(θ))]p(z; f(θ)) dz

= ED(θ)

[
`(z; θ)

df

dθ

>
∂2[log p(z; f(θ))]

]
. (3)

Since p is known, ∂2 log p is known as well, and we can
approximate equation (3) by averaging the expression in
the expectation over our sample (zi)

n
i=1, substituting our

approximations for f(θ) and df/dθ. Any technique which
gives an accurate estimate for∇2L is also acceptable, and
we will see in the case of a Gaussian distribution that a
REINFORCE estimator of the gradient is unnecessary. We
refer to the approximation of the full gradient∇L = ∇1L+
∇2L obtained by this procedure as ∇̂L.

4. Theoretical results
In this section, we quantify the performance of PerfGD theo-
retically. For simplicity, we focus on the specific case where
D(θ) = N (f(θ), σ2) is a one-dimensional Gaussian with
fixed variance, and our model also has a single parameter
θ ∈ R. We also use a single previous step to estimate df/dθ
(i.e. H = 1). For results with longer estimation horizon
(H > 1) and stochastic errors on f̂ , see Appendix E.

Below we state our assumptions on the mean function f ,
the loss function `, and the errors on our estimator f̂ of f .

1. The mean function f has bounded first and second
derivatives: |f ′(θ)| ≤ F and |f ′′(θ)| ≤M ∀ θ ∈ R.

2. The estimator f̂ for f has bounded error: f̂(θ) =
f(θ) + ε(θ) and |ε(θ)| ≤ δ.

3. The loss is bounded: |`(z; θ)| ≤ `max.

4. The gradient estimator ∇̂L is bounded from below and
above: g ≤ |∇̂L| ≤ G.

5. The true performative gradient is upper bounded by G:
|∇L| ≤ G.

6. The true performative gradient is LLip-Lipschitz:
|∇L(θ)−∇L(θ′)| ≤ LLip|θ − θ′|.

7. The performative loss is convex.

Lastly, we assume that all of the integrals and expectations
involved in computing ∇̂L are computed exactly, so the er-
ror comes only from the estimate f̂ and the finite difference
used to approximate df/dθ.

We remark that Assumption 7 is nontrivial. Indeed, (Per-
domo et al., 2020) give an example where the point loss
` is strongly convex, but the performative loss resulting
from a particular distribution map is concave. (Miller et al.,
2021) studied conditions under which the performative loss
is convex. However, their work makes a similarly strong
assumption that the decoupled performative loss is convex
in the second (distributional) argument. Finding easily em-
pirically verifiable conditions under which the performative
loss is convex is an interesting open problem.

We will prove that PerfGD converges to an approximate
critical point, i.e. a point where∇L ≈ 0. The lower bound
in Assumption 4 can therefore be thought of as a stopping
criterion for PerfGD, i.e. when the gradient norm drops
below the threshold g, we terminate. As a corollary to our
main theorem, we will show that this criterion can be taken
to be g ∝ δ1/5. We begin by bounding the error of our
approximation ∇̂Lt. In what follows, ∇Lt = ∇L(θt) and
∇̂Lt = ∇̂L(θt).

How to Learn when Data Reacts to Your Model: Performative Gradient Descent

Lemma 1. With step size η, the error of the performative
gradient is bounded by

|∇̂Lt−∇Lt| = O

(
`max

(
MGη +

δ

g

1

η
+ Fδ

√
log

1

δ

))
.

Next, we quantify the convergence rate of PerfGD as well
as the error of the final point to which it converges.
Theorem 2. With step size

η =

√
1

MG2T
+

δ

MGg
,

the iterates of PerfGD satisfy

min
1≤t≤T

|∇Lt|2 = max

{
O

(
`max

√
MG2

T
+
MG3δ

g

)
,

O
(
g2 + `2max

(
M

T
+
MGδ

g

))}
.

Theorem 2 shows that PerfGD converges to an approximate
critical point. A guarantee on the gradient norm can easily
be translated into a bound on the distance of θt to θOPT with
additional regularity assumptions on the performative loss.
For instance, ifL isα-strongly convex, then a standard result
from convex analysis implies that |θt−θOPT| ≤ α−1|∇Lt|.
The proof of Theorem 2 amounts to combining the error
bound from Lemma 1 with a careful analysis of gradient
descent for LLip-smooth functions. For details, see the
appendix.

