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Abstract

In this paper we survey algorithms for finding the maximum cardinality and the maximum
weight matching in a bipartite graph (V, E) with |V| vertices and |E| edges. We discuss the
complexity of various algorithms for these problems, with an emphasis on algorithms for sparse
graphs. We provide a detailed tutorial description of implementations of some promising algo-
rithms, suggest improvements, and provide an experimental comparison of our code with other
well-known codes on large sparse matrices. The improvements that we suggest significantly
reduce the execution time of the original algorithm for finding the maximum weight matching
in sparse bipartite graphs with the best-known strongly polynomial worst-case time complexity
of O([V|(|E| + |[V|log|V|)). We show that if (1) the graph can be partitioned into two parts
by a node-separator of size O(|V|%), where 0 < a < 1, (2) the number of nodes in the larger
of the two partitions does not exceed |V|/¢, where ¢ > 1, and (3) both partitions of the graph
recursively obey conditions (1) and (2), then the maximum-weight bipartite matching problem
can be solved in O(|V|*(|E|+|V|log|V])) time. This is significant because a majority of graphs
arising in real-world applications lend themselves to such partitioning in O(|V|log|V]) time.

Keywords: graph algorithms, bipartite matching, assignment problem, sparse matrices, linear
systems.
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1 Introduction

Finding the maximum cardinality matching in a bipartite graph and the maximum weight matching
in a weighted bipartite graph (an instance of the assignment problem) are important problems
with many applications in operations research, combinatorial analysis, and solving sparse systems
of linear equations. The application that motivated our study of these algorithms is the LU
factorization of large sparse matrices. Numerical stability in the LU factorization is maintained
through partial pivoting, which can have a negative impact on the factorization speed, significantly
so on parallel computers. Row interchanges due to pivoting during factorization can unpredictably
affect the nonzero structure of the factor, thus making it impossible to statically allocate and
distribute data-structures among processors. Such interchanges and their side-effects can cause
significant inter-processor communication and load-imbalance in a parallel implementation of LU
factorization. Permuting the rows or the columns of the sparse matrix to ensure a non-zero diagonal
or to maximize the product of the absolute values of the diagonal entries are among the techniques
often used as preprocessing steps to LU factorization in order to reduce the number of dynamic
pivoting steps [17, 16, 38, 39, 44]. Permuting to maximize the diagonal in a sparse coefficient
matrix can also be a useful preprocessing step while solving a sparse linear system by an iterative
method [16].

A sparse matrix can be represented by a bipartite graph. The two vertex sets of the bipartite
graph correspond to the rows and columns of the matrix, respectively. If there is a nonzero value
in location (z,y), then vertex x from the row set is connected by an edge to vertex y of the
column set. If, for an n X n matrix, a matching of maximum cardinality (n) is found, then we have
established that the matrix is structurally non-singular and we can permute the rows or the columns
to place a nonzero entry at each diagonal location. In the weighted version of the problem, the
edges in the bipartite graph are assigned weights equal to the absolute values of the corresponding
matrix entries. Then finding the maximum cardinality maximum weight matching can lead to
a permutation with not only a zero-free diagonal, but with a “heavy” diagonal, which further
reduces pivoting during factorization. The algorithms for finding the maximum weight matching
maximize the sum of the absolute values of the diagonal entries. However, by using the logarithm
of the absolute values of the matrix entries, maximizing the product of the absolute values of the
diagonal entries is straightforward and is more useful in practice in reducing partial pivoting during
factorization [16, 38, 39].

In this paper we survey algorithms for finding maximum cardinality and maximum weight
matching on bipartite graphs. We discuss the complexity of various algorithms, with an emphasis
on algorithms for sparse graphs. We provide a detailed tutorial description of implementations of
some promising algorithms, suggest improvements, and provide an experimental comparison of our
code with other well-known codes on large sparse matrices. Some of the improvements suggested in
this paper significantly reduce the execution time of the original algorithm for finding the maximum
weight matching in a sparse bipartite graph G = (V, E) with the best-known strongly polynomial
worst-case time complexity of O(|V|(|E| + |V |log|V|)). We show that if (1) the graph can be
partitioned into two parts by a node-separator of size O(|V|*), where 0 < a < 1, (2) the number



of nodes in the larger of the partitions does not exceed |V'|/c, where ¢ > 1, and (3) both partitions
of the graph recursively obey conditions (1) and (2), then the above problem can be solved in
O(|V|*(|E|+|V|log|V]) time. This is significant because a majority of graphs arising in real-world
problems lend themselves to such partitioning in O(|V|log|V|) time.

The paper is organized as follows. Section 2 introduces some terminology and notation used in
the paper. Section 3 contains a survey of the algorithms on maximum cardinality and maximum
weight matching algorithms. In Section 4, we describe in detail the Hopcroft-Karp algorithm [30] for
finding maximum cardinality matching. In Section 5, we describe an algorithm due to Kuhn [36] and
Munkres [43] for finding the maximum weight matching and present our implementation scheme. In
Section 6, we describe another algorithm for finding a maximum weight matching that is due to Karp
[33]. We provide experimental results on four different versions of the Kuhn/Munkres algorithm and
compare them with those obtained on a commercial code MC64 from Harwell Subroutine Library
[31] in Section 7. Section 8 contains concluding remarks.

2 Terminology and Notations

Let G = (V, E) be an undirected graph with vertex set V' and edge set E. If an edge joins vertex u
and v, we denote it as uv. If a path consists of edges uiug, usus, uzuy, - . ., ux_1u where u; are all
distinct, we denote it as uyug -+ - ug_1ug. A bipartite graph is a graph whose vertex set V can be
divided into two sets X and Y and each edge joins one vertex from X and one from Y. We often
denote a bipartite graph G as ((X,Y), E). A matching M is a set of edges such that no vertex in
G is incident to more than one edge in M. A vertex is called free if it is not incident to any edge in
M. If M is a matching, we use w(M) = >, c s w(zy) to denote the weight of the matching. An
alternating path relative to a matching M is a path P = ujug - - - us where its edges are alternatively
in E\ M and M. An augmenting path relative to a matching M is an alternating path of odd
length and both of its two endpoints are free. If graph G is a bipartite graph, one endpoint of any
augmenting path must be in X and the other must be in Y. The symmetric difference, A ® B, of
two sets A and B is defined to be (A\ B)U (B\ 4) = (AU B) — (AN B). Since & is associative
(AeB)eaC=A® (Ba®C)), we can write A1 & Ay @ --- & A,, without confusion.

3 Survey

In this section, we present a brief survey of sequential and parallel algorithms for maximum cardi-
nality matching and maximum weight matching on bipartite graphs.
3.1 Finding a Matching with Maximum Cardinality

We usually use mazimum matching to denote the matching with maximum cardinality. There is a
theorem on maximum matching by Berge (see [4], [5]):

Theorem 3.1 If M is not a mazimum matching, there exists an augmenting path P relative to
M, and M & P is a matching with size |M| + 1.



According to this theorem, a way of finding a maximum matching in a bipartite matching is to
seek augmenting paths. This algorithm is usually called Hungarian Method (see [5]). The following
is a description of the algorithm and, at the end of it, M is the maximum matching.

00 M « (;
01 for each vertex x € X
02 if x is free then

03 search for an augmenting path P from z;
04 M+ M & P;

05 endif,

06 endfor;

Searching for an augmenting path from a free vertex € X involves traversing the bipartite
graph from z until we get a free vertex y € Y. The time complexity of this algorithm is O(|V||E|).
In an actual implementation, we usually use depth first search rather than breadth first search for
traversing because, in practice, the former visits fewer edges and turns out to be faster.

The asymptotically best result for maximum matching is accredited to Hopcroft and Karp
(see [30]). Their idea was to find all augmenting paths with shortest length in two traversals of
the bipartite graph. They proved that (1) shortest augmenting paths relative to a matching M
are vertex disjoint, (2) if we always search for the shortest augmenting paths, then all augmenting
paths found can only have O(1/|V|) different lengths. Thus if we keep on searching for a maximal
set of shortest augmenting paths, the time complexity is O(y/[V]|E|).

The comparison between the Hungarian method and Hopcroft-Karp algorithm is discussed
in [18]. In that paper, Duff and Wiberg gave an implementation scheme and several useful heuris-
tics. They showed that when the matrix is not large, the running time of Hungarian Method and
Hopcroft-Karp algorithm is comparable; however, when matrix is large, the Hopcroft-Karp algo-
rithm is faster. This experiment observation is consistent with the algorithmic analysis. Therefore,
we choose Hopcroft-Karp algorithm for our implementation. A detailed description of Hopcroft-
Karp algorithm will be provided in Section 4.

The maximum cardinality matching problem for bipartite graphs can easily be formulated as
a maximum flow problem [1]. Cherkassky et al. [10] have performed a detailed computational
comparison of the matching algorithms based on finding augmenting paths and maximum flows.
Their conclusion is that the augmenting-paths algorithms are faster my a moderate constant factor
for most classes of problems. Therefore, we do not consider flow based matching algorithms in this
paper for the maximum cardinality matching problem.

Rabin and Vazirani [45] give a conceptually simple algorithm for finding a maximum cardinality
matching. Their randomized algorithm works on a certain matrix representation of the given graph
called Tutte matrix and has a worst-case time complexity O(|V|?).

