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Abstract This paper provides a conceptual and non-rigorous description of the fast multipole methods for

evaluating convolution kernel functions with source distributions. Both the non-oscillatory and the oscillatory

kernels are considered. For non-oscillatory kernel, we outline the main ideas of the classical fast multipole

method proposed by Greengard and Rokhlin. In the oscillatory case, the directional fast multipole method

developed recently by Engquist and Ying is presented.
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1 Introduction

Many computational physics problems require the calculation of the so-called N -body problem: given a

set X ⊂ R
d of N target points, a set Y ⊂ R

d of N source points, a kernel function G(x, y), and a set

{f(y) : y ∈ Y } of weights at source points, we compute for each x ∈ X the potential u(x) defined by

u(x) =
∑

y∈Y

G(x, y)f(y).

There are many fields in which this kind of problem appears. In astrophysics, X = Y represents the

locations of N stars, and G(x, y) = 1/|x − y| is the gravitational potential. In electrostatics, Y and X

represent the locations of N charges and N probes, respectively, and the kernel G(x, y) = 1/|x− y| is the
Coulumb potential. In numerical solution of wave scattering in time harmonic regime, X = Y is often a

set of discretization points and G(x, y) = exp(iω|x− y|)/|x− y|, where ω is the angular frequency of the

wave field.

Direct computation of u(x) takes O(N2) steps, which can be quite costly when N is large. Fast

multipole methods (FMMs) were developed in the past two decades and they compute an approximate

solution with tunable accuracy in only O(N logα N) number of steps for α = 0, 1. There are arguably two

classes of fast multipole methods: those for non-oscillatory kernels, and those for oscillatory kernels. In

this paper, we provide a conceptual and non-rigorous exposition for one member of each class: the classical

FMM algorithm for the non-oscillatory Coulumb potential [7, 8] and the directional FMM algorithm for

oscillatory Helmholtz kernel [5, 6].
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2 Non-oscillatory kernels

Let X = Y = P be a set of N points distributed quasi-uniformly inside the unit box Ω = [0, 1]2 and let

G(x, y) = 1/|x− y| (see Figure 1). Our goal is to rapidly compute all pairwise interactions.

Let us start by considering a slightly simpler problem, where B and A are two disjoint squares of the

same size, each containing only O(n) points. Direct computation of the potential at points in A induced

by the points in B takes O(n2) steps. However, when A and B are well-separated, there is an easy

procedure to approximate the calculation. Let us imagine A and B as two galaxies. When A and B are

far away from each other, instead of considering all pairwise interactions, one can sum up the mass in B

to obtain fB =
∑

y∈B∩P f(y) and place it at the center cB of B, evaluate the potential uA = G(cA, cB)fB
at the center cA of A as if all the mass is located at cB, and finally use uA as the approximation of the

potential at each point x in A. A graphical description of this three-step procedure is given in Figure 2.

The cost of the three-step procedure is much lower, as it takes only O(n) numbers of steps instead of

O(n2). This procedure works well when A and B are sufficiently far away from each other. However, for

the time being, let us assume that this procedure gives a valid approximation as long as A and B are

well separated in the sense that the distance between A and B is greater than or equal to the width of

A and B.

From an algebraic point of view, the three-step procedure is a rank-1 approximation of the interaction

between A and B:

Figure 1 N points quasi-uniformly distributed in a unit box [0, 1]2.

B

O (n)

f (y)

O (1)

O (n)

O (n2)

u (x)=uA

uA =G(cA,cB)fBfB =∑y∈B f (y)

cB cA

A

Figure 2 A three-step procedure which efficiently approximates the potential in A induced by the sources in B. The

computational cost is reduced from O(n2) to O(n).
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G(A,B) ≈

⎛

⎜⎜⎝

1
...

1

⎞

⎟⎟⎠ ·G(cA, cB) · (1, . . . , 1), (2.1)

and fA and uB are just the intermediate results that we get while applying this rank-1 approximation.

This simple problem only considers the potential in A from points in B. However, we are interested

in the interaction between all points, so this three-step procedure only partially solve our problem. To

get around this, we partition the domain hierarchically with a quadtree structure until the number of

points in each leaf box is less than a prescribed O(1) constant (see Figure 3 for an illustration). The

whole quadtree then has O(logN) levels, and we denote the top level as level 0. At level �, there are 4�

squares and each square has O(N/4�) points due to the quasi-uniform point distribution.

The algorithm starts from level 2. Let B be one of the boxes on level 2 (see Figure 4 (top-left)). Let

B’s near field N(B) be the union of B and its neighbors and the far field F (B) be the complement of

the near field. We define B’s interaction list to be the set of boxes in B’s far field. For a box A in B’s

far field, the interaction from B to A can be accelerated with the three-step procedure. There are 42

possibilities for B and for each B there are O(1) choices for A (see Figure 4 (top-left)). Since both A and

B contain O(N/42) points due to the quasi-uniformity assumption, the cost for all the interaction that

Figure 3 The domain is partitioned with a quadtree structure until the number of points in each leaf node is bounded

by a small constant.