As as a corollary to Theorem 2, we see that we can choose
the stopping criterion to be g ∝ δ1/5.
Corollary 3. With stopping criterion g ∝ δ1/5, the iterates
of PerfGD satisfy

min
1≤t≤T

|∇Lt|2 = O

(
`max

√
MG2

T
+MG3δ4/5

)
.

In particular, this suggests that the error in PerfGD will stop
decaying after approximately T ∝ δ−4/5 iterations.

The corollary follows by matching the leading order behav-
ior in δ of the two terms in the max in Theorem 2. Note that
the bound in Lemma 1 still holds for the iterate in which we
have |∇̂Lt| < g since we estimate ∇̂Lt using the previous
iterate. If we stop at the first violation of the gradient lower
bound criterion, then we had |∇̂Lt−1| ≥ g, and Lemma 1
still applies.

The above results are stated with deterministically bounded
errors on our estimates for f(θ). The following corollary
shows that the guarantees of PerfGD still hold with high
probability when the error in f comes from a finite sample
(and is therefore not deterministically bounded).

Corollary 4. Suppose at each time t, we collect nt ≥ n
samples from D(θt) and compute f̂t using the sample aver-
age. If n ≥ 2σ2

δ2 log 2T
γ , then with probability at least 1− γ,

we have |f̂t − ft| < δ for all 1 ≤ t ≤ T .

4.1. Generalization to higher dimensions

Our results also hold in dimensions d > 1 with a mild
dependence on the dimension. In this case, in order to
ensure that we have sufficiently damped the effect of errors
in f̂t on our finite difference approximation for df/dθ, we
require a lower bound on the minimum singular value of
the “step matrix” ∆θ. (We denote this singular value by
σmin(∆θ).) Namely, we require that σmin(∆θ) ≥ ηg. This
is analogous to Assumption 4. The following result holds
for any estimation horizon H ≥ d.

Theorem 5. With step size

η =

√
g

Md3/2G3H3

1

T
+

1

MdG2H5/2
δ,

the iterates of PerfGD satisfy

min
1≤t≤T

|∇Lt|2

= O

`max

√
Md3/2G2H3

g

1

T
+
Md2G2H4

g2
δ

 .

Note that we do not exactly recover the one dimensional re-
sult by setting d = H = 1. This is due to some cancellation
in the analysis unique to the d = H = 1 setting.

We verify empirically σmin(∆θ) is bounded away from 0 in
our high-dimensional experiments (see the appendix). In
practice, if this singular value becomes to small, one may
need to manually enforce movement in other directions, e.g.
by deploying some perturbations of the current θ along a
deterministic frame or by adding e.g. Gaussian or uniform
spherical perturbations. Relaxing this above assumption
along the lines of the “stopping criterion” in one dimension
is an interesting direction for future work.

Interpretation of main results In general, PerfGD
should be thought of as simply mimicking gradient descent
(GD), and we should expect PerfGD and GD to exhibit sim-
ilar behavior even in the non-convex case. In particular,
the results of (Lee et al., 2016) suggest that PerfGD should
converge to a local minimizer even with a non-convex per-
formative loss. Furthermore, if Assumptions 1-7 are satis-
fied, then PerfGD converges to a minimum as δ → 0 and
T →∞.

How to Learn when Data Reacts to Your Model: Performative Gradient Descent

5. Applying PerfGD
In this section we will show by way of several examples
that this simple framework can easily handle performa-
tive effects in many practical contexts. We again focus
on Gaussian distributions with fixed covariance for con-
creteness, i.e. D(θ) = N (f(θ),Σ). Using the terminol-
ogy from Section 3.1, for a d-dimensional Gaussian we
have p(z;w) = 1√

(2π)d det Σ
e−

1
2 (z−w)>Σ−1(z−w) and f(θ)

is the mean of the Gaussian. Our estimator f̂ for f(θ) is just
the sample average: f̂((zi)

n
i=1) = 1

n

∑n
i=1 zi. Of particular

note is the form that∇2L takes in this case. An elementary
calculation yields

∇2L =

∫
`(z; θ)

df

dθ

>
Σ−1(z − f(θ))p(z; f(th)) dz

= ED(θ)

[
`(z; θ)

df

dθ

>
Σ−1(z − f(θ))

]
. (4)

Equation (4) shows that we can approximate∇2L by aver-
aging the expression inside the expectation over our sample
from D(θ) without the need for the REINFORCE trick or
other more complicated methods of numerically evaluating
the integral. Specifically, we have

∇̂2L
(
f,
df

dθ

)
=

1

n

n∑
i=1

`(zi; θ)
df

dθ

>
Σ−1(zi − f).

