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Abstract

We study the two-player zero-sum game with mixed strategies. For a class of
commonly used regularizers and a class of metrics, we show the existence of a
Lyapunov function of the gradient ascent descent dynamics. We also propose for a
new particle method for a specific combination of regularizers and metrics.
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1 Introduction
This note is concerned with two-player zero-sum game with mixed strategies. Let �1
and �2 be two compact sets of strategies and K (x1, x2) for x1 ∈ �1 x2 ∈ �2 be the
payoff function. P(�1) and P(�2) denote the spaces of probability densities over �1 and
�2, respectively. When K (x1, x2) is continuous, the two-layer zero-sum game with mixed
strategies and payoff

pT1Kp2 ≡
∫∫

�1×�2
p1(x1)K (x1, x2)p2(x2)dx1dx2, p1 ∈ P(�1), p2 ∈ P(�2)

has a unique Nash equilibrium [4] given by

min
p1∈P(�1)

max
p2∈P(�2)

pT1Kp2 = max
p2∈P(�2)

min
p1∈P(�1)

pT1Kp2.

Due to stability, it is often useful to consider a regularized version

min
p1

max
p2

H1(p1) + pT1Kp2 − H2(p2),

where H1(p1) and H2(p2) are the regularizers applied to p1(x1) and p2(x2) or the more
general form

min
p1

max
p2

E(p1, p2) ≡ H1(p1) + eT1p1 + pT1Kp2 − H2(p2) − eT2p2 (1)

with the extra linear terms eT1p1 ≡ ∫
�1

e1(x1)p1(x1)dx1 and eT2p2 ≡ ∫
�2

e2(x2)p2(x2)dx2.
This note studies the gradient ascent descent (GAD) dynamics for solving (1). Themain

contributions are listed as follows.
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• For a general class of regularizers and for a general class of metrics, we show the
existence of a Lyapunov function for the GAD of (1).

• For a specific combination of the regularizers and the metrics, we propose a new
particle method for solving (1).

Relatedwork.The two-player zero-sum game has received a lot of attention inmachine
learning since the introduction of the generative adversarial networks (GANs) [5]. Most
of the works inspired by GANs have focused on the pure strategy case, either for the
convex–concave games [9,11,12] or for the local equilibria [1,6,8,10]. In the area ofmixed
strategies, this note is mostly inspired by the recent works in [2,7]. [7] studied the mirror
ascent descent dynamics of thenon-regularizedproblemandproposed an implementation
basedon running aLangevindynamics at each time step.Domingo-Enrich et al. [2] studied
the dynamics under theWasserstein–Fisher–Raometric for the non-regularized problem
and proved finite-time error bounds in the weak transport regime. Compared with these
two papers, the current note focuses on the dynamics with non-transport metrics for the
regularized problems and also proposes a new particle method.
Contents. The rest of the note is organized as follows. Section 2 describes the general

setup and proves the existence of the Lyapunov function for the gradient ascent descent
dynamics. Section 3 studies a few special cases, proposes a new particle method and pro-
vides on some extensions. Section 4 concludes with some discussion for future directions.
DataAvailability Statement.Data sharing is not applicable to this article as no datasets

were generated or analyzed during the current study.

2 Lyapunov function
We consider the regularizers of the form

H1(p1) =
∫

�1
h1(p1(x1))dx1, H2(p2) =

∫
�2

h2(p2(x2))dx2,

where h1(·) and h2(·) are strictly convex functions defined on the positive real axis. With
these regularizers, the objective function E(p1, p2) in (1) takes the following form

E(p1, p2) =
∫

h1(p1(x1))dx1 + eT1p1 + pT1Kp2 −
∫

h2(p2(x2))dx2 − eT2p2. (2)

The functional derivatives of E(p1, p2) in p1 and p2 are, respectively,

δp1E(p1, p2) = +h′
1(p1) + e1 + Kp2, δp2E(p1, p2) = −h′

2(p2) − e2 + K Tp1.