Parallel algorithms for bipartite matching with maximum cardinality have also been developed.
Most of them use the concurrent-read concurrent-write (CRCW) parallel random access machine
(PRAM) as the parallel computation model. Schieber and Moran [46] provide an algorithm for gen-
eral graphs. Their algorithm runs in O(|V'|log |V|) time using |E| processors. On bipartite graphs,

4



a modified version of the algorithm can achieve running time O(|V|) using |V || E| processors. Gold-
berg et al. [26] propose a bipartite matching algorithm based on interior-point method that runs in
O(V/|E|log?|V|) time using |V| processors. Goldberg et al. [27] provide a sublinear-time algorithm
for this problem. Their algorithm runs in O(|V|?/3log?|V'|) time using O(|V'|>®) processors. A de-
tailed survey and description of parallel PRAM algorithms for solving the maximum-cardinality
matching problem can be found in [34]. In all parallel algorithms proposed for this problem to date,
the processor-time product is larger than O(/[V[|E|)—the serial time complexity of Hopcroft-Karp
algorithm.

3.2 Finding a Maximum Weight Matching

The first algorithm for maximum weight matching on bipartite graphs (also known as the assign-
ment problem) was proposed independently by Kuhn [36] and Munkres [43]. A detailed description
can be found in [5, 37]. The original algorithm was described in the context of complete bipartite
graphs; i.e., each pair (z,y) € X X Y is joined. A modification of their algorithm for the sparse
bipartite case can be found in the report [23] by Galil. Since our matrices of interest are sparse,
we will focus only on this version of the algorithm.

We first introduce a label function [ for vertices, a slackness function 7 for edges, and an
important theorem from [23].

Definition [ is a label function on the vertex set of bipartite graph G = ((X,Y), E), iff for
each z € X, l(z) > 0, each y € Y, I(y) > 0 and for each edge zy € E with weight w(zy),
(z) +U(y) —w(zy) > 0.

Definition = is slackness function on edges relative to [, for each zy € E, we define n(zy) =
I(z) + l(y) — w(zy). We usually call w(zy) the slackness of edge zy.

Theorem 3.2 Let M be a matching on a bipartite graph G = ((X,Y),E). M is a mazimum
weight matching if there exists a label function | such that

(1) If xzy € M, then w(zy) = 0.

(2) If v € X is free then l(z) = 0; if y € Y is free then l(y) = 0.

Proof: Suppose U = {z|qy: zy € M} and V = {y|Fz : zy € M }.
From (1) and (2), we get

doowlwy) = D Uz)+ D Iy)

TyeM zelU yev
= Z l(z) + Z I(y) ( because Z l(z) =0, Z l(y) =0).
zeX yey zeX\U yeY\V

Assume that M’ is any other matching. From the definition of the label function, we have that

Yo wlmy) < Y @)+ D Uy)

zyeM’ T€EX yey
= > w(zy).
TyeEM



So M is the maximum weight matching. ]

The algorithm is based on Theorem 3.2 and starts with a trivial solution that violates some of
constraints (2). Then the algorithm works in a way that the number of constraints being violated
is reduced. At the end, when no constraint is violated, the matching has the maximum weight.
Usually we starts with solution M = 0, I(z) = mazycp{w(zy’)} for all z € X and [(y) = 0 for all
y € Y. The worst-case complexity of this algorithm is O(|V'||E|log |V'|) (Section 5.4), which can
be improved, at least theoretically, to O(|V|(|E| + |V|log|V])) (Section 5.5.1).

There are already a few implementations of this algorithm. Carpaneto and Toth [7, 8, 9],
Burkard and Derigs [6], and McGinnis [40] provide Fortran implementations of algorithms for
solving dense and sparse assignment problems. Variations of the basic Kuhn/Munkres algorithm
have also been proposed in [6, 12, 13, 32]. Olschowka and Neumaier [44] discuss the assignment
problem in the context of partial pivoting for LU factorization. Duff and Koster [16] describe an
implementation for sparse matrices. Their implementation (Subroutine MC64) is a part of the
Harwell Subroutine Library [31]. The complexity of that implementation is O(|V || E|log |V|).

Karp [33], introduced an algorithm which runs in O(|[V|?log|V|) expected time with the as-
sumption that the edge costs are independent random variables and the costs of the edges incident
with any given vertices are identically distributed. A detailed description is provided in Sec-
tion 6. As we shall discuss in Section 6, although the asymptotic complexity of Karp’s algorithm is
smaller than O(|V||E|log|V|), the constants associated with this algorithm are much higher and
the O(|V||E|log |V'|) smallest augmenting-paths based implementations run much faster in practice.

The assignment problem can be reduced to a transportation problem, or a minimum-cost
maximum-flow problem. O(|V||E|log|V|) algorithms based on flow methods can be found in [19,
20]. Gabow and Tarjan [22] proposed an O(|E|\/[V[log(|[V|K)) algorithm using cost-scaling and
blocking flow techniques under the assumption that the edge-weights are integers in the range
[-K,...,K]. Goldberg and Kennedy [25] improved the original Gabow-Tarjan algorithm with sev-
eral heuristics and performed a detailed experimental evaluation of this algorithm. In Section 7,
we compare the results of Goldberg and Kennedy’s code with that of the smallest augmenting-
paths based codes such as MC64 and our own code. Just like the maximum cardinality matching
problem, even for the maximum weight matching problem, the augmenting-paths based methods
seem to outperform the flow algorithms for graphs arising in real applications. Also, in the context
of sparse LU factorization, the augmenting-paths methods generate label vectors corresponding to
the rows and columns, which are needed to scale the matrix prior to factorization. It is not clear if
these scaling vectors can be computed cheaply using flow algorithms to solve the maximum weight
matching problem. Therefore, the augmenting-paths based methods appear to be more suitable for
our application.

In [2], Avis and Lai propose a heuristic that obtains a relatively fast approximate solution to
the assignment problem that is within a small constant factor of the optimal solution with a high
probability.

Parallel algorithms for maximum weight matching problem have been developed along with
the parallel algorithms for maximal cardinality matching. Goldberg et al. [26] propose an al-



gorithm dealing with the bipartite graph with only integral weights. The running time is
O(V/|E|log?|V|log(|[V|C)), where C > 1 is the upper bound on the absolute value of the in-
tegral weights on edges. Goldberg et al. [27] present a sublinear-time algorithm which runs in
O(|V|*/31og? |V |log(|]V|C)) time using O(|V|*) processors. Both algorithms use CRCW PRAM
as parallel model. As far as practical parallel algorithms are concerned for the sparse bipartite
assignment problem, the work by Balas et al. [3] is promising; however, no complexity analysis is
presented in [3].

4 The Hopcroft-Karp Algorithm

The Hopcroft-Karp algorithm works by continually searching for shortest augmenting paths and
terminating when no such path can be found. Suppose we start from the matching My = 0, and we
compute sequences {My, M1, Ms,...,M;,...} and {Py, P, P,,...,P;,...} where P; is the shortest
augmenting path relative to M;, and M;; = M; & P;.

In [30], Hopcroft and Karp proved some important results, which we reproduce below in the
form of Theorem 4.1 to Theorem 4.4:

Theorem 4.1 Let M and N be matchings on G = (V,E), If M| =r, |[N| = s and s > r, then
M & N contains at least s — r vertex disjoint augmenting paths relative to M.

Proof: Consider the graph with V as vertex set and M & N as edge set. Since M and N are
matchings, each vertex is incident with at most one edge from N \ M and one edge from M \ N.
So each component of this graph is

1. an isolated vertex
2. a cycle of even length with edges alternatively in M \ N and N \ M, or
3. a path whose edges are alternatively in M \ N and N \ M.

The components in the first two categories do not contribute to the difference between the size
of N and M — (s —r). Among the paths in the last category, if a path has an even number of
edges, it does not contribute either. If it has an odd number of edges, then there are two cases: (1)
If it is an augmenting path relative to M, then it has one more edge in N than in M. (2) If it is
an augmenting path relative to NV, it has one more edge in M than in N. So s — r is the difference
between the number of augmenting paths relative to M and the number of those relative to V.
Thus, the number of augmenting path relative to M is at least s — r. U

Theorem 4.2 Let M be a matching, P a shortest augmenting path relative to M, and P’ an
augmenting path relative to M & P. Then

|P'| > |P|+2|P NP

Proof: Let N =M @ P @ P', from Theorem 3.1. N is a matching with size |M|+2. Then M & N
contains two vertex disjoint augmenting paths (relative to M): P; and P,. Since M @ N = P& P/,



then |P @ P'| > |P1| + |P|. Since P is shortest augmenting path, |P & P'| > 2|P|. Also |[P® P'| =
|P| + |P'| — 2|P N P'|. Therefore, |P'| > |P|+ 2|P N P'|. O

An immediate corollary is that |P;| < |Pjt1].
Theorem 4.3 For all i and j such that |P;| = |P;|, then P; and P; are vertez-disjoint.

Proof: We use contradiction to prove the theorem. Suppose |P;| = |P}|, i < j, and P; and P;
are not vertex disjoint. Then there exist £ and ! such that : < k < | < j, P, and P, are not
vertex disjoint, and for each m, k < m < I, P, is vertex-disjoint from P, and P,. Then P, is an
augmenting path relative to My @ Py, so |P)| > |Py| + |Px N P|. But |P| = |Pg|, and |P, N F| = 0.
Thus P, and P, have no edges in common. Now suppose P, and P, had a vertex v in common.
Since v is not free in My, @ P, it cannot be the endpoint of P,. Then v must be incident with one
matched edge in P;. But since this matched edge is also in Py, P, and P, must share one common
edge. Hence, P, and P, are vertex disjoint, and a contradiction is obtained. U

Theorem 4.4 Let s be the cardinality of a mazimum matching. The number of distinct integers
in the sequence
|Pol, | Prly---s | B3] - - -

is less than or equal to 2|\/s| + 2.