A
A

A A
BB

B
B

Figure 4 The algorithm at different levels. B stands for a source box. A is a target box for which the interaction with B

is processed at the current level. Dark-gray stands for the boxes for which the interaction has already been considered by

the previous level. Light-gray stands for the boxes for which the interaction is being considered at the current level. For

the first three plots, three-step procedure is used to accelerate the interaction between well-separated boxes. For the last

plot, the nearby interaction is handled directly at the leaf level.
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can be taken care of on this level is

42 · O(1) ·O(N/42) = O(N).

For the interaction between B and its near field, we cannot process it on this level, and hence we go down

one level in the quadtree.

On the next level, again let B be one square on this level (see Figure 4 (top-right)). We do not need

to consider B’s interaction with the far field of B’s parent since it has already been taken care of by the

previous level. Therefore, we only need to consider the interaction between B and its parent’s near field.

On this level, there are 62 boxes in its parent’s near field on this level. Out of these boxes, typically 27 of

them are well-separated from A and hence the interaction between B and these boxes can be accelerated

using the three-step procedure. We define B’s interaction list to be the set of these boxes. Since each box

on this level contains O(N/43) boxes and there are 43 possibilities for B, the total cost for the three-step

procedures performed on this level is

43 ·O(1) · O(N/43) = O(N)

again. However, for the interaction of B and its near field, we need to go down again.

For a general level �, there are 4� choices for B (see Figure 4 (bottom-left)). For each B, there are

at most 27 possibilities for A. Since each box on this level has O(N/4�) points, the cost of far field

computation is

4� · O(1) ·O(N/4�) = O(N).

Once we reach the leaf level, there is still the interaction between a leaf box B and its neighbors that

need consideration (see Figure 4 (bottom-right)). For that, we just use direct computation. Since there

are O(N) leaf boxes, each containing O(1) points and having O(1) neighbors, the total cost of direct

computation is

O(N) ·O(1) · O(1) = O(N).

For the three-step procedure between a pair of well-separated boxes A and B, it is clear that the first

step only depends on B and the last step only depends on A. Therefore, there is an opportunity for

reusing computation. Taking this observation into consideration, we can write this algorithm as follows.

• For each level � and each box A on level �, set uA to be zero.

• For each level � and each box B on level �, compute fB =
∑

y∈B∩P f(y).

• For each level � and each box B on level �, and for each box A in B’s interaction list, update

uA := uA +G(cA, cB)fB.

• For each level � and each box A on this level, update u(x) := u(x) + uA for each x ∈ A ∩ P .

• For each box B on the leaf level, update u(x) := u(x) +
∑

y∈N(B)∩P G(x, y)f(y).

Since the cost at each level is O(N) and there are O(logN) levels, the whole cost of the algorithm is

O(N logN). This algorithm is in fact the famous tree code, for example see [2].

The question now is whether we can do it in fewer steps. The answer is positive and it is based on the

following simple observation: Let B1, . . . , B4 be B’s children. From B = B1 ∪ B2 ∪ B3 ∪ B4 and all Bi

being disjoint, we conclude that (see Figure 5 (left))

fB = fB1 + fB2 + fB3 + fB4 .

Therefore, assuming that fBi are ready, using the previous line to compute fB is much more efficient

than summing over all f(y) in B.

Similarly, for each A, we update u(x) := u(x) + uA for each x ∈ A. Assume that A1, . . . , A4 are the

children boxes of A. Then, since we perform the same step for each Ai and each x belongs to one such

Ai, we can simply update uAi := uAi + uA instead, which is much more efficient (see Figure 5 (right)).

Notice that in order to carry out these two improvements, we make the assumption that for fB we

visit the parent after the children, while for uA we visit the children after the parent. This requires
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Figure 5 Basic observation that speeds the computation regarding fB and uA. Left: fB can be computed directly from

fBi
, where Bi are B’s children. Right: instead of adding uA directly to all the points in A, we only add to uAi

, where Ai

are A’s children.

one traversing the quadtree with different orders at different stages of the algorithm. Putting the pieces

together, we have the following algorithm.

• For each level � and each box A on level �, set uA to be zero.

• For level L− 1 to level 0 and for each box B, if B is a leaf box, set fB =
∑

y∈B∩P f(y). If B is not

a leaf box, set fB = fB1 + fB2 + fB3 + fB4 .

• For each level �, for each B, and for each A in B’s interaction list, update uA := uA +G(cA, cB)fB.