Let us introduce the following metric functionals for p1 ∈ P(�1) and p2 ∈ P(�2)

M1(p1) =
∫

�1
m1(p1(x1))dx1, M2(p2) =

∫
�2

m2(p2(x2))dx2,

wherem1(·) andm2(·) are strictly convex functions over the positive real axis. TheHessians
of these metric functionals

δp1p1M1(p1) = diag(m′′
1(p1)), δp2p2M2(p2) = diag(m′′

2(p2)),

introduce non-Euclidean metrics on the spaces P(�1) and P(�2), respectively.
The gradient ascent descent of E(p1, p2) under these metrics is given by

∂tp1 = − (
m′′

1(p1)
)−1 (

h′
1(p1) + e1 + Kp2 + cst

)
,

∂tp2 = − (
m′′

2(p2)
)−1

(
h′
2(p2) + e2 − K Tp1 + cst

) (3)
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where the constant cst is introduced to ensure that p1 and p2 both remain to be probability
distributions, i.e.,

∫
�1

p1(x1)dx1 = ∫
�2

p2(x2)dx2 = 1.
The rest of this section is to show that (3) has a Lyapunov function. Since �1 and �2

are compact and K (x1, x2) is continuous, (1) has a unique solution (see [4]), which shall be
denoted by (p∗

1 , p∗
2) in what follows. The first-order optimality condition of (2) states that

h′
1(p∗

1) + e1 + Kp∗
2 = cst,

h′
2(p∗

2) + e2 + K Tp∗
1 = cst.

(4)

The Bregman divergences ofM1(p1) andM2(p2) based at p∗
1 and p∗

2 are given by

DM1 (p∗
1 , p1) = M1(p∗

1) − M1(p1) − 〈δp1M1(p1), p∗
1 − p1〉

DM2 (p∗
2 , p2) = M2(p∗

2) − M2(p2) − 〈δp2M2(p2), p∗
2 − p2〉.

(5)

In what follows, we fix p∗
1 and p∗

2 and consider them only as functions of p1 and p2. These
Bregman divergences are equal to zero if and only if p1 = p∗

1 and p2 = p∗
2, respectively,

due to the strict convexity ofm1(·) andm2(·).
Theorem 1 L(p1, p2) ≡ DM1 (p∗

1 , p1)+DM2 (p∗
2 , p2) is aLyapunov function for thedynamics

in (3).

Proof Subtracting (4) from the right-hand sides of (3), we obtain

∂tp1 = − (
m′′

1(p1)
)−1 (

h′
1(p1) − h′

1(p∗
1) + K (p2 − p∗

2) + cst
)
,

∂tp2 = − (
m′′

2(p2)
)−1

(
h′
2(p2) − h′

2(p∗
2) − K T(p1 − p∗

1) + cst
)
.

(6)

The functional derivatives of DM1 (p∗
1 , p1) and DM2 (p∗

2 , p2) in p1 and p2 are, respectively,

δp1DM1 (p∗
1 , p1) = (p1 − p∗

1)m′′
1(p1), δp2DM2 (p∗

2 , p2) = (p2 − p∗
2)m′′

2(p2).

The time derivative dtL(p1(t), p2(t)) is given by

〈δp1DM1 (p∗
1 , p1), ∂tp1〉 + 〈δp2DM2 (p∗

2 , p2), ∂tp2〉
= −

∫
(p1 − p∗

1)m′′
1(p1)

(
m′′

1(p1)
)−1 (

h′
1(p1) − h′

1(p∗
1) + K (p2 − p∗

2) + cst
)
dx1

−
∫
(p2 − p∗

2)m′′
2(p2)

(
m′′

2(p2)
)−1

(
h′
2(p2) − h′

2(p∗
2) − K T(p1 − p∗

1) + cst
)
dx2

= −
∫
(p1 − p∗

1)
(
h′
1(p1) − h′

1(p∗
1)

)
dx1 −

∫
(p2 − p∗

2)
(
h′
2(p2) − h′

2(p∗
2)

)
dx2,

where in the last step the two terms that contain K cancel. Since h′
1(p1) and h′

2(p2) is
strictly monotone, the last quantity is strictly less than zero, except at p1 = p∗

1 and
p2 = p∗

2. Therefore, L(p1, p2) is a Lyapunov function for the dynamics in (3). �	

3 Special cases and extensions
The result in Sect. 2 holds for rather general functions h1(p1), h2(p2),m1(p1) andm2(p2).
This section studies a few special cases.