We present each of the following experiments in a fairly
general form. For all of the specific constants we used
for both data generation and training, see the appendix.
In all of the figures below, the shaded region denotes the
standard error of the mean over 10 trials for the associated
curve. We also note that in all cases except for the high-
dimensional pricing experiment (Figure 3), RRM exhibited
highly oscillatory behavior and failed to converge. We have
therefore omitted it from the plots for visual clarity.

In addition to RRM and RGD, we also compare to the black-
box DFO algorithm of (Flaxman et al., 2005), denoted FLX
in the plots. We note that FLX’s current internal estimate
for the optimal point is not the same as the points which
it actually queries. In our case, a query corresponds to
actually deploying a model, so the performative loss actually
incurred by using FLX corresponds to the queries rather
than the internal estimate. This is significant because FLX
is sensitive to noise in the function value oracle, and to
compensate it needs to use larger perturbations. This means
that FLX may deploy highly suboptimal models en route to
finding one with low performative loss.

5.1. Toy examples: Mixture of Gaussians and nonlinear
mean

Here we verify that PerfGD converges to the performatively
optimal point for some simple problems similar (but slightly
more difficult than) to the one introduced in Section 2.2. In
both cases we take `(z; θ) = θz and Θ = [−1, 1].

For the first example, we set D(θ) = N (f(θ), σ2) with
f(θ) =

√
a1θ + a0. Since f is nonlinear, estimating df/dθ

is more challenging. Despite this fact, PerfGD still finds the
optimal point. The results are shown in Figure 1 below.

0 10 20 30
Training iteration

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

θ

OPT
STAB
RGD
FLX
FLX queries
PerfGD

0 10 20 30
Training iteration

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
at

iv
e

lo
ss

OPT
STAB
RGD
FLX
FLX queries
PerfGD

Figure 1. Results for a modified version of the toy example intro-
duced in Section 2.2. OPT denotes the performatively optimal
point θOPT, and STAB denotes the performatively stable point
θSTAB. Since the mean is nonlinear in θ, estimating df/dθ with
finite differences is more challenging. In spite of this, PerfGD
still converges to the optimal point. FLX also finds a decent point,
though its query points are worse than those of PerfGD.

For the second example, we set D(θ) = γN (f1(θ), σ2
1) +

(1− γ)N (f2(θ), σ2
2). Here both of the means are linear in

θ, i.e. fi(θ) = ai,1θ + ai,0. We apply PerfGD where the
true cluster assignment for each point is known; in this case,
PerfGD converges to θOPT exactly and achieves optimal
performative loss. The results are shown in Figure 2 below.

0 20 40 60 80 100
Training iteration

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

θ

OPT
STAB
RGD
FLX
FLX queries
PerfGD

0 20 40 60 80 100
Training iteration

−0.05

0.00

0.05

0.10

0.15

0.20

Pe
rfo

rm
at

iv
e

lo
ss

OPT
STAB
RGD
FLX
FLX queries
PerfGD

Figure 2. Results for a modified version of the toy example intro-
duced in Section 2.2 with a mixture of Gaussians. We supply the
cluster label for each point. PerfGD is again able to converge to
the minimum, while RGD converges to a suboptimal point. FLX
also does well in this setting, though its convergence is noisier than
PerfGD’s.

How to Learn when Data Reacts to Your Model: Performative Gradient Descent

5.2. Pricing

We next examine a generalized version of the problem in-
troduced in Section 2.2. Let θ denote a vector of prices for
various goods which we, the distributor, set. A vector z
denotes a customer’s demand for each good. Our goal is
to maximize our expected revenue ED(θ)[θ

>z]. (In other
words, we set the loss function `(z; θ) = −θ>z.) Assuming
D(θ) = N (f(θ),Σ), we can directly apply Algorithm 3
with the functions f̂ and ∇̂L2 defined at the beginning of
the section to compute the optimal prices.

Experiments For this experiment, we work in a higher
dimensional setting with d = 5. We define Θ = [0, 5]d and
f(θ) = µ0 − εθ. (That is, the mean demand for each good
decreases linearly as the price increases.)