Proof: Let r = |s —+/s|. Then |M,| = r. Let N be the maximum matching. According to
Theorem 4.1, M, & N contains at least s — r vertex disjoint augmenting paths relative to M,.
These augmenting paths totally contain at most r edges from M,, so one of them must contain at
most |r/(s —r)| edges from M,. Therefore there are at most 2|7/(s — r)| + 1 edges in this path.

And
2[5 — /3]
(s = [s—vs])
For each i < r, | P;| is one of the |/s] + 1 positive odd integers less than or equal to 2|/s] + 1.
Also |Pry1),-..,|Ps| contribute at most s — r = [/s]| distinct integers, and the total number of
distinct integers is less than or equal to |/s] + 1+ [/s] < 2[/s] + 2. O

1P| < +1<2[Vs] +1.

From these theorems, we can break the computation of maximum matching into at most 2|/s]+
2 stages. In each stage, we search for a maximal set of augmenting paths that are vertex disjoint
and of shortest length. Also, since they are vertex disjoint, they are all relative to the matching
with which the stage is begun. The algorithm is as follows:

00 M « (;

01 while true

02 Get length [ of shortest augmenting path;
03 if no augmenting path exists then

04 return;

05 endif



@ (b)

Figure 1: (a) A example bipartite graph with a matching (shown by solid edges), (b) The visited
vertices are divided into phases and the edges join vertices in adjacent phases, the search is from
pho = {z1,x6}, y3 and y5 are free vertices in phs.

06 Find a maximal set of paths {Q1,...,Q:} of length [ and
07 vertex disjoint;
08 M-~MoQ®Q20 - ®Qy;

09 endwhile

In order to get the shortest length of augmenting path relative to existed matching M, we use
breadth first search. The algorithm is described as follows:

00 pho < {z € X|z is free};

01 i+« 0;

02 while true

03 phoiv1 < {y € Y|y & Uo<k<oi Phi A 3z € phy; : zy € E\ M };
04 if some y € phg;t is free then

05 break;

06 else (every y € phg;y1 is not free)

07 phoit2 < {z € X|z & Ug<p<aitr Pl Ay € phoiv1 1y € M}
08 i it

09 endif

10 endwhile

This search is performed in phases. Since the graph is bipartite, vertices of ph; belong to X
when ¢ is even, and belong to Y when i is odd. In phase 0, we put all the free vertices of X into
phg. Since the edges from vertices in phoy to vertices in phogy1 are not in matching M and those
from vertices in phogi1 to vertices in phogio are in matching M, then for each ¢ the distance of
shortest alternating path from the vertices in ph; to any free vertex in X (i.e., any vertex in phg) is
just 7. We stop after the phase in which at least one free vertex in Y is reached. The index of this



phase is the length of shortest augmenting path. An example is shown in Figure 1. We begin from
vertices pho = {z1,x¢}, and at phase 5, we have free vertices y3 and y5 from Y in phs = {ys, 95}

The next task in the while loop is to find a maximal set of augmenting paths. Let s =
min{i|3 free vertex y € ph;}, i.e., s is the length of shortest augmenting path. Then consider the
graph G’ with vertex set V' = {v € Uy<;<,phi} and edge set E' = {zy € E\ M|z € phy; and y €
phoit1} U{zy € M|y € phejt1 and z € E)h_gHg}. In the example of Figure 1, G' is figure (b). Since
vertices are divided into phases and edges join vertices in phase i and 1 + 1 for 0 < i < s, G' is
layered graph. Every shortest augmenting path relative to M is now a path from phg to phs in G'.
Finding a maximal set of shortest augmenting paths is equivalent to finding a maximal set of paths
from phy to phs. We only need to use one pass of depth first search from vertices in phy to achieve
that because of the following fact: Each edge processed in depth first search either becomes part of
the path constructed or will never be used in any augmenting path in the maximal set. In either
case each edge needs to be visited only once.

The proof is easy: suppose edge vxvgi1 is an edge from phy to phgi1 in G'. In the depth
first search, suppose when we reach viviy1, the path we kept in stack is voviva - - vy where v; €
phi. Suppose vivgy1 cannot be an edge in any path with vgvive - - - v as prefix but it can be an
edge in another path wyvy ---v; where v{ € ph; for each i and v}, = v vy, | = vgq1. However,
VU1 - - - Vg (V) ) Uk 41 (Vg1 V)4 g - - - v 1 also a path from phg to phs in G’ and this is contradictory
to the assumption that vgvive - -- v, cannot be the prefix of any path. Considering the example
of Figure 1, the maximal sets of shortest augmenting paths can be {z1y223y1%2Y3, T6Ys T5Y1Z4Ys5},
{z1y223y17ays}, {T6y223yamays}, or {z1y2w3y172y3}

In the depth-first search based implementation of the Hungarian method, a step called cheap
assignment is widely used. Before we begin depth first search from one free vertex z € X, we
first check whether there is a free vertex y € Y joined with z. If so, we get a augmenting path
of length 1 immediately. Otherwise, we do depth first search beginning from z. It is essentially a
combination of a 1-step breadth first search and a depth first search in order to get the advantage
of both methods. In Hopcroft-Karp algorithm, since in the first iteration we can get a maximal set
of augmenting paths of length 1 if they exist, and in latter iterations all augmenting paths have
lengths greater than 1, cheap assignment is not necessary.

5 The Kuhn/Munkres Algorithm

In this section, we present the details of Kuhn/Munkres algorithm and our implementation scheme.
The method we described in Section 3.2 aims to find the maximum weight matching. However,
what we actually need for LU factorization is the maximum weight matching among the matching
with maximum cardinality. We solve this problem as follows: Let u = Y,y maxgyecrp{w(zy)}.
Then p is a upper bound of the weight of any matching. We introduce a new weight function w’,
where for each zy, w'(zy) = w(zy) + p. Then we use Kuhn/Munkres algorithm on this weight
function.
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5.1 Algorithm Description

Recall that in Section 3.2, we introduced the label function, the slackness function, and Theorem 3.2.
The theorem said that a matching M is the maximum weight matching of bipartite graph G =
((X,Y), E) iff there exists a label function [ on that graph G satisfying the following two constraints:

(1) if zy € M, then w(zy) =0,

(2)ifz € X isfree l(z) =0, if y € Y is free I(y) = 0.

We also pointed out that the Kuhn/Munkres algorithm begins with a trivial label function
that initially violates some constraints, and during the iterations of the algorithm, we decrease the
number of violations. Let X = {z1,z9,...,2;,...} and Y = {y1,%2,.--,¥i,...}. For any S C X,
we define N(S) ={y €Y|3z € S Jzy € E : w(zy) = 0}. The detailed algorithm is as follows:

00 M « 0;

01 I(z) ¢ mazgycp{w(zy’)} for each z € X;
02 I(y) < 0 for each y € Y;

03 fori=1,...,|X|

04 if x; is free then

05 S« {x;}, T « 0

06 while true

07 if N(S) DT then

08 pick y € N(S)\ T}

09 if y is free then

10 P + augmenting path from z; to y;

11 M «+— M & P, break;

12 else (y is not free and 3z : yz € M)

13 S+ SU{z} and T < T U{y}, go to line 06;
14 endif

15 else (N(S)=T)

16 Let 8! = minges{l(z)}

17 5 = minmes,er\T{”(ﬂcy)}

18 § = min(8*, 62);

19 l(z) + l(z) — § for z € S;

20 l(y) «l(y) +dfory e T;

21 if 6 =26 =1(z') for some z' € S then

22 P «+ alternating path from z; to z';

23 M +— M & P, break;

24 else (6 = 62 = n(z'y') for some edge z'y’)
25 if v is free then

26 P «+ augmenting path from z; to v/;
27 M <+ M & P, break;

28 else (y' is not free and 32’ : ¢/2' € M)
29 S+ SU{Z'} and T + T U{y'}, go to line 06;

11



30 endif

31 endif
32 endif

33 endwhile

34 endif

35 endfor

In Figure 2, we provide an example of Kuhn/Munkres algorithm on a bipartite graph. We use a
stage to denote a particular iteration of the outermost for loop. At the beginning of the algorithm,
we initialize My = 0, I(z) = mazgy cp{w(zy’)} for all z € X and l(y) = 0 for all y € Y. Then the
algorithm works in | X| stages. In stage i, if z; is free then the algorithm begins with z; and searches
for an augmenting path composed of edges with w(zy) = 0. We denote by S all vertices visited in
X by S and all vertices visited in Y by 7' during the search of augmenting path. At the beginning
of the searching for augmenting path, S = {z;} and T = (). We also introduce N(S) to be the
vertices in Y that are joined to vertices in S by edges with slackness 0. In our implementation, we
use breadth first search for augmenting path because it can keep the path from root to any visited
vertex and thus make easy the work of changing matching. During the search of the augmenting
path, until the path is found,

1. If we find N(S) D T (which means that there are still vertices in Y linked to vertices in S by
edges with slackness 0 not yet visited), then we pick an arbitrary y from N(S)\ 7. Now,

(a) If y is free, then we have found an augmenting path P from z; to y. The next step is
to change M to M @ P and go to next stage. This is what happened in stage 1 of the
example (corresponding to the transition between Figure 2(b) and Figure 2(c)) where
M =0 and P = z1y;. In Figure 2(b), S = {z1}, T =0 and N(S) = {y1 }.

