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Abstract
This note proposes an algorithm for identifying the poles and residues of a meromorphic
function from its noisy values on the imaginary axis. The algorithm uses Möbius transform
and Prony’s method in the frequency domain. Numerical results are provided to demonstrate
the performance of the algorithm.

Keywords Rational approximation · Prony’s method · Analytic continuation

Mathematics Subject Classification 30B40 · 93B55

1 Introduction

Let g(z) be a meromorphic function of the form

g(z) =
Np∑

j=1

r j
ξ j − z

, (1)

where the number of poles Np , the pole locations {ξ j }, and residues {r j } are all unknown,
except that ξ j are away from the imaginary axis iR. The problem is to recover Np , {ξ j } and
{r j }, given the noisy access of g(z) along the imaginary axis iR. Two access models are
particularly relevant:

• the random access model where one can get noisy values of g(z) at desired locations
on iR and

• theMatsubara model where one can only get the noisy values of g(z) at the Matsubara
grid

zn =
{
2n π i

β
, for bosons,

(2n + 1) π i
β

, for fermions.

To make the problem numerically well-defined, we assume
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Fig. 1 The unknown poles are
inside the two circles. The
algorithm can access the noisy
function values along the
imaginary axis
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• There exists constants 0 < a < b such that the poles {ξ j } reside within the union of
the two disks of radius b−a

2 centered at − b+a
2 and b+a

2 , respectively. See Fig. 1 for an
illustration.

This assumption is quite natural because otherwise any algorithm is forced to sample exten-
sively along the imaginary axis towards infinity.

There is also a matrix-valued version of this problem, where

G(z) =
Np∑

j=1

R j

ξ j − z
, (2)

where G(z) and R j are matrices of size Nb × Nb. The task is then to recover Np , {ξ j } and
{R j }. A particularly important special case is where R j = v jv

∗
j for some v j ∈ C

Nb [15].
The main contribution of this note is a simple algorithm based on conformal mapping and

Prony’s method [19]. Prony’s method is generally considered to be unstable in the presence
of noise [1]. However, in practice it has been widely used in signal processing and control
theory, especially when certain prior can be imposed. In our problem, such prior information
includes 1) the restriction on the locations of the poles and 2) whether the residues is real,
positive, or positive definite.

This problem has many applications in scientific and engineering disciplines. One of the
key examples is the reconstruction of spectral density from Matsubara Green’s function [6].
It is also highly related to a couple of other well-studied problems, including rational function
approximation and interpolation [2, 3, 5, 7, 12, 13, 16], Pade approximation [11], contractive
analytic continuation [8, 9], approximation with exponential sums [4, 18], and hybridization
fitting [15]. Recently, in [14], the author also applies Prony’s method to the problem (1) with
only a finite set of Matsubara data, which is a significantly harder problem.

The rest of the note is organized as follows. In Sect. 2, we describe the key ideas and
the implementation of the algorithm in details. Several numerical examples are provided in
Sect. 3.

2 Algorithm

2.1 Main Ideas

Let us consider the scalar case (1). Below we describe the algorithm as if one can manipulate
continuous objects. The overall plan is

• Transforming the computational domain with a specific Möbius transform,
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Fig. 2 Möbius transform. Left: the z plane. Right: the t plane

• Applying Prony’s method to locate the poles in the transformed domain,
• Mapping back to get the pole locations in the original domain and computing the residues

using the least square.

Step 1. We introduce the following Möbius transform from z ∈ C to t ∈ C

t = z − √
ab

z + √
ab

, z = −√
ab

t + 1

t − 1
. (3)

This transform maps

• the right half-plane C+ in z to the interior of the unit disk D in t ,
• the left half-plane C− in z to the exterior of D in t ,
• the imaginary axis iR in z to the unit circle in t ,
• the two circles centered at − b+a

2 and b+a
2 in z to two concentric circles with radius√

b−√
a√

b+√
a
and

√
b+√

a√
b−√

a
in t (see Fig. 2 for an illustration).

The function g(t) ≡ g(z(t)) in the t space also enjoys a pole representation

g(z) =
Np∑

j=1

w j

τ j − t
+ const,

with locations {τ j } and residues {w j }. Since {τ j } are the images of the poles {z j } under the
Möbius transform, finding {z j } is equivalent to locating {τ j }.