Our results are shown in Figure 3. For this case, we can
compute θOPT and θSTAB analytically. The performative
revenue for each of these points is shown on the right side of
the figure. As expected, PerfGD converges smoothly to the
optimal prices, while RGD converges to the only fixed point
which produces suboptimal revenue. In this case, RRM (not
shown) stays fixed at θRRM = [5, 5, . . . , 5]>.

We remark that our theoretical results for PerfGD in di-
mensions d > 1 require a lower bound assumption on the
minimum singular value of the matrix ∆θ. We empirically
verified that this minimum singular value stays bounded
away from 0, so our theory still holds for this high dimen-
sional experiment. A plot of the minimum singular value
throughout training can be found in the appendix.

0 10 20 30 40
Training iteration

0

1

2

3

4

5

6

Di
st

an
ce

 to
 O

PT OPT
STAB
RGD
FLX
FLX queries
PerfGD

0 10 20 30 40
Training iteration

−30

−20

−10

0

10

20

30

Pe
rfo

rm
at

iv
e

re
ve

nu
e

OPT
STAB
RGD
FLX
FLX queries
PerfGD

Figure 3. Results for performative pricing. RRM (not shown) stays
fixed at θRRM = 5 · 1, i.e. the vector with all entries equal to 5.
Note that PerfGD follows RGD for the first several steps as part
of the initialization phase. After this phase, the accurate estimate
for the second part of the performative gradient allows PerfGD to
reverse trajectory towards θOPT. While FLX finds a good internal
estimate for the performatively optimal price vector, it must deploy
large perturbations of its internal estimate to overcome the noise
from the finite sample. As such, it deploys highly suboptimal price
vectors.

5.3. Binary classification

Suppose our goal is to predict a label y ∈ {0, 1} using fea-
tures x ∈ Rd. We assume that the label y ∼ Bernoulli(γ),
and that x|y ∼ N (fy(θ),Σy). The performative loss can
then be written as

L(θ) = (1− γ)EN (f0(θ),Σ0)[`(x, 0; θ)] (5)
+γEN (f1(θ),Σ1)[`(x, 1; θ)]

We can apply the general PerfGD method to each of the
terms in (5) to obtain an approximate stochastic gradient.
(We treat the features of the data with label y = 0 as the
dataset for the first term, and the features of the data with
label y = 1 as the dataset for the second term.)

Experiments Here we work with a synthetic model of the
spam classification example. We will classify emails with a
logistic model, and we will allow a bias term. (That is, our
model parameters θ = (θ0, θ1)> ∈ R2. Given a real-valued
feature x, our model outputs hθ(x) = 1/(1 + e−θ0−θ1x).)
We let the label y = 1{email is spam}. For this case we
assume that the distribution of the feature given the label is
the performative aspect of the distribution map: spammers
will try to alter their emails to slip past the spam filter, while
people who use email normally will not alter their behavior
according to the spam filter. To this end, we suppose that

x|y = 0, θ ∼ N (µ0, σ
2
0), x|y = 1, θ ∼ N (f(θ), σ2

1).

We note that assuming Gaussian features is in fact a realistic
assumption in this case. Indeed, (Li et al., 2020) shows that
state-of-the-art performance on various NLP tasks can be
achieved by transforming standard BERT embeddings so
that they look like a sample from an isotropic Gaussian.

For this experiment, we set f(θ) = µ1 − εθ1. Such a dis-
tribution map arises from the strategic classification setting
described in (Perdomo et al., 2020) in which the spammers
optimize a non-spam classification utility minus a quadratic
cost for changing their features. We use ridge-regularized
cross-entropy loss for `.

Our results are shown in Figure 4. The improved estimate of
the performative gradient given by PerfGD results in roughly
a 9% reduction in the performative loss over RGD. In this
case, RRM (not shown) oscillates between two values of θ
which both give significantly higher performative loss than
either RGD or PerfGD. Despite an extensive hyperparameter
grid search, FLX (also not shown) was unable to converge
for this example.