(b) Otherwise, for some z € Z, suppose yz € M. Then put z into S, put y into T, and
keep on the searching for augmenting path. At the beginning of stage 2 (in Figure 2(c)),
S = {z2}, N(S) = {y1} and T = 0. We choose y; from N(S)\ 7T, then put y; into T
and z1, which is joined to y; by an edge in the matching, into S.

2. If we find N(S) = T (which means that all the vertices in Y which are joined to vertices in
S by edges with slackness 0 have already been visited), then we define d' = minges{l(z)},
P Mingesyey\rim(Ty)} and § = min(6',62). Then we change the label function by
decreasing the label value of each vertex in S by § and increasing the label value of each
vertex in T by §. Now there are two possibilities:

(a) Either § = §' = [(z') for some z' € S. Then the path P from z; to z' is an alternating
(not augmenting) path. If this is the case, we let M be M @& P and go to next stage.
In stage 4 (the transition between (e) and (f) in Figure 2), when S = {z1, 29, z3,24},
N(S) =T = {y1,v2,93}, we have § = §' = I(z3) = 3. After we change the label value,
[(z3) = 0. Here P is z4ysz1y2x3 and z3 is free relative to the new matching.

12
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Figure 2: (a) is an example bipartite graph with weight value on edge. From (b) to (i), edges in
matching are solid lines, edge with 7(zy) = 0 are dashed line and all other edges are dotted line.
We also denote the label value besides the vertices. (b) The initial label value. (c) The label value
and matching after stage 1. In stage 1 an augmenting path z1y; was found. (d) The label value
and matching after stage 2. In stage 2 an augmenting path zoy121y2 was found. (e) The changed
label value and matching after stage 3. In stage 3 augmenting path z3yox1y3 was found. After the
change on label function m(z1y3) = 0 and thus this edge can be used in the augmenting path. (f)
The changed label value and matching after stage 4. In stage 4 an alternating path xz4yszi1yoxs3 is
found. Now [(z3) = 0 and it is a free vertex. (g) The label value and matching after stage 5. In
stage 5 an augmenting path z5ys; was found. (h) The label value and matching after stage 6. In
stage 6 an augmenting path zgys was found. (i) The label value and matching after stage 7. In
stage 7, an augmenting path z7yszsy; is found. After the change of label function, 7(z7ys) = 0
and thus this edge can be reached and added into augmenting path. The label value and matching
in (i) meet the constraints in Theorem 2.2, so matching in (i) is the maximum weight matching.
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(b) Or 6§ = §? = 7(z'y’) for some edge z'y'. If ¢ is free, the path P from z; to 3 is an

augmenting path. We let M be M @& P and go on next stage. This case appears in
stage 3 (the transition between (d) and (e) in Figure 2). At that point, S = {z1,z2, 23},
N(S) = T = {y1,y2}, and we have § = 62 = w(x1y3) = 1. After we change the label
value, m(z1y3) = 0 and z3y,z1y3 is an augmenting path P.
If 4 is not free, then for some 2’ € X,4'2’ € M. Now we just insert 2z’ into S, insert
y' into T' and keep on the searching for augmenting path. This case appears in stage 7
(the transition between (h) and (i) in Figure 2). At that point, we have S = {zg,z7}
and N(S) =T = {ys}. Since § = 62 = n(z7y5) = 1 and ys is not free, we add ys into T
and add zs5, the vertex joined with y5 by an edge in matching, into S. It turns out that
through this edge we find the augmenting path z7ysxs5yr7.

After all the | X| stages are finished, the matching M is the maximum weight matching. We
now prove the following theorem which states the correctness of the algorithm above.

Theorem 5.1 Let X; = {z1,29,...,2;}, Gi = ((X;,Y),ENX; xY) and M; be the matching after
stage 1. After stage i, the matching M; is the maximum weight matching of bipartite graph G;.

Proof: Because of Theorem 3.2, we only need to prove that after stage ¢ for each ¢, function [ still
remains a label function and meets the constraints (1) and (2) in Theorem 3.2 relative to G; and
M;.

Now let us consider the label function [ first, we change label function only when N(S) = T.
We claim that [ remains a label function after the change of label value, because

1. Only the label value of vertex in S has decreased, but since the decreasing amount is bounded
by 6' = minges{l(z)} from below. Therefore, after changing, the label value is also greater
than 0.

2. (a) If an edge zy is in S x T, then after changing, w(xy) is still 0.

(b) If zy is in S x (Y \ T, since the decreasing value is bound by 6 = mingegyeyv\r{m(zy)},
m(xy) is still greater than or equal to 0.

(c) If zy in (X; \ S) x T, then 7(zy) increases.
(d) If zy in (X; \ S) x (Y \T), n(xzy) does not change.

Therefore, for any edge zy, w(xy) is still greater than or equal to 0 after the changing of label
value.

Since in the initial matching I(y) = 0 for each y € Y and whenever any y € Y is matched it
cannot be free in the future, all free y € Y have I(y) = 0.

Now we only need to prove I(z) = 0 for all free z € X; and if zy € M;, w(zy) = 0. We use
induction to prove this result.

1. Base Step: When 7 = 0, the result is trivial.
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2. Induction Assumption: Suppose for each i < k, M; is the maximum weight matching for
G;.

3. Induction Step: If in My, vertex z;, is free, then before this stage stops, § = d' = I(zy),
and [(xy) is set to 0. If xy is not free, there are two cases. If we find an augmenting path P,
since the edges of P is in the breadth first search tree, then for each edge z'y’ € P, we have
m(z'y’) = 0, so constraint (1) is met. Since no vertex in X}, turns to be free, so constraint
(2) is also met according to induction assumption. The other case: for some vertex z’ € Xy,
§ = 6 = I(z'), then since the path P from z; to z’ is in the breadth first search tree, for
each edge z'y' € P, we have 7(z'y’) = 0, so constraint (1) is met. After the change of label
function, z' is free now and [(z') turns to be 0, so constraint (2) is also met.

So for each i, M; is the maximum weight matching for G;. And when i = |X|, G; = G so M x|
is actually the maximum weight matching for G. L

5.2 Heap and Offset

The two costly operations in the algorithm described are calculating ¢ and changing the label
function ! according to . These operations, if implemented carefully [37, 23, 24], can be performed
fairly efficiently.

We maintain the edges with 7 > 0 in a heap in order to find §. Elements in heap are either (1)
the slackness of an edge which is greater than 0, or (2) the label value of z € S. Whenever we visit
a vertex z € X, i.e.,, S + SU{z}, we put {n(zy)ly € Y \ T} and I(z) into the heap. When we
need to calculate J, we just delete the minimum element from the heap. Since set S and T evolve
along with the search of augmenting path, sometimes the edge with value § extracted from heap
may turn out to be in S x T, so we need to check the element we get from the heap first. If the
edge we got is in S x T, we just discard it and delete the minimum element again.

According to the algorithm, after we calculate §, we need to change the label function. Since
we have introduced the heap, we need to change the value of elements in it as well. In order
to make these changes efficiently, we introduce a variable, offset, which keeps the sum of s by
which we alter the label values. Suppose, in one stage, the sequence of ds by which we change
the label values is {61,02,...,04}. Let offset, offsets, ..., offsety be the past values offset, where
offset; = 31 <<; Ox—the value of offset after the ith change. We also keep the following invariance:
The value of_el_ement in heap is its actual value plus the current value of offset.

Suppose vertex £ € X is inserted into S before the ith change, then at the end of this stage,
the change of I(z) is >°;<x<, 0 Which is equal to offsety— offseti_1. Now all we need to do is to
add offset;_1 to l(z) at the time z is inserted into S and subtract offset, from I(z) when this stage
finished.

If vertex y € Y is inserted into T just before the ith change, then at the end of this stage, the
total change of I(y) is 3°;<x<, Ok which is also equal to offset;— offset;—1. Therefore, we subtract
offset;_1 from [(y) at the time y is inserted into 7" and add offset; to I(y) when the stage finishes.
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Before we make the ith change on the label function, we must delete the entry with the least
value from the heap. But from the invariance, this value is not §;, it is actually offset;_1 + d;
(because before change i, the current offset is offset;_1). However, this is exactly equal to offset;,
the value that we need to keep in offset after the ith change. When we make the ith change on
the label value of z € S and y € T, the slackness values of edges in S x (Y \ T') decrease by d;. So
the values in heap should decrease by ;. However, since offset increases by d;, then the invariance
allows us to keep the values in the heap unchanged.

5.3 Similarity with the Single-Source Shortest Path Problem

Once the label function is implemented the way described in Section 5.2, the i-th stage of the
algorithm is essentially reduced to finding a shortest path from vertex z; in X (if z; is free) to
any free vertex in Y in a directed graph G = (V, E), where (z) € E if zy ¢ M;_; (M;_, is the
matching found after stage i — 1) and (§&) € E if zy € M;_;. The weight of each edge in G is
the slackness of that edge in G. Now each stage can be implemented by appropriately modifying
Dijkstra’s single source shortest path algorithm [14]. A best-first search is performed starting at ;.
alternating levels of the search tree have nodes from sets X and Y, respectively. The out-degree of
each node at level with nodes from set Y in this tree is one because each outbound edge from such
a level must be a part of M;_;. The process is terminated as soon as the current shortest path
includes a free node from Y. The unique path in the search tree to this node from z; is the desired
augmenting path for stage .