Step 2. Let us consider the integrals

1

2π i

∫

∂D

g(t)

tk
dt

t
(4)

for integer values of k. The integrals for negative and positive values of k give information
about the poles inside D and the ones outside D, respectively.
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For any k ≤ −1,

1

2π i

∫

∂D

g(t)

tk
dt

t
= 1

2π i

∫

∂D

⎛

⎝
∑

|τ j |<1

+
∑

|τ j |>1

⎞

⎠ w j

τ j − t
t |k|+1dt

= 1

2π i

∑

|τ j |<1

w j

∫

∂D

1

τ j − t
t |k|−1dt = 1

2π i

∑

|τ j |<1

w jτ
|k|−1
j

∫

∂D

1

τ j − t
dt = −

∑

|τ j |<1

w jτ
−(k+1)
j ,

where the second equality uses the fact that
w j

τ j−t is analytic in D for |τ j | > 1 and the third

equality uses the fact that
τ

|k|−1
j −t |k|−1

τ j−t is a polynomial hence analytic in D. Therefore, the
integrals (4) for k ≤ −1 contain information about the poles inside D.

For any k ≥ 1,

1

2π i

∫

∂D

g(t)

tk
dt

t
= 1

2π i

∫

∂D

⎛

⎝
∑

|τ j |<1

+
∑

|τ j |>1

⎞

⎠ w j

τ j − t
· 1

tk+1 dt

= 1

2π i

∑

|τ j |>1

w j

∫

∂D

1

τ j − t
· 1

tk+1 dt

= 1

2π i

∑

|τ j |>1

w j

∫

∂D

1

τ j

(
1 + t

τ j
+ · · ·

)
1

tk+1 dt

= 1

2π i

∑

|τ j |>1

w j
1

τ k+1
j

∫

∂D

1

t
dt =

∑

|τ j |>1

w jτ
−(k+1)
j ,

where the second equality uses the fact that for |τ j | < 1 the product
w j

τ j−t · 1
tk+1 is analytic

outside D with at least quadratic decay. The fourth step uses the fact that only the term with
tk in the power expansion gives a non-zero contribution. Hence the integrals (4) for k ≥ 1
contain information about the poles outside D.

Since the integral (4) is over the unit circle, it is closely related to the Fourier transform
of the function g(θ) ≡ g(eiθ ):

1

2π i

∫

∂D

g(t)

tk
dt

t
= 1

2π i

∫ 2π

0
g(θ)e−ikθ idθ = 1

2π

∫ 2π

0
g(θ)e−ikθdθ = ĝk . (5)

To recover the poles, we apply Prony’s method using the Fourier coefficients. The dis-
cussion in the rest of this step is not new: it is part of the well-known AAK theory and an
excellent write-up in a linear algebraic notation can be found in [10].

The poles inside D uses the Fourier coefficients of the negative frequencies. From the
integrals with k ≤ −1, define the semi-infinite vector

ĝ− ≡
⎡

⎢⎣
ĝ−1

ĝ−2
...

⎤

⎥⎦ ≡ 1

2π i

∫

∂D

g(t)

⎡

⎢⎣
t0

t1

...

⎤

⎥⎦ dt ≡

⎡

⎢⎢⎣

−∑
|τ j |<1 w jτ

0
j

−∑
|τ j |<1 w jτ

1
j

...

⎤

⎥⎥⎦

123



Journal of Scientific Computing           (2022) 92:107 Page 5 of 13   107 

Let us define S to be the shift operator that shifts the semi-infinite vector upward (and drops
the first element). For any τ j with |τ j | < 1,

S

⎡

⎢⎣

τ 0j
τ 1j
...

⎤

⎥⎦ =
⎡

⎢⎣

τ 1j
τ 2j
...

⎤

⎥⎦ , i.e., (S − τ j )

⎡

⎢⎣

τ 0j
τ 1j
...

⎤

⎥⎦ = 0.

Since the operators S − τ j all commute,

∏

|τi |<1

(S − τi )

⎡

⎢⎣

τ 0j
τ 1j
...

⎤

⎥⎦ = 0. (6)

Since ĝ− is a linear combination of the semi-infinite vectors in (6),
∏

|τi |<1

(S − τi ) ĝ− = 0.

Introduce the polynomial
∏

|τi |<1(t − τi ) = p0t0 + · · · + pd td with coefficients {pi }, where
the degree d is equal to the number of poles in D. Then (6) becomes

p0(S
0 ĝ−) + · · · + pd(S

d ĝ−) = 0, i.e.,

⎡

⎢⎣
ĝ−1 ĝ−2 · · · ĝ−(d+1)
ĝ−2 ĝ−3 · · · ĝ−(d+2)
...