5.4. Regression

This setting is essentially a generalized version of the perfor-
mative mean estimation problem in (Perdomo et al., 2020).
For simplicity, assume that the marginal distribution of x

How to Learn when Data Reacts to Your Model: Performative Gradient Descent

0 20 40 60 80 100
Training iteration

0.6

0.8

1.0

1.2

1.4
Pe

rfo
rm

at
iv

e
lo

ss RGD
PerfGD

Figure 4. PerfGD vs. RGD for performative logistic regression.
By taking into account the change in distribution, PerfGD is able
to achieve a lower performative loss than RGD. FLX (not shown)
did not converge for this example.

is independent of θ. Assuming that y|x ∼ N (f(x, θ), σ2),
the performative loss becomes

L(θ) = Ex[EN (f(x,θ),σ2)[`(x, y; θ)]]. (6)

The inner expectation has the required form to apply PerfGD.
However, since x takes continuous values, we will in general
have only one sample to approximate the inner expectation
in (6), leading to heavily biased or innacurate estimates
for the required quantities in (2). This leaves us with two
options: we can either use techniques for debiasing the
required quantities and apply PerfGD directly, or we can
use a reparameterization trick and a modified version of
PerfGD. Here we present the latter approach.

We assume that the response y follows a linear model, i.e.
y = β(θ)>x+ ε, ε ∼ N (0, σ2). The performative loss can
then be written as

L(θ) = Ex,ε[`(x, β(θ)>x+ ε; θ)]. (7)

Since we have removed the dependence of the distribution
on θ, we can easily compute the gradient:

∇L(θ) = ED(θ)[∇θ`(x, y; θ)] + ED(θ)

[
∂`

∂y

dβ

dθ

>
x

]
.

We can first estimate β via e.g. regularized ordinary least
squares, then estimate dβ/dθ via finite differences as in the
general setting (2): dβdθ ≈ ∆β(∆θ)†.

Experiments For simplicity, we use one-dimensional lin-
ear regression parameters θ ∈ R. The feature x is drawn
from a fixed distribution x ∼ N (µx, σ

2
x), and the performa-

tive coefficient β(θ) of y|x has the form β(θ) = a0 + a1θ.
We use ridge-regularized squared loss for `.

Our results are summarized in Figure 5. In this case, there is
a large gap between θOPT and θSTAB. As expected, PerfGD

converges smoothly to θOPT, while in this case both RGD
and RRM converge to θSTAB. The improvement of PerfGD
over RGD and RRM results in a factor of more than an order
of magnitude in reduction of the performative loss.

0 10 20 30 40
Training iteration

−6

−4

−2

0

2

4

6

8

θ

OPT
STAB
RGD
FLX
FLX queries
PerfGD

0 10 20 30 40
Training iteration

0

25

50

75

100

125

150

175

Pe
rfo

rm
at

iv
e

lo
ss OPT

STAB
RGD
FLX
FLX queries
PerfGD

Figure 5. Results for performative linear regression. As expected,
RGD converges to the performatively stable point, but in this case
the stable point is very far from the performative optimum. PerfGD
converges to OPT and incurs a much lower performative loss than
RGD. FLX outperforms RGD, but its convergence is noisy and
generally worse than PerfGD.

6. Conclusion
We addressed the setting of modeling when the data distri-
bution reacts to the model’s parameters, i.e. performative
distribution shift. We verified that existing algorithms meant
to address this setting in general converge to a suboptimal
point in terms of the performative loss. We then introduced
a new algorithm, PerfGD, which computes an estimate for
the performative gradient under some parametric assump-
tions on the performative distribution. We proved theoretical
results on the convergence of the method, and confirmed
via several empirical examples that PerfGD outperforms
existing algorithms such as RGD, RRM, and a black-box
DFO algorithm (FLX). The accuracy and iteration require-
ment are both practically feasible, as many ML systems
have regular updates every few days.

A natural direction for future work is the extension of our
methods to nonparametric distributions. Another direction
which may prove fruitful is to improve the estimation of the
derivative df/dθ. Finally, methods specifically tailored to
deal with high-dimensional data are also of interest.

Acknowledgements
We thank the anonymous reviewers for their detailed and
helpful feedback. J.Z. is supported by NSF CAREER
1942926 and grants from the Silicon Valley Foundation and
the Chan–Zuckerberg Initiative. L.Y. is supported by the Sci-
entific Discovery through Advanced Computing program,
and by the National Science Foundation DMS-1818449. Z.I.
is supported by SIGF.

How to Learn when Data Reacts to Your Model: Performative Gradient Descent

References
Ajalloeian, A. and Stich, S. Analysis of sgd with biased

gradient estimators. arXiv, 2008.00051, 2020.

Bechavod, Y., Ligett, K., Wu, Z., and Ziani, J. Causal
feature discovery through strategic modification. arXiv,
2002.07024, 2020.