5.4 Complexity Analysis

Now let us discuss the time complexity of our implementation. In each stage,

1. We visit each edge at most once, so each edge is inserted or deleted at most once. Therefore,
the total number of heap operation is O(|E|). Since each heap operation is logarithmic
to the size of heap, which is O(|E|), the heap operations cost time O(|E|) x O(log|E|) =
O(|E[log |E|) = O(|E[log [V']).

2. The operations for changing the label value of vertices is O(|V'|). For each vertex z € X, if it
is inserted into S, we decrease its label value by the offset at the point of insertion. And at
the end of each stage, we increase the label value of each vertex in S by offset at that time.
So the label value of any vertex in X is changed at most twice and the number of operations
for changing label value of vertices in X is O(|V]). This is also true for Y for the same reason.

3. The number of operations on slackness of edges is O(|E|), because we only calculate slackness
value of any edge when it is inserted into heap.

Thus, the time complexity of each stage is O(|E|log|V'|). Considering there are a total of |V|
stages, the overall complexity is O(|V||E|log|V]).

16



5.5 Improvements for a Faster Implementation

While implementing the Kuhn/Munkres, several techniques can be used to significantly reduce
the running time of the algorithm for most matrices. Many of these improvements have been
proposed in the literature earlier. Although most of these do not reduce its worst-case asymptotic
complexity for general bipartite graphs, one of them reduces the worst-case complexity for a special,
but practically significant, class of graphs (Section 5.5.8).

In Section 7, we will present experimental data showing the effect of some of these techniques.

5.5.1 Using advanced data structures

As described in Section 5.3, each stage of the Kuhn/Munkres algorithm can be reduced to the
application of Dijkstra’s single source shortest path algorithm. This is a very well studied algorithm
and new data structures have been proposed to reduce the complexity of this algorithm. Notable
among these are Fibonacci Heaps [11, 21] and Relaxed Heaps [15]. The use of these data structures
would reduce the complexity of each stage to O(|V||E| + |V|log|V]). Although asymptotically
smaller that the worst-case of using a simple heap, the actual cost of implementing these complex
data structures could easily outweight the advantages in an implementation. The main reason for
this is that the actual number of steps performed while running the Kuhn/Munkres algorithm on
real-life problems is much smaller than that predicted by the worst-case bound of O(|V||E|log |V])
because the search for most augmenting paths involves only a small fraction of the total number of
edges. Therefore, in our implementations, we use the conventional heap or its variations.

5.5.2 Using a combination of a heap and a queue

This is a fairly straightforward idea that has been proposed earlier [13]. While computing the
shortest augmenting path, the smallest slackness values and the corresponding edges are stored in
a queue and only the edges whose slackness values are greater than the smallest slackness are stored
in the heap. Edges from the queue are selected (at unit cost each) until the queue is empty, only
when a delete operation is required on the heap. The insertions are performed in the queue and the
heap depending on the slackness value of the edge being inserted. Thus, the number of operations
on the heap are reduced, especially for graphs containing many edges with the same weight, and
hence with many augmenting paths of the same length.

5.5.3 Finding an initial matching

After initializing the matching and label function, we can get a graph G* = ((X,Y), E*) where
E* = {zy|l(z) + l(y) = w(zy)} = {zy|l(z) = w(zy)} because we set I(y) = 0 during initialization.
We can then run the Kuhn/Munkres algorithm on this graph G* and get a maximum weight
matching My on G*. After this step, we reinitialize the label function and run the algorithm on
the entire graph G to expand the matching to include the remaining vertices.

Let X¢ = {z|z is not free relative to My} and Gy = ((Xo,Y ), EN Xy xY). My is a maximum
weight matching for Gy. With this M, and G as base step, we can use induction (as in Theorem 5.1)
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to prove the correctness of using the preprocessing step.

Not surprisingly, in our implementation, we found this preprocessing step to be of limited
effectiveness in reducing the overall run time. Just like cheap-assignment in the case of maximum-
cardinality matching, this is probably because the edges that the initial matching finds are also
cheaply discovered by the main algorithm. Therefore, the cost of making two passes over the graph
and finding initial matching in the first pass compensates for the small advantage gained by the
initial matching.

5.5.4 Minimizing the number of heap insertions

This optimization takes advantage of the fact that in each stage, we seek the shortest path to only
one free vertex in Y, not to all the vertices in the graph as in the general single source shortest
path problem. During the search for the augmenting path, if 7, is the smallest slackness value
of any edge zy in the heap such that y € Y is free, then any other edge z'y’ in the heap such that
y' € Y is not free and 7(z'y’) > mmin will never be selected from the heap. The reason is that an
augmenting path to free Y node with the smaller 7 value in the heap will be found first. To utilize
this fact, we use a variable m,;, to keep track of the minimum 7 value among the edges inserted
in the heap with a free Y vertex and do not insert any edge zy in the heap if w(zy) is greater than

or equal to the current ;.

5.5.5 Limiting the size of the heap

For a given y € Y, only one edge zy can be used because y can be visited only once. Therefore,
we can limit the size of the heap to O(|Y|) instead of O(|E|) by keeping at most one edge zy for
each y € Y. For each y € Y, we keep a pointer to the location in the heap of the edge zy in P(y).
If there is no such edge in the heap, then P(y) = —1. Before inserting an edge zy in the heap, we
check if another edge z'y is already present in the heap. If P(y) is —1, we insert zy in the heap.
If 2'y is present in the heap then if w(zy) > w(z'y), we discard zy, else, we replace =’ by z and
m(z'y) by 7(zy) in the corresponding fields of the record in the heap at the location stored in P(y)
and adjust the position of the record in the heap with respect to its new 7 value. Since the 7 value
can only reduce, this record can only move closer to the root of the heap. Thus the cost of each
insertion and deletion can be bounded by log |Y| rather than log |E|. Another important advantage
of this technique is that it saves space used by the heap.

Note that in the context of Dijkstra’s single source shortest path algorithm, it is a standard
practice to use a heap of size |V| as described above. However, the way the Kuhn/Munkres
algorithm is described in some texts (e.g., [5]), it is not clear that the size of the heap can be
limited to |Y'| when the algorithm prescribes additions to sets S and 7' (Lines 13 and 29).

5.5.6 Using a heap of heaps

This technique can be applied in lieu of the one described in Section 5.5.5 and attempts to take
advantage of the fact that there are many more insertions in the heap than deletions. This technique
doubles the cost of each deletion, but asymptotically reduces the expected cost of insertions.
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Note that all the edges zy in the heap corresponding to a given x € X are inserted together.
This happens when a free z; is chosen as the starting point of a potential augmenting path at the
beginning of the loop starting at Line 3 and the outgoing edges from z; may be inserted into the
heap, or when a node y € Y is visited such that zy € M and the outgoing edges from z may be
inserted in the heap. We can exploit this observation and maintain a hierarchical heap structure.
We maintain a heap of size at most |X|. An entry corresponding to an z € X in this top level heap
is a pointer to a second level heap which only stores the outgoing edges from z. The value field of
an entry in the top level heap is equal to the value of the root of the second level heap it points to.

At the time of insertion, a heap is constructed from all qualifying outgoing edges from a given z
and this heap is inserted in the heap of heaps. At the time of deletion, an edge is deleted from the
second level heap pointed at by the root of the top level heap. The top level heap is then adjusted
because the value of the root changes according to the value of the new root of the corresponding
second level heap.

It is well known that heapifying n elements, or constructing a heap of size n given all n elements
takes O(n) time [11]. Therefore, total cost of all insertions in a given step of the loop starting on
Line 3 is O(|E| + | X|log |X|) and the total cost associated with heap insertions during the entire
algorithm is O(| X||E| + | X|?1log|X|). The cost of a deletion is O(log |X| + log|Y]) = O(log|V]).
In [33], Karp shows that if the edge weights are independent random variables and for each fixed
source z € X, w(zy) for all y € Y, are drawn independently from a common distribution, then
the expected value of the total number of deletions during the entire course of the algorithm is
O(|X|?). Therefore, under the randomness assumptions mentioned above, the expected cost of the
algorithm is (| X||E| + | X|? log |V|) when using the heap-of-heaps technique.

5.5.7 Column scaling

Let wpqz be the maximum weight of any edge in the bipartite graph. Let w; be the maximum
weight of any entry in the j-th column of the sparse matrix; ie., w; = maxl-):q1 w(z;y;). Before
running the Kuhn/Munkres algorithm, we add wy,qee — wj to each edge zy;. Now there are at least
|Y| edges in the graph with weight wy,q.. Without affecting the final outcome of the algorithm!,
this tends to increase the number of edges for which the initial slackness is zero. As the search for
an augmenting path proceeds, this allows more edges to be put in N(S) and fewer in the heap.
Also, more edges are picked out of the queue N(S) in the segment of the pseudocode in Lines
8-14 in Section 5.1 than from the heap. The net results is that the number of insert and delete
operations on the heap is reduced. If the improvement suggested in Section 5.5.3 is implemented,
then this technique tends to increase the size of the initial matching, thus leaving fewer nodes to
be matched while working on the full graph.