3.1 Regularizer equal to metric functional

In this case, h1(p1) = m1(p1) and h2(p2) = m2(p2), which leads to the dynamics

∂tp1 = − (
h′′
1(p1)

)−1 (
h′
1(p1) + e1 + Kp2 + cst

)
,

∂tp2 = − (
h′′
2(p2)

)−1
(
h′
2(p2) + e2 − K Tp1 + cst

)
,

(7)
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or more conveniently in the vector form

∂t

(
p1
p2

)
= −

(
h′′
1(p1))

h′′
2(p2)

)−1 (
h′
1(p1) + e1 + Kp2 + cst

h′
2(p2) + e2 − K Tp1 + cst

)
. (8)

As the Newton dynamics for solving the stationary condition (4) is

∂t

(
p1
p2

)
= −

(
h′′
1(p1)) K
K T h′′

2(p2)

)−1 (
h′
1(p1) + e1 + Kp2 + cst

h′
2(p2) + e2 − K Tp1 + cst

)
,

we can view (8) as a block diagonal approximation to the Newton dynamics. One key
advantage of working with (8) is that it can also be written as

∂t

(
h′
1(p1)

h′
2(p2)

)
= −

(
h′
1(p1) + e1 + Kp2 + cst

h′
2(p2) + e2 − K Tp1 + cst

)
.

By working directly with h′
1(p1) and h′

2(p2), one can discretize with large time steps.
The most important example is h1(p) = m1(p) = p log p and h2(p) = m2(p) = p log p.

With these choices

h′
1(p) = log p + cst, h′

2(p) = log p + cst, m′′
1(p) = 1/p, m′′

2(p) = 1/p,
and the dynamics (7) becomes

∂tp1 = −p1 (log p1 + e1 + Kp2 + cst) ,

∂tp2 = −p2
(
log p2 + e2 − K Tp1 + cst

) (9)

or equivalently in terms of log p1 and log p2
∂t log p1 = − (log p1 + e1 + Kp2 + cst) ,

∂t log p2 = −
(
log p2 + e2 − K Tp1 + cst

)
.

An explicit discretization with time step �t leads to the mirror ascent descent algorithm
p1(t + �t) ∝ p1(t)1−�t · e−�t(e1+Kp2(t))

p2(t + �t) ∝ p2(t)1−�t · e−�t(e2−K Tp1(t)),
(10)

where ∝ means proportional to, i.e., a normalization step is required to ensure∫
�1

p1(x1)dx1 = ∫
�2

p2(x2)dx2 = 1.
As an approximation to the Newton dynamics, (9) and (10) can offer fast convergence

when �1 and �2 can be discretized easily. To illustrate this, Figure 1 gives a simple
one-dimensional example with �1 and �2 given by the periodic interval [0, 1]. The left
plot shows the payoff function K (x1, x2), and the middle plot gives the solution pair
(p∗

1(x1), p∗
2(x2)). The domains�1 and�2 are discretized with a uniform grid of 128 points,

and the time step �t is taken to be equal to 1. The iteration in (10) converges in about 40
iterations, and the right plot displays how the Lyapunov function decays with respect to
the iteration count.
When �1 and �2 are two compact domains in Rd1 and Rd2 , respectively, if n points

are used to discretize each dimension, a naive spatial discretization of (9) and (10) takes
O

(
nd1 + nd2

)
unknowns.

As a result, when �1 and �2 are high-dimensional, it is often difficult to work with (9)
and (10). Though there exists particle methods for (9) based on the birth–death process,
the fact that no particles are introduced at new locations in the birth–death process
severely constrains its applicability. Another issue with this particle method is that it
requires density estimation of p1(x1) and p2(x2) at the particle locations, which can be
computationally expensive when the number of particles is large.
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Fig. 1 Mirror ascent descent algorithm. a Payoff function K (x1 , x2). b Optimal solution pair (p∗
1(x1), p

∗
2(x2)). c

Value of the Lyapunov function as a function of the iteration count

3.2 A new particle method

This subsection introduces a new particle method for (3). We choose

h1(p) = log 1/p, h2(p) = log 1/p, m1(p) = p log p, m2(p) = p log p.