• For level 0 to level L− 1 and for each box A, if A is not a leaf box, update uAi := uAi +uA for each

child Ai of A. If A is a leaf box, update u(x) := u(x) + uA.

• For each box B on the leaf level, update u(x) := u(x) +
∑

y∈N(B)∩P G(x, y)f(y).

Steps 1, 3, and 5 are the same as the previous algorithm and their cost is O(N) each. For the second

and fourth steps, since there are at most O(N) boxes in the tree and the algorithm spends O(1) steps

per box, the cost is again O(N). As a result, the total cost is O(N) as promised. This is essentially the

classical FMM algorithm proposed in [7, 8], but significantly simplified.

There are two important points that require some attention. First, fB represents approximately the

charge distribution inside the box B. It is valid for any box A in F (B) when one comes to consider the

interaction between A and B, however, it is independent from the specific choice of A. Second, fB is a

compact representation of the source distribution in B, valid only in the far field F (B). In order to be

able to compute fB directly from fBi , one needs to make sure that fBi is valid in the far field F (B), or

equivalently, F (B) ⊂ F (Bi) for each Bi. This is indeed true and we call this the nested property of the

far field (see Figure 6).

We have been ignoring the accuracy issue so far. In fact, if we use only fB and uA, the accuracy will

be terrible since A and B are only one box away from each other. Recall that the three-step procedure

that we used so far is a poor rank-1 approximation of the interaction between A and B (see (2.1)). In

practice, much better low-rank approximations are available and fB and uA are just intermediate results.

For example, in the classical FMM algorithm [7, 8], one constructs the low-rank approximation based

on analytic properties of the kernel (i.e., complex analysis in 2D and spherical harmonics in 3D). The

resulting fB and uA are called multipole expansion and local expansions, respectively. In the kernel-

independent FMM algorithm (KIFMM) [13], the low-rank approximation is based on the observation

that one can reproduce the potential in A induced by points in B by placing some equivalent charges

either in B or on its boundary. In this case, the resulting fB and uA are respectively called equivalent

charges and check potentials. We shall not go into the details about these representation except for two

essential points.

• All fB and uA contain O(1) numbers, so they are very effective.

• There are operators TB;Bi that take fBi to fB (fB =
∑

i TB;BifBi), operators TAi;A that take uA to

uAi (uAi := uAi + TAi;AuA), and operators TA;B that take fB to uA (uA := uA + TA;BfB). All of these

operators can be implemented efficiently. Following the conventions of classical FMM, we call TB;Bi the

M2M operator, TAi;A the L2L operator, and TA;B the M2L operator.

There are many other ways to implement the low-rank approximation, besides the two mentioned
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F (B1)
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F (B)⊂F (B1)

Figure 6 Nested property of the far field. The far fieldF (B)of B is contained in the far fieldF (Bi) for any childBi of B.

above. Well-known examples include H2-matrices [3] and the multipole method without multipole [1].

3 Oscillatory kernels

In this section, we consider the oscillatory kernel G(x, y) = exp(i2πK|x− y|)/|x− y|, where K is a large

constant. The points X = Y = P are a set of N = O(K) points sampled quasi-uniformly from a smooth

curve in [0, 1]2 (see Figure 7). The wavelength λ is 1/K and the average distance between adjacent points

is O(λ). An O(N logN) algorithm for this problem was first discovered in [10, 11]. In this section, we

will describe an alternative with the same computational cost, presented in [5, 6].

Based on the discussion of the non-oscillatory case, we need to have a notion of well-separatedness

and for well-separated regions their interaction must be of numerically low-rank. Let us see whether the

geometric configuration used in the non-oscillatory kernel is able to yield a low-rank approximation here.

Consider a box B and its far field F (B): for the Helmholtz kernel, the numerical rank for the interaction

between in fact scales like O(diam(B)/λ) [10]. Therefore, the rank goes higher for larger boxes, and if B

is a constant fraction of the domain, then the rank is O(K). Hence, the three-step procedure is no longer

effective and we have to come up with something different.

The solution is to consider a different geometric configuration (see Figure 8). Let B be a box with

diameter sλ. We define WB,d to be a wedge in the direction of d, of distance s2λ away from B, and with

an opening angle of size O(1/s). Hence, when B gets larger and larger, the wedge becomes further and

further away quadratically with a smaller opening angle. It is proved in [5,6] that the interaction between

B and WB,d for any direction d is numerical low rank now. If we define F (B) now to be the set which is

O(s2λ) away from B, then F (B) is a disjoint union of O(s) wedges {WB,d}. The complement of F (B)

is the new near field N(B). The low-rank approximation actually used is very similar to the equivalent

charges used in the kernel-independent FMM. So we will continue to call the intermediate results fB,d

the directional equivalent charges and uA,d the directional check potentials.