As discussed in Section 1, if the algorithm is being used to maximize the absolute diagonal
product of the sparse matrix, then the technique suggested in this section is equivalent to scaling

!The final value of the labels is often used to scale the sparse matrix so that each diagonal entry has a value of
1 and all non-diagonal entries are smaller than or equal to 1 [44, 16]. In this case, we subtract Wmaes — w; from the
label of each y; € Y after the algorithm to obtain the label values that would have been generated by running the
algorithm on the original matrix.
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the the columns (assuming that the set X represents rows and set Y represents columns) so that
they all have at least one entry equal in magnitude to the largest entry in the matrix. This scaling
tends to reduce the condition number of the matrix by eliminating the contribution of poor scaling
to the ill-conditioning of the matrix. In Section 7, we show that without this scaling, the run time
of the Kuhn/Munkres algorithm increases with the condition number of the matrix and that scaling
significantly reduces the impact of initial ill-conditioning on the run time of the algorithm.

5.5.8 Using graph-partitioning to limit the scope of augmenting-path searches

In this section, we present the most important result of this paper. We show that if a bipartite
graph can be partitioned into two disconnected parts by a vertex-separator of size O(|V'|*), where
0 < a <1 such that the number of vertices in the larger partition does not exceed |V|/c, where
¢ > 1, and both partitions of the graph can be similarly partitioned recursively, then the assignment
problem can be solved in O(|V|*|E|log|V|) time. Miller et al. [42, 41] describe a class of graphs
called k-overlap graphs that satisfy the above property. All graphs arising in finite-difference and
finite-element computations are included in this class. Moreover, the partitioning described above
can be computed in O(|V|log|V|) time [41], which is smaller than the worst-case time requirement
of the matching algorithm.
We present a theorem before arriving at the main result.

Theorem 5.2 If an n X n sparse matriz A is the adjacency matriz of a d-dimensional overlap
graph as defined in [42, 41] and G4 = ((Xa,Y4),E4) is the bipartite graph corresponding to A,
then G4 has a vertez separator X5 C X4 of size O(n{4=Y/) that can be found in O(n) time and
partitions G 4 into two bipartite graphs G 41((X a1,Y41), Ea1) and Ga2((Xa2,Y4a2), Ea2). Moreover,
max(| X 41|, |Xa2|) < n/c, where c > 1.

Proof: A is the (possibly unsymmetric) sparse adjacency matrix of some (possibly directed) graph
Gp = (Vp, Ep), where (ij) € Ep iff a;; # 0. Let Gy be the undirected counterpart of Gp. Then
the structure of the symmetric matrix B = A + A7 is the adjacency structure of Gy = (Vi7, Er),
where Gy is a d-dimensional overlap graph. As shown in [41], a set of edges S C Ey can be
found in O(n) time that partitions Vi into two disjoint subsets Vi1 and Vo such that there is
no edge in Ey — S connecting a vertex i € Viy; and a vertex j € Viyg; |S| = O(nld=D/d); and
max(|Vi1|, |[Vie|) < n/c for some ¢ > 1.

Now consider the bipartite graph Gp = ((Xp,Yg), Ep) corresponding to matrix B. In Gp,
X = {z1,22,...,2n}; YB = {y1,¥2,---,Yn}; and z;y; € Ep iff ij € Ey. Let Sp = {z;y; : ij €
S or ji € S}. Tt is easy to see that Sp is an edge-separator for the bipartite graph Gz. Let X be
a vertex cover of Sg in Xp; i.e., X% = {z; : z;y; € Sp for some y; € Yp}. Then the set of vertices
in X9 is a vertex-separator for the graph Gp. |X¥| < |Sp| = 2|S| = O(n(?~1/4), Consider the
bipartite graph G4 = ((X4,Ya), E4) corresponding to matrix A. Since X4 = Xp,Y4 = Y3, and
E4 C Eg, X% is also a vertex separator for G 4.

Let X separate G4 in two subgraphs Ga1 = ((Xa1,Ya1), Ea1) and Gz = ((X a2, Yaz), Eas).
Then |Ya1| = |Vi1| and |Yaz| = |Vire| by construction of Sp from S (note that X° is a vertex
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(a) A bipartite graph (b) The graph after partitioning X

Figure 3: A bipartite graph G = ((X,Y), E) before and after partitioning by the set X C X of
separator nodes. X7 U X Uxs = X, E1UE, UE® = E andYiUY, =Y.

cover of SB). Also, |X 41| < |Vy1] and | X 42| < |Viya| because some vertices from each X; con-
tribute to the vertex cover (strict equality would have held without this contribution). Therefore,
max(| X a1, | Xa2|) < max(|Vi1], |Vuz|) < n/c, where ¢ > 1.

This completes the proof. L]

We now use the result of Theorem 5.2 to derive a worst-case complexity bound on the run
time of the Kuhn/Munkres algorithm on graphs that meet the requirements of the theorem. Here
we assume that the input matrix always has a perfect matching. Figure 3 shows the partition of
the set X on a bipartite graph G = ((X,Y), E). X is the subset of X whose removal partitions
G = ((X,Y), E) into two disjoint parts G; = ((X1,Y1), E1) and G2 = ((X2,Y2),Es). We can
restrict the scope of augmenting path searches originating from any vertex in X or Xy as follows.
We would run the Kuhn/Munkres algorithm on G in such a way that we first choose the free vertices
from X3 as origins of augmenting path searches, followed by the vertices from X5, and finally from
X9, As long as none of the vertices in X° are matched, any augmenting path originating in X,
(X2) can contain edges from only E; (E;). Only after all vertices in X; and X2 are matched,
finding an augmenting path originating from a vertex in X*° may require exploring all E edges.
Both the partitioning and the order in which the vertices of X are considered in the algorithm can
be recursively defined on each partition of the graph.

Let (d — 1)/d = « and let T(G) be the running time of the Kuhn/Munkres algorithm on a
bipartite graph G whose matrix is the adjacency matrix of an overlap graph as described earlier.
Then | X®| = gn®.

T(G) = |X°||E|log|X|+T(G1)+T(Go)
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= fn®|E|logn + G| X1|%|E1|log|X1| + 6| X2|*| E2|log | Xs|
+T(G11) + T(G12) + T(Ga1) + T(G22),

where G;; and G are the partitions of G; (i = 1,2). Since the separator- and partition-size
properties hold recursively, we continue with the derivation of T'(G) as follows:

T(G) < B(n%E[logn+ (n/c)*|Ei|log(n/c) + (n/c)*|Ez|log(n/c))
+T(G11) + T(G12) + T(G21) + T(Ga2)
< B(n®Ellogn + (n/c)*(|E1| + |E2|)logn) + T(G11) + T(G12) + T(G21) + T(G22)
< BIE|(n* + (n/c)*)logn + T(G11) + T(G12) + T(Ga1) + T(Ga2)
< BnYE|(1+c¢*+c2*4...)logn

= O(n®E|logn).

Therefore, for sparse matrices arising in two- and three-dimensional finite-element problems,
the worst-case complexity for permuting the rows to maximize the product of the absolute values
of the diagonal entries is O(,/[V[|E|log|V|) and O(|V|*/3|E|log|V|), respectively. The above
analysis assumes the use of a standard heap data-structure while searching for augmenting paths.
By using more advanced priority queues discussed in Section 5.5.1, a worst-case time bound of
O(|V|*(|E|+|V|log|V])) can be obtained for overlap graphs. This is better than the best previously
known strongly polynomial worst-case bound of O(|V|(|E| + |V |log|V])).

A prerequisite for achieving these lower bounds is to compute a nested-partioning based order
in which vertices from the set X are chosen as starting points of augmenting path searches. This
order can be computed in O(|V|log|V|) time. Although this is asymptotically smaller than the
cost of matching, in practice, the cost of computing the ordering may outweigh the advantage due
to a large constant factor. However, in the context of solving sparse systems of linear equations,
this ordering needs to be computed only once for all matrices with the same structure but different
values. Typical applications do require factoring sparse matrices of the same structure but different
values multiple times.

Another advantage of using a partitioning based ordering of the vertices of X for the
Kuhn/Munkres algorithm is that it can lead to efficient parallel formulations of the algorithm
for the class of matrices for which sublinear size separators exist. The reason is that the augment-
ing path search in the two partitions can proceed independently and this parallelism can be applied
recursively.

6 Karp’s Algorithm

In [33], Karp proposed a new algorithm to solve the maximum weight bipartite matching problem.
Let G be a bipartite graph ((X,Y), E) with weight function w on edges in E. Without loss of
generality, we assume that |X| < |Y|. We call X the source set and Y the destination set. Karp’s
algorithm runs in expected time O(|X||Y|log|Y|) under the assumption that the edge weights are
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independent random variables and the weights of the edges incident with any given vertices in | X|
are identically distributed. This algorithm finds a matching of minimum weights. If we replace
each weight w(zy) by Wmer — w(zy), where wpe, is the maximum of all edge weights, then it is
equivalent to the original problem of finding the maximum weight matching.

6.1 Background

The weight of an augmenting path P, denoted as w(P), is Y cp\prw(€) — Xecpnm w(e). The
following theorem is well-known [20]:

Theorem 6.1 If M is of minimum weight among matchings of cardinality k and P is of minimum
weight among augmenting paths relative to M, then M & P is of minimum weight among matchings
of cardinality k + 1.

From this theorem, we can easily define the following algorithm for solving the assignment

problem:

00 M « (;

01 while | M| < |X]|

02 Let P be the minimum-weight augmenting path relative to M;
03 M+ M @ P;

04 endwhile

The main processing step in this algorithm is to find a minimum-weight augmenting path
relative to the current matching M in each step of the outer loop. The augmenting paths relative
to a matching M can be determined using a directed graph G= (v, E’) where directed edge set E
cousists of the following directed edges (here we represent directed edges from z to y as (zy)):

1. (zy) is an edge with weight w(z,y) if z € X, y € Y and edge zy ¢ M,

2. (yz) is an edge with weight —w(z,y) if z € X, y € Y and edge zy € M.