...
...

...

⎤

⎥⎦

⎡

⎣
p0
. . .

pd

⎤

⎦ = 0. (7)

This implies that the number of poles inD is equal to the smallest positive integer d such that
the matrix in (7) is rank deficient. In addition, (p0, . . . , pd) can be computed as a non-zero
vector in the null-space of this matrix. Once (p0, . . . , pd) are available, the roots of

p(t) = p0t
0 + . . . pd t

d

are the poles {τ j } inside D.
The poles outside D uses the Fourier coefficients of the positive frequencies. From the

integrals with k ≥ 1, define the semi-infinite vector

ĝ+ ≡
⎡

⎢⎣
ĝ1
ĝ2
...

⎤

⎥⎦ ≡ 1

2π i

∫

∂D

g(t)

⎡

⎢⎣
t−2

t−3

...

⎤

⎥⎦ dt ≡

⎡

⎢⎢⎣

∑
|τ j |>1 w jτ

−2
j∑

|τ j |>1 w jτ
−3
j

...

⎤

⎥⎥⎦

With the same shift operator S, for any τ j with |τ j | > 1

S

⎡

⎢⎢⎣

τ−2
j

τ−3
j
...

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

τ−3
j

τ−4
j
...

⎤

⎥⎥⎦ , i.e., (S − τ−1
j )

⎡

⎢⎢⎣

τ−2
j

τ−3
j
...

⎤

⎥⎥⎦ = 0.

Since the operators S − τ−1
j all commute,

∏

|τi |>1

(S − τ−1
i )

⎡

⎢⎢⎣

τ−2
j

τ−3
j
...

⎤

⎥⎥⎦ = 0. (8)

123



  107 Page 6 of 13 Journal of Scientific Computing           (2022) 92:107 

Since ĝ+ is a linear combination of the semi-infinite vectors in (8),
∏

|τi |>1

(S − τ−1
i )ĝ+ = 0.

Introduce the polynomial
∏

|τi |>1(t − τ−1
i ) = p0t0 + · · · + pd td with coefficients pi , where

the degree d is equal to the number of poles outside D. Then (8) becomes

p0(S
0 ĝ+) + · · · + pd(S

d ĝ+) = 0, i.e.,

⎡

⎢⎣
ĝ1 ĝ2 · · · ĝd+1

ĝ2 ĝ3 · · · ĝd+2
...

...
...

...

⎤

⎥⎦

⎡

⎣
p0
. . .

pd

⎤

⎦ = 0. (9)

This implies that the number of poles outside D is equal to the smallest value d such that the
matrix in (9) is rank deficient. As before, (p0, . . . , pd) can be computed as a non-zero vector
in the null-space of this matrix and the roots of

p(t) = p0t
0 + . . . pd t

d

are {τ−1
j }. Taking inverse of these roots gives the poles {τ j } outside D.

Step 3. Once the poles inside and outside D in the t plane are ready, we take the union
and apply (3) to get the poles {ξ1, . . . , ξNp } in the z plane. With the poles located, solving
the least square problem

Np∑

j=1

r j
ξ j − z

≈ g(z)

computes the residues {r j }.

2.2 Implementation

To implement this algorithm, we need to take care of several numerical issues.

• The semi-infinite matrix in (7) and (9). In the implementation, we pick a value dmax that
is believed to be the upper bound of the number of poles and form the matrix

H =

⎡

⎢⎢⎢⎣

ĝ−1 ĝ−2 · · · ĝ−dmax

ĝ−2 ĝ−3 · · · ĝ−(dmax+1)
...

...
...

...

ĝ−l ĝ−(l+1) · · · ĝ−(dmax+l−1)

⎤

⎥⎥⎥⎦ or H =

⎡

⎢⎢⎢⎣

ĝ1 ĝ2 · · · ĝdmax

ĝ2 ĝ3 · · · ĝ(dmax+1)
...

...
...

...

ĝl ĝl+1 · · · ĝ(dmax+l−1)

⎤

⎥⎥⎥⎦ , (10)

respectively for (7) and (9), with l satisfying l ≥ dmax. We find that in practice l = dmax

is enough.
• The numerical estimation of the rank d in (7) and (9). To address this, let s1, s2, . . . , sdmax

be the singular values of the matrix H . The numerical rank is chosen to be the smallest
d such that sd+1/s1 is below the noise level.