The nested property of the far fields still hold in this case: for any WB,d of a box B, there exists a

direction d′ such that for each child Bi we have WB,d ⊂ WBi,d′ (see Figure 9). This property ensures

that, given fBi,d′ , we can compute fB,d efficiently from them. We can also design efficient translation

operators: TBi,d′;B,d from fB,d to fBi,d′ , TA,d;Ai,d′ from uA,d to uAi,d′ , and TA,−d;B,d from fB,d to uA,−d.

All of these operators are of low computational cost.

The hierarchical decomposition still uses a quadtree structure, adaptively partitioned until each leaf

box has O(1) points. Since the points are quasi-uniformly distributed on the curve, we can assume that

all leaf boxes are at the same level L− 1 = O(logN) = O(logK). On a level �, the number of non-empty

boxes is O(2�). The algorithm now starts from the level with boxes of width
√
Kλ. The reason is that

for larger boxes, the far field is outside the domain [0, 1]2 and hence we do not need to do any work. The
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X = Y

Figure 7 Points in X = Y are samples from a smooth curve in [0, 1]2.

1/s
B

WB,d

sλ s 
2λ

Figure 8 For box B and WB,d, the interaction between them is numerically low-rank. Suppose the width of B is sλ.

Then WB,d is at least s2λ away and with opening angle of size O(1/s).

1/s

B WB,d

sλ

2/s

WB,d ′

B1

Figure 9 The nested property still holds between B and its children.

algorithm proceeds as follows.

At the level where all boxes have width
√
Kλ, there are K/

√
K boxes, each with O(

√
K) boxes in

the far field (see Figure 10 (top-left)). The interaction between each well-separated pair takes only O(1)

steps, assuming the directional equivalent sources are ready. Therefore, the cost is
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B

≈Kλ

B

B

≈(K/4)λKλ

Figure 10 The algorithm at different levels. B stands for a source box at the current level. Its far field is partitioned

into wedges, each of which contains several non-empty boxes. Dark-gray stands for the boxes for which the interaction has

already been considered. Light-gray stands for the boxes for which the interaction is being considered on the current level.

For the last plot, the nearby interaction is considered at the leaf level.

O(
√
K) · O(

√
K) ·O(1) = O(K).

For each B, there are boxes in the near field and the interaction associated with them needs to be taken

care in the next level.

In the next level, the boxes are of width (
√
K/2)λ and there are so O(K/(

√
K/2)) = O(2

√
K) of them

(see Figure 10 (top-right)). For each of them, the boxes in the interaction list are the ones which are at

least (
√
K/2)2λ away but within distance

√
K

2
λ. Since the points are sampled on a curve, the number

of non-empty boxes on this level fall in this range is of size O(Kλ/(
√
K/2λ)) = O(

√
K/2). Therefore,

the total cost on this level is

O(2
√
K) · O(

√
K/2) · O(1) = O(K).

As one goes down the tree, the number of non-empty boxes on a level doubles. On the other hand,

the number of non-empty boxes in any box’s interaction list halves due to the quadratic nature of the far

field. Therefore, their product is always O(K) and hence the cost is always O(K) as well.

Finally, when one reaches the leaf level (see Figure 10 (bottom)), we need to perform nearby calculation

for leaf boxes and their neighbors. Similar to the non-oscillatory case, this cost is O(K), the same. Adding

all these components together we see that the overall cost is O(K logK) = O(N logN). More specifically,

the algorithm proceeds as follows.

• Go up the tree. For each leaf box B and direction d, form fB,d =
∑

y∈B∩P f(y). For each non-leaf

box B, form fB,d from its children boxes using fBi,d′ .
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• Go through the tree. For each pair B and A with A in B’s interaction list, update uA,−d :=

uA,−d + TA,−d;B,dfB,d.

• Go down the tree. For each non-leaf box A and direction d, transform uA,d and add to uAi,d′ for

each child Ai of A. If A is a leaf, add uA,d to u(x) for all x ∈ A ∩ P .

• For each leaf B, update u(x) = u(x) +
∑

y∈N(B)∩P G(x, y)f(y).

This is essentially a simplified version of the directional FMM algorithm proposed in [5, 6].

4 Conclusions

In this paper, we introduced two examples of the fast multipole methods, one with a non-oscillatory kernel

and the other with an oscillatory kernel. Both of them are based on low-rank approximations between well-

separated regions, with an appropriately definition of well-separatedness. In the second case, the low-rank

approximation comes from a more delicate geometric configuration and is more complex implementation-

wise. The combination of low-rank approximations and hierarchical decompositions provides us with a

very powerful tool in developing efficient algorithms for various integral operators arising from partial

differential equations, with recent examples including hierarchical matrices [3], butterfly algorithm for

oscillatory interaction [4, 9, 12], and so on.
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