Let P be a minimum-weight directed path in G from a free vertex in X to a free vertex in Y,
then P — the minimum-weight augmenting path relative to M — is the undirected path associated
with P.

It is well-known that a minimum-weight path in a directed graph from one given vertex set
to another given vertex set can be computed quickly provided all edges are non-negative. In [19],
Edmonds and Karp propose a technique to modify the weights of the edges to be non-negative
while keeping the identity of the identity of the minimum-weight directed path (or paths) from a
free vertex in X to a free vertex in Y unchanged. This is achieved by associating with each vertex v
a “potential” a(v) which affects the weights of the edges of G incident with v. We use @ to denote
the non-negative weight in the following algorithm. This weight function changes according to the
potential function a.

The revised algorithm [33] that incorporates the potential function are given below. Figure 4
illustrates this algorithm on an example bipartite graph.
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01
02
03
04
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07
08
09
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14
15
16
17
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20
21

M + 0;
forveV
a(v) « 0;
endfor
while |M| < | X]|
Generate the associated graph G,
for each zy € E'\ M assign directed edge (zy) weight
w(z,y) < w(z,y) + a(z) — afy);
endfor
for each xy € M assign directed edge (yx) weight
W(z,y) + 0;
endfor
forallveV
Let v(v) be the minimum weight of a directed path in G which
is from a free vertex in X to either v or a free vertex in Y
a(v) + a(v) +7(v);
endfor
Let P be a minimum-weight directed path in G from a free vertex
in X to a free vertex in Y
Let P be the augmenting path in G associated with P;
M+ M o P;
endwhile

Lines 17-18 in the above algorithm are equivalent to finding a single source shortest path in

the graph G from a hypothetical vertex connected to all free vertices in X to any free vertex in Y.

Dijkstra’s single source shortest path algorithms can be easily modified for this purpose (see [33]

for details). The correctness of the algorithm depends on the following properties holding at the

beginning of each iteration of the while loop. These properties can be proven inductively.

1.

2.

6.2

for each free vertex z € X, a(z) = 0;

for each free vertex y € Y, a(y) = a* = mazyev{a(v)};

. for each edge zy € E, w(z,y) = w(z,y) + a(z) — a(y) > 0;
. for each edge zy € M, w(z,y) = w(z,y) + a(z) — a(y) = 0;

. if P is a directed path in G from a free vertex in X to a free vertex in Y and P is the

associated path in G, then w(P) — w(P) = o* = maz,ev{a(v)}.

Modification

While finding the shortest augmenting path using Dijkstra’s algorithm, a priority queue or a heap of

edges must be maintained [11]. Typically, the number of insertions in the heap is much higher than
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Figure 4: In each figure from (a) to (c), on the left is G with matching M denoted by solid line;
in the middle is the directed graph G, « and ~; on the right is edge weight @. « is the value
at the beginning of the correspondent iteration while loop; 7 is the value calculated during that
iteration and the table of w is the value at the beginning of iteration. (d) is the o and w after the
algorithm. In the first iteration, we find the minimum-weight directed path P = {z1y;}. In the
second iteration, the path found is P = {zoy1z1y2}. In the third iteration, the minimum-weight
path is P = {z3yaz1y3}. The final matching is {z1y3, z2y1, z3y2} -
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the number of deletions. Karp [33] describes a method that can significantly reduce the number
of insertions with some increase in the number of deletions. It is based on the use of “surrogate”
items, where the insertion of one surrogate item will take the place of a large number of insertions
of ordinary items.

Counsider a point in the execution of assignment algorithm when a matching M has just been
determined and the node potentials a(v) have been readjusted. Let

o = maz,{a(v)}.
We have already defined that

w(z,y) = w(z,y) + a(z) — aly).
Define w*(z,y) by

’IU*(.’I,',’y) = ’U)(.T,y) + OA(.’IJ) —a’.
Then

w(z,y) < w(z,y),
V(@) +w(z,y) < () +0(z,y),
with equality if y is a free vertex in Y. Also w*(z,y) < w*(z,y') if and only if w(z,y) < w(z,y').

The modified algorithm uses a preprocessing phase in which, for each source z, a list LIST ()
is formed consisting of all ordered pairs (zy) such that y is in Y, sorted in increasing order of the
weight w(z,y).

In the execution of the assignment algorithm, the priority queue () contains two types of items:
regular items of the form ((zz),v(z)+ w(z, z)) and special items of the form ((zy),v(z) +w*(z,y)).
Such a special item is called a surrogate for the regular item ((zz),y(z)+w(z, 2)) f w(z,y) < w(z, 2)
(or equivalently, v(z) + w*(z,y) < v(z) + w*(z,2) < y(z) + w(z, 2))-

The following operations on @ are required during the execution of the algorithm for finding
the shortest augmenting path:

1. Q« 0

2. Test if Q = 0;

3. Q < QUOUT(x);

4. Choose (zy) such that y(z) + @ (2,y) = mingeo{y(u) + B(u,v)}.

The respective implementations [33] of these four operations on () using the surrogate items are
as follows:

1. Q « 0;

2. Test if Q = 0;
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3. (zy) « first element of LIST(x);
insert into @ the special entry ({(zy),v(z) + w*(z,));

4. Procedure Select
do
q < the item of least value in Q;
delete ¢ from Q;
({(zy) < the edge to which ¢ corresponds;
if q is special then
if (zy) is not the last element of LIST(x) then
(zw) <« the successor of (zy) in LIST(x);
insert into @ the special item ((zw),v(z) + w*(z, w));
endif
insert into @ the regular item ((zy),v(z) + w(z,y));
endif
until regular item ((zy),y(x) + w(z,y)) has been selected s.t. (z,y) € M

The following is the final version of Karp’s algorithm [33] for the assignment problem after incor-
porating all the modifications:

00 forzeX

01 LIST(z) < an array containing the set of elements {(zy)|y € Y}
02 in increasing order of w(z,y);

03 endfor

04 M « 0

05 forveV

06 a(v) « 0;

07 endfor

08 while | M| < | X]|

09 PATHSET « 0

10 Q «+ 0;

11 R <+ {free vertices in X};

12 forzeR

13 v(z) « 0;

14 (zy) « first element of LIST(X);

15 Insert into @ the special item ((zy),v(z) + w*(z,y));
16 endfor

17 while R N {free vertices in Y} =

18 Execute Procedure Select (suppose the selected edge is (zy));
19 if y € R then

20 PATHSET + PATHSET U {{zy)};

21 R+ RU{y};

27



22 V() < v(z) + d(z,y);

23 if y is not free then

24 (y,v) < the edge of M incident with y;

25 PATHSET <+ PATHSET U {(yv)};

26 R+ RU{v};

27 Y(v) < 7(y);

28 (vl) + first element of LIST (v);

29 insert into @ the special item ((vl),y(v) + w*(v,1));
30 endif

31 endif

32 endwhile

33 forvé R

34 Y(v) < 7(y);

35 endfor

36 forveV

37 a(v) < a(v) +v(v);

38 endfor

39 Let P be the unique directed path from a free vertex in X to Y
40 whose edges are all in PATHSET;,

41 Let P be the set of edges in G corresponding to directed edges in P;
42 M+ M o P;

43  endwhile

6.3 Analysis

First, the preprocessing sorting operation which is involved in forming the list LIST(z) for each
z € X requires O(|X||Y|log |Y]) steps.

Under the randomness assumptions state earlier in this section, Karp [33] shows that the ex-
pected value of the number of edges deleted from the heap during the entire course of the algorithm
is O(]X|?). Each edge-deletion may require the selection of one special and one regular item from
@ corresponding to that edge. So each deletion costs O(log |E|) time. Thus, the expected cost of
the entire algorithm is O(|X|?log |E| + | X||Y|1log [Y]) = O(|X||Y|log |[Y]).

6.4 Practicality Issues

Although the expected asymptotic complexity of Karp’s algorithm is smaller than that of the ba-
sic Kuhn/Munkres algorithm, it is much slower in practice. Karp’s algorithm seeks the minimum
among all matchings of cardinality k& in the k-th stage. The augmenting path that Karp’s algorithm
seeks in the k-th stage can start from any of the free vertices of set X. On the other hand, the
Kuhn/Munkres algorithm chooses a vertex from the set X as the starting point of the augmenting
path. At the end of stage k, it is just assured of finding the maximum/minimum matching con-
taining the starting vertex selected in stage k£ and the previously matched vertices, not an overall

28



H Domain Matrices H

Linear Programming allgrade, compl, kk6
Fluid dynamics af23560, e40r0000, e40r1000, e40r5000, rmal0, shyyl61
Material science cry10000
Thermodynamics epb3

Chemical engineering lhr34, lThr34c, lhr71, Ihr7lc
Probability application rwdlsl

Nuclear physics utmb940

Structural engineering s3dkt3m2, s3dkg4m?2
Electrical engineering pre2, twotone
Unstructured 2-D Euler solver | venkat01, venkat50

Other FEM problems av41092, fidapm11

Table 1: Test matrices and their application domains.

maximum/minimum matching of size k. Although, at the end of | X| stages, both algorithms find
the minimum/maximum matching, the goal that Karp’s algorithm seeks at each stage is much more
difficult and costly. Each stage starts with putting the all outgoing edges from all free vertices in X
into the heap. In Kuhn/Munkres algorithm, each stage starts by putting the outgoing edges from
just one selected free vertex in X in the heap.