• The computation of the vector p. We first compute the singular value decomposition
(SVD) of

⎡

⎢⎢⎢⎣

ĝ−1 ĝ−2 · · · ĝ−(d+1)
ĝ−2 ĝ−3 · · · ĝ−(d+2)
...

...
...

...

ĝ−l ĝ−(l+1) · · · ĝ−(d+l)

⎤

⎥⎥⎥⎦ or

⎡

⎢⎢⎢⎣

ĝ1 ĝ2 · · · ĝd+1

ĝ2 ĝ3 · · · ĝd+2
...

...
...

...

ĝl ĝl+1 · · · ĝd+l

⎤

⎥⎥⎥⎦ ,
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respectively for (7) and (9). p is then chosen to be the last column of the V matrix.
• The matrix H in (10) requires the Fourier transform ĝk from k = −(dmax + l − 1) to

(dmax + l − 1).

– In the random access model, we choose an even Ns ≥ 2(dmax + l) and define for
n = 0, . . . , Ns − 1

tn = exp

(
i
2πn

Ns

)
, zn = −√

ab
tn + 1

tn − 1
. (11)

Using samples {g(tn)} at the points {tn} corresponds to approximating (4) with the
trapezoidal rule. The trapezoidal rule is exponentially convergent for smooth func-
tions when the step size h = 2π

Ns
is sufficient small. In the current setting, this

corresponds to

h 	
√
a

b
, i.e., Ns 


√
b

a
.

Applying the fast Fourier transform to {g(tn)} gives {ĝk} for k = − Ns
2 , . . . , Ns

2 − 1.
Among them, ĝ−(dmax+l−1), . . . , ĝ(dmax+l−1) are used to form the H matrix in (10).

– In the Matsubara model, g(z) is only given at the Matsubara grid

zn =
{
2n π i

β
, for bosons,

(2n + 1) π i
β

, for fermions.

Computing the integral (5) is not convenient in the t space since the images tn =
zn−

√
ab

zn+
√
ab

are not uniformly distributed. Instead, applying (3) shows that, in the z

variable, the integral is

1

2π i

∫ −i∞

+i∞
g(z)

(
z − √

ab

z + √
ab

)−(k+1)
2
√
ab

(z + √
ab)2

dz ≈

−1

β

∑

n∈Z
g(zn)

(
zn − √

ab

zn + √
ab

)−(k+1)
2
√
ab

(zn + √
ab)2

,

where the last step uses the trapezoidal quadrature on the Matsubara grid. The trape-
zoidal rule is exponentially convergent in the regime a 
 π/β. Since the last sum is
over all integers, it needs to be truncated between−Nm and Nm for some integer Nm .
Noticing that the terms in the sum decay only quadratically, Nm is typically chosen
to be quite large for a good accuracy.

• The least square solve for {r j }. Using the zn points in (11), we solve the following system

r = arg minx∈CNp

1

2
‖Ax − b‖2, A =

[
1

ξ j − zn

]

n, j

, b =
⎡

⎣
g(z1)
. . .

g(zNs )

⎤

⎦ ,

The entries of r are the residues {r j }.
We would like to comment that the implementation decisions made above are by no means
the only choice. We refer to the excellent papers [4, 17, 18] for other possible choices.
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2.3 Matrix-valuedVersion

Let us comment on the matrix-valued version (2). The algorithm remains essentially the
same. Below we list the differences.

• Ĝk is now the matrix-valued Fourier coefficients from the samples G(tn) ≡ G(z(tn)).
• The SVD is applied to the lN 2

b × (d + 1) matrices

⎡

⎢⎢⎢⎣

cv(Ĝ−1) cv(Ĝ−2) · · · cv(Ĝ−(d+1))

cv(Ĝ−2) cv(Ĝ−3) · · · cv(Ĝ−(d+2))
...

...
...

...

cv(Ĝ−l) cv(Ĝ−(l+1)) · · · cv(Ĝ−(d+l))

⎤

⎥⎥⎥⎦ or

⎡

⎢⎢⎢⎣

cv(Ĝ1) cv(Ĝ2) · · · cv(Ĝd+1)

cv(Ĝ2) cv(Ĝ3) · · · cv(Ĝd+2)
...

...
...