Bergemann, D. and Morris, S. Robust mechanism design.
Yale: Cowles Foundation Working Papers, 2003.

Besbes, O., Gur, Y., and Zeevi, A. Non-stationary stochastic
optimization. Operations Research, 63(5):1227–1244,
2015.

Björkegren, D., Blumenstock, J., and Knight, S.
Manipulation-proof machine learning. arXiv,
2004.03865, 2020.

Brown, G., Hod, S., and Kalemaj, I. Performative prediction
in a stateful world. arXiv, 2011.03885, 2020.

Brückner, M., Kanzow, C., and Scheffer, T. Static predic-
tion games for adversarial learning problems. Journal of
Machine Learning Research, 13:2617–2654, 2012.

Cai, Y., Daskalakis, C., and Papadimitriou, C. Optimum
statistical estimation with strategic data sources. In Jour-
nal of Machine Learning Research, volume 40, pp. 1–17,
2015.

Chen, Y., Podimata, C., Procaccia, A. D., and Shah, N. Strat-
egyproof Linear regression in high dimensions. In ACM
EC 2018 - Proceedings of the 2018 ACM Conference on
Economics and Computation, pp. 9–26, 2018.

Chen, Y., Liu, Y., and Podimata, C. Learning strategy-aware
linear classifiers. In NeurIPS, 2020.

Dalvi, N., Domingos, P., Mausam, Sanghai, S., and Verma,
D. Adversarial classification. In KDD-2004 - Proceedings
of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 99–108,
2004.

Drusvyatskiy, D. and Xiao, L. Stochastic optimization with
decision-dependent distributions. arXiv, 2011.11173,
2020.

Duchi, J., Jordan, M., Wainwright, M., and Wibisono, A.
Optimal rates for zero-order convex optimization: The
power of two function evaluations. IEEE Transactions
on Information Theory, 61, 12 2015.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B. On-
line convex optimization in the bandit setting: Gradient
descent without a gradient. SODA, 2005.

Hardt, M., Megiddo, N., Papadimitriou, C., and Wootters,
M. Strategic classification. In ITCS 2016 - Proceedings of
the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pp. 111–122, 2016.

Khajehnejad, M., Tabibian, B., Schölkopf, B., Singla, A.,
and Gomez-Rodriguez, M. Optimal decision making
under strategic behavior. arXiv, 1905.09239, 2019.

Kleinberg, J. and Raghavan, M. How do classifiers induce
agents to invest effort strategically? In ACM EC 2019 -
Proceedings of the 2019 ACM Conference on Economics
and Computation, pp. 825–844, 2019.

Kleinberg, J., Ludwig, J., Mullainathan, S., and Obermeyer,
Z. Prediction policy problems. In American Economic
Review, volume 105, pp. 491–495, 2015.

Lattimore, T. Improved regret for zeroth-order adversarial
bandit convex optimisation. arXiv, 2006.00475, 2020.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.
Gradient descent only converges to minimizers. In Con-
ference on learning theory, pp. 1246–1257. PMLR, 2016.

Li, B., Zhou, H., He, J., Wang, M., Yang, Y., and Li, L.
On the sentence embeddings from pre-trained language
models. In EMNLP, 2020.

Mendler-Dünner, C., Perdomo, J. C., Zrnic, T., and Hardt,
M. Stochastic optimization for performative prediction.
NeurIPS, 2020.

Miller, J., Milli, S., and Hardt, M. Strategic classification is
causal modeling in disguise. In ICML, 2020.

Miller, J., Perdomo, J. C., and Zrnic, T. Outside the
echo chamber: Optimizing the performative risk. arXiv,
2102.08570, 2021.

Munro, E. Learning to personalize treatments when agents
are strategic. arXiv, 2011.06528, 2020.

Perdomo, J., Zrnic, T., Mendler-Dünner, C., and Hardt, M.
Performative prediction. In ICML, 2020.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and
Lawrence, N. D. Dataset Shift in Machine Learning. The
MIT Press, 2009.

Sassen, S. Do economists make markets? on the perfor-
mativity of economics. American Journal of Sociology,
2008.

Shavit, Y., Edelman, B., and Axelrod, B. Learning from
strategic agents: Accuracy, improvement, and causality.
arXiv, 2002.10066, 2020.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3):229–256, May 1992.