This specific choice gives rise to

h′
1(p) = −1/p, h′

2(p) = −1/p, m′′
1(p) = 1/p, m′′

2(p) = 1/p.

The dynamics associated with this choice is

∂tp1 = −p1 (−1/p1 + e1 + Kp2 + cst) = −p1 (e1 + Kp2 + cst) + 1,

∂tp2 = −p2
(
−1/p2 + e2 − K Tp1 + cst

)
= −p2

(
e2 − K Tp2 + cst

)
+ 1.

(11)

This dynamics can be implemented with a particle method, where

• the terms proportional to p1 or p2 can be realized with a birth–death process,
• the constant 1 terms can be realized by injecting new particle randomly into �1 and

�2.

Compared with the particle method associated with (9), this method introduces particles
at new locations and requires no density estimation. The algorithm is detailed in Algo-
rithm 1, where {x1,i}i=1,...,n are the particles for p1(x1) and {x2,j}j=1,...,n are the ones for
p2(x2).

3.3 Extension

The discussion in Sect. 2 can also be extended to the case where the regularizers and
metric functionals are f -divergences [13]. Let us consider the general regularizers

H1(p1) =
∫

�1
h1

( p1(x1)
μ1(x1)

)
μ1(x1)dx1, H2(p2) =

∫
�2

h2
( p2(x2)

μ2(x2)

)
μ2(x2)dx2,

where μ1(x1) and μ2(x2) are positive reference densities on �1 and �2, respectively. The
objective function is

E(p1, p2) = ∫
h1

(
p1(x1)
μ1(x1)

)
μ1(x1)dx1 + eT1p1 + pT1Kp2

− ∫
h2

(
p2(x2)
μ2(x2)

)
μ2(x2)dx2 − eT2p2. (12)

The functional derivatives of E(p1, p2) in p1 and p2 are

δp1E(p1, p2) = +h′
1(p1/μ1) + e1 + Kp2, δp2E(p1, p2) = −h′

2(p2/μ2) − e2 + K Tp1.
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Algorithm 1 Particle algorithm for (11)
Require: Initialize {x1,i}i=1,...,n from �1 and {x2,j}j=1,...,n from �2. Time step �t.
while until convergence do
for i = 1, . . . , n do

αi = (− 1
n

∑
j K (x1,i , x2,j) + e1(x1,i)).

end for
Subtract from each αi the average 1

n
∑

k αk .
for j = 1, . . . , n do

βj = (+ 1
n

∑
i K (x1,i , x2,j) + e2(x2,j)).

end for
Subtract from each βi the average 1

n
∑

k βk .
for i = 1, . . . , n do
If αi < 0, kill x1,i with probability 1 − exp(αi�t).
If αi > 0, duplicate x1,i with probability 1 − exp(−αi�t).

end for
Resample n samples from {x1,i} and define them to be {x1,i}.
for j = 1, . . . , n do
If βj < 0, kill x2,j with probability 1 − exp(βj�t).
If βj > 0, duplicate x2,j with probability 1 − exp(−βj�t).

end for
Resample n samples from {x2,j} and define them to be {x2,j}.
for i = 1, . . . , n do
Keep each x1,i with probability exp(−�t)
If x1,i is deleted, replace it with a uniform sample from �1.

end for
for j = 1, . . . , n do
Keep each x2,j with probability exp(−�t)
If x2,j is deleted, replace it with a uniform sample from �2.

end for
end while

Consider the metric functionals

M1(p1) =
∫

�1
m1

(p1(x1)
ν1(x1)

)
ν1(x1)dx1, M2(p2) =

∫
�2

m2

(p2(x2)
ν2(x2)

)
ν2(x2)dx2,

where ν1(x1) and ν2(x2) are again positive reference densities on �1 and �2. Note that
μ1(x1) and ν1(x1) can be different and the same applies toμ2(x2) and ν2(x2). The Hessians
of these metric functionals are

δp1p1M1(p1) = diag(m′′
1(p1/ν1)/ν1), δp2p2M2(p2) = diag(m′′

2(p2/ν2)/ν2).