...

cv(Ĝl) cv(Ĝl+1) · · · cv(Ĝd+l)

⎤

⎥⎥⎥⎦ ,

where cv(·) turns a matrix into a column vector.
• The least square problem is applied to

R = arg min
X∈CNp×N2

b

1

2
‖AX − B‖2, A =

[
1

ξ j − zn

]

n, j

, B =
⎡

⎣
rv(G(z1))

. . .

rv(G(zNs ))

⎤

⎦ ,

where rv(·) turns a matrix into a row vector. Each row of R is then reshaped back to the
Nb × Nb matrix R j . In the special case of R j = v jv

∗
j , v j can be further constructed by

applying a rank-1 approximation to R j .

2.4 Special Cases and Extensions

Below we include a few comments concerning special cases and direct extensions.

• We have assumed that the poles reside in the two disks in the z plane. In many applica-
tions, it is known that the poles are actually on the real axis. In such a case, the Fourier
coefficients ĝk and hence the matrix H are real. Therefore, a real SVD can be used while
determining the rank d and the coefficients (p0, . . . , pd). Finally, the roots of p(z) are
also real. These considerations can significantly improve the stability as shown in Sect. 3.

• We have not specified any noise model. If the noise model is known a prior, it is possible
to denoise the values g(zn) before applying the algorithm described. Such a denoising
step can potentially improve the accuracy and stability of pole locations.

• The algorithm can also be extended to the general setting, where the imaginary axis iR
is replaced with any simple curve on the Riemann sphere. If the curve is smooth, the
extension is straightforward as the trapezoidal quadrature can still be applied. When the
curve is non-smooth, a special quadrature is needed for good accuracy.

3 Numerical Results

This section presents a few numerical examples. In all examples, a = 1, b = 100. The noise
added to g(z) is multiplicative:

gnoisy = gexact · (1 + σNC(0, 1)).

This is a reasonable model since in many applications the magnitude of the noise is often
proportional to the magnitude of the signal. For each example, we present the numerical
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results for both the random access model and the Matsubara model. For the random access
model, Ns = 1024. For the Matsubara model, Nm = 106 and β = 10π .

Example 1 We first consider the case of complex pole locations. Within each circle, we place
four poles and the residues {r j } are of unit order. Figure 3 plots the results at the noise level
σ = 0, 10−6, 10−5, and 10−4, where the left and right columns are for the random access
and Matsubara models, respectively. The results show that

• At σ = 0, the algorithm gives perfect reconstruction at machine accuracy.
• At σ = 10−6, the poles are accurately identified.
• At σ = 10−5, the number of poles are correctly recovered, though the locations of the

two poles far from iR are wrong.
• At σ = 10−4, only the six poles close to iR are identified.

Example 2 Next we consider the case of real pole locations. Within each circle, there are 4
poles and the residues {r j } are again of unit order. Figure 4 summarizes the results at the
noise level σ = 0, 10−5, 10−4, and 10−3.

• At σ = 0, the algorithm gives perfect reconstruction.
• At σ = 10−5, the poles are also recovered perfectly.
• At σ = 10−4, the pole locations are recovered accurately, though with some errors for

the two poles farthest away from iR.
• At σ = 10−3, only the six poles close to iR are identified.

A comparison with the previous example suggests that enforcing the real constraints signif-
icantly improves the stability and accuracy of the algorithm.

Example 3 Finally, we consider the matrix-valued version. The dimension Nb of the matrix
R j is set to be Nb = 4. When other parameters are fixed, larger values of Nb significantly
improve the accuracy since each matrix entry effectively provides a new data point. With
more data, the effective noise level goes down significantly.

Within each circle, there are again 4 poles and the residues {v j } (and equivalently {R j })
are of unit order. Figure 5 summarizes the results at the noise level σ = 0, 10−4, 10−3, and
10−2.

• At σ = 0, the algorithm again gives perfect reconstruction.
• At σ = 10−4, the reconstruction is near perfect.
• At σ = 10−3, the pole locations are recovered with good accuracy, though there are some

errors for the two poles away from iR.
• At σ = 10−2, only the six poles close to iR are identified.

Noticing that the noise level in this example is much higher than the ones used in the previous
examples, the results confirm that the matrix-valued version is easier, especially when Nb is
large.
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Fig. 3 Complex pole locations, with different levels of noise. Left: random access model. Right: Matsubara
model
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Fig. 4 Real pole locations, with different levels of noise. Left: random access model. Right: Matsubara model
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Fig. 5 Matrix case with real poles, with different levels of noise. Left: random access model. Right: Matsubara
model
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