The gradient ascent descent for E(p1, p2) under these metrics is given by

∂tp1 = −ν1
(
m′′

1(p1/ν1)
)−1 (

h′
1(p1/μ1) + e1 + Kp2 + cst

)
,

∂tp2 = −ν2
(
m′′

2(p2/ν2)
)−1

(
h′
2(p2/μ2) + e2 − K Tp1 + cst

)
.

(13)

The unique solution of the minimax problem of E(p1, p2), denoted by (p∗
1 , p∗

2), satisfies the
first-order optimality condition

h′
1(p∗

1/μ1) + e1 + Kp∗
2 = cst,

h′
2(p∗

2/μ2) + e2 + K Tp∗
1 = cst.

(14)
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The Bregman divergences ofM1(p1) andM2(p2) with respective to p∗
1 and p∗

2 are

DM1 (p∗
1 , p1) =

∫
m1(p∗

1/ν1)ν1 − m1(p1/ν1)ν1 − (p∗
1 − p1)m′

1(p1/ν1)dx1,

DM2 (p∗
2 , p2) =

∫
m2(p∗

2/ν2)ν2 − m2(p2/ν2)ν2 − (p∗
2 − p2)m′

2(p2/ν2)dx2.
(15)

The functional derivatives of DM1 (p∗
1 , p1) and DM2 (p∗

2 , p2) are

δp1DM1 (p∗
1 , p1) = (p1 − p∗

1)m′′
1(p1/ν1)/ν1, δp2DM2 (p∗

2 , p2) = (p2 − p∗
2)m′′

2(p2/ν2)/ν2.

The following calculation shows that the sum L(p1, p2) = DM1 (p∗
1 , p1) + DM2 (p∗

2 , p2) is a
Lyapunov function for the dynamics (13):

dtL(p1(t), q2(t)) = 〈δp1DM1 ,p∗
1
(p1), ∂tp1〉 + 〈δp2DM2 ,p∗

2
(p2), ∂tp2〉

= −
∫
(p1 − p∗

1)m′′
1(p1/ν1)/ν1 · ν1

(
m′′

1(p1/ν1)
)−1

(
h′
1(p1/μ1) − h′

1(p∗
1/μ1) + K (p2 − p∗

2) + cst
)
dx1

−
∫
(p2 − p∗

2)m′′
2(p2/ν2)/ν2 · ν2

(
m′′

2(p2/ν2)
)−1

(
h′
2(p2/μ2) − h′

2(p∗
2/μ2) − K T(p1 − p∗

1) + cst
)
dx2

= −
∫
(p1 − p∗

1)
(
h′
1(p1/μ1) − h′

1(p∗
1/μ1)

)
dx1

−
∫
(p2 − p∗

2)
(
h′
2(p2/μ2) − h′

2(p∗
2/μ2)

)
dx2,

which is less than zero due to the strict convexity of h1 and h2, except at p1 = p∗
1 and

p2 = p∗
2.

4 Discussions
Though the particle method described in Sect. 3.2 introduces new particles at random
locations, the method is not very efficient for high-dimensional problems since these
inserted particles do not move. Another dynamics in the literature is the Wasserstein
ascent descent

∂tp1 = (div p1∇)(ln p1 + e1 + Kp2) = �p1 + div (p1∇(e1 + Kp2)) ,

∂tp2 = (div p2∇)(ln p2 + e2 − K Tp1) = �p2 + div
(
p2∇(e2 − K Tp1)

)
.

(16)

The dynamics (16) is known to converge when the diffusion terms dominate the nonlinear
terms, see for example [3]. However, when the nonlinear terms dominate, the convergence
of (16) is unknown. An interesting direction following [2] is whether combining the
dynamics introduced in this note with (16) would improve its convergence behavior.
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