We did implement Karp’s algorithm, and as expected, it was much slower than the basic
Kuhn/Munkres algorithm, that did not even incorporate any of the improvements of Section 5.5.
For instance, for the matrix utm5940, Karp’s algorithm took about 7 seconds, which is slower by
about a factor of 70 than Kuhn/Munkres. This factor was observed to be even higher for larger
matrices.

7 Experimental Results

In this section, we present the results of our implementation of the Kuhn/Munkres algorithm and
the impact of the various improvements suggested in Section 5.5. We compare the timings with a
commercial code MC64 from the Harwell Subroutine Library [31]. Both MC64 and our code use
similar algorithms that find the maximum weight matching by searching for shortest augmenting
paths. We also present timing results of a code based on an algorithm that uses an alternate strategy
to find the maximum weight matching. We have chosen a test suite containing several large sparse
matrices from a variety of applications® to conduct our experiments on. The application domains
of these matrices are listed in Table 1.

All experiments were conducted on a 200 MHz Power3 RS6000 workstation with 64Kb level 1

>The linear programming examples are derived by choosing random bases from the constraint matrices.
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HK KM-1 KM-2 KM-3 KM-4 MC64
Matrix n nnz || time (s) | time (s) | time (s) | time (s) | time (s) | time (s)
af23560 23560 484256 111 0.49 0.46 0.52 0.45 0.45
allgrade 21699 470822 .053 15.7 14.9 14.9 5.34 24.6
av41092 41092 | 1683902 3.99 57.0 51.7 56.1 41.2 41.7
compl 16783 578665 179 12.1 13.7 5.13 3.40 6.39
¢ry10000 10000 49699 .009 0.05 0.05 0.05 0.05 0.05
e40r0000 17281 553956 122 1.57 1.44 0.43 0.66 0.40
e40r1000 17281 553956 123 3.21 2.97 1.47 1.55 0.94
e40r5000 17281 553956 123 4.53 4.26 2.93 2.77 3.21
epb3 84617 | 463625 .108 0.42 0.42 0.44 0.44 0.44
fidapml11 22294 623554 .082 10.2 10.2 3.14 3.07 4.14
kk6 62065 259871 .068 3.80 3.63 6.39 2.92 4.99
lhr34 35152 764014 370 3.89 3.72 1.54 1.87 1.21
lhr34c 35152 764014 372 4.20 3.98 3.46 3.06 2.98
lhr71 70304 | 1528092 721 8.65 8.74 3.50 4.17 2.73
lhr71c 70304 | 1528092 720 8.77 8.60 7.50 6.69 6.64
pre2 659033 | 5959282 4.29 10.4 10.3 23.0 16.5 8.03
rmal0 46835 374001 .256 2.35 2.48 1.92 1.84 2.70
rwdlbsl 5151 20199 .005 0.49 0.57 0.56 0.34 0.37
s3dkq4m2 90449 | 2455670 375 2.38 2.42 1.98 1.98 1.97
s3dkt3m2 90449 | 1921955 .360 2.15 2.17 1.67 1.67 1.71
shyy161 76480 329762 .085 3.65 4.25 2.51 2.77 1.15
twotone 120750 | 1224224 .436 2.82 2.88 1.53 1.23 1.75
utm5940 5940 83842 .012 0.10 .094 0.10 .097 0.10
venkat01 62424 | 1717792 449 1.25 1.36 1.27 1.26 1.17
venkat50 62424 | 1717792 .449 1.30 1.42 1.27 1.25 1.16

Table 2: The running time of the Hopcroft-Karp algorithm, various versions of the Kuhn/Munkres
algorithm, and MC64. HK refers to the Hopcroft-Karp algorithm for maximum cardinality match-
ing. KM-1 refers to the basic Kuhn/Munkres algorithm while minimizing the number of heap
insertions and limiting the heap size as suggested in Sections 5.5.4 and 5.5.5, respectively. KM-2
is similar to KM-1 except that it uses a heap of heaps (Section 5.5.6) instead of limiting the heap
size. KM-3 uses the scaling technique described in Section 5.5.7 on top of KM-1. KM-4 is the
same same algorithm as KM-3 except that the vertices in X are chosen in an order determined by

a recursive partitioning of X as suggested in Section 5.5.8.
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cache and 4Mb level 2 cache. All our codes as well as the CSA code (Section 7.3) are written in
C, while MC64 is written in Fortran. The highest level of optimization (-O4 option) was used to
compile all programs. In most case, the AIX Fortran compiler XLF tends to generate much faster
code than the C compiler XLC. The comparison with MC64 must be interpreted in the light of this
fact. In all our experiments, we have sought to maximize the product of the absolute values of the
diagonal entries; hence, the original maximum weight algorithms are executed on bipartite graphs
whose edge-weights are derived by removing all explicit zeros from the original matrices and then
taking the logarithm of the entries. The time for this preprocessing is included in the running times
reported for all algorithms.

As mentioned in Section 5.5.3, finding an initial matching by a greedy algorithm did not result
in a noticeable improvement in run times on an average. However, maintaining a heap and queue
combination (Sections 5.5.2 and reducing the number of heap insertions by keeping track of the
current shortest path to a free vertex in Y (Section 5.5.4) speeded up the basic Kuhn/Munkres
algorithm significantly for all matrices. We use that implementation, as shown in the column
titled KM-1 in Table 2, as the basis for comparing the effect of the other suggested improvements.
Recall from Section 5.5 that limiting the size of the heap to O(|X|) and using the heap-of-heaps
technique are mutually exclusive. In the column titled KM-2 in Table 2, we show the timing results
of using the heap-of-heaps technique in lieu of reducing the number of heap insertions. The relative
performance of the algorithms in columns KM-1 and KM-2 seems to be somewhat matrix dependent
and there doesn’t appear to be a clear winner in terms of run time. We chose to use the algorithm
in KM-1 to implement other optimizations because it uses less memory (Section 5.5.5).

Column KM-3 shows the effect of column-scaling as suggested in Section 5.5.7 on the KM-1
algorithm. Column KM-4 shows the result of prepermuting the matrix rows based on a recursive
partitioning of X as suggested in Section 5.5.8. The partitioning time is not included because
in typical applications, a matrix with the same structure but different values must be factored
multiple number of times. The nested-partioning based row ordering needs to be computed only
once for a given nonzero sparse pattern and therefore its cost is amortized over several instances
of the maximum-weight matching computation. A number of software packages are available to
compute good partionings very efficiently [29, 35, 28]. We used an existing sparse matrix ordering
software [28] to generate a recursive row-partitioning. Columns KM-3 and KM-4 clearly show the
benefits of column-scaling and row-partitioning on the Kuhn/Munkres algorithm. We present more
experimental evidence in support of these two techniques in Sections 7.1 and 7.2, respectively.

Finally, the last column in Table 2 shows the run time of MC64, which is a commercial Fortran
code for finding the maximum/minimum weight matchings in bipartite graphs, and includes many
of the improvements suggested in Section 5.5. Algorithmically, the MC64 code is equivalent to
that corresponding to column KM-3. MC64 converts the maximum weight matching problem to
a minimum weight matching problem by replacing each weight w(zy) by wmaz(z) — w(zy), where
Wrnaz (%) = maxy,cy w(zy;). This is equivalent to a scaling of rows, similar to the scaling of columns
that we have implemented.
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Matrix | KM-1 (s) | KM-3(s) | MC64 (s)
rnd25kR 12.0 9.17 7.82
rnd25k06 46.5 11.1 16.5
rnd25k12 68.8 10.4 22.3
rnd50kR 45.1 37.0 26.3
rnd50k06 178. 36.1 56.1
rnd50k12 268. 38.2 95.5

Table 3: The effect of scaling on the run time of the Kuhn/Munkres algorithm. Algorithm KM-3
is the same as KM-1, except that the columns of the matrix are scaled in KM-3.

7.1 The Effect of Column-Scaling

Intrigued by the effect of scaling on the run time of the Kuhn/Munkres algorithm, we tried to
empirically establish some connection between the condition number of a matrix and the run time
of the Kuhn/Munkres algorithm. In Table 3, we present the run times of KM-3, KM-4, and MC64
on different matrices of the same size and nonzero pattern. The matrix rndzzkR is an zz000 X
22000 random sparse matrix generated by MATLAB. The matrix rndzzkyy is an zz000 x zz000
random sparse matrix with condition number equal to 10%Y, again generated by MATLAB. The
number of nonzeros (edges) in all matrices (graphs) is approximately 625000. The table shows
that while the run times of KM-1 and MC64 increase with the condition number of the matrix,
KM-3 is reasonably immune to changes in the condition number for the Matlab generated matrices.
However, we would like to draw the reader’s attention to the run times in columns KM-1 and KM-3
in Table 2 for matrices e40r0000, e40r1000, and e40r5000. These three matrices have identical non-
zero patterns and are picked up from different time steps in a CFD simulation with a progressively
worsening condition number. Although KM-3 is much faster than KM-1 in all three cases, both
KM-1 and KM-3 run times increases with an increasing condition number. Thus, it appears that
the scaling technique can improve the run time of the Kuhn/Munkres algorithm by neutralizing the
ill-conditioning due to poor scaling, but the run time still depends on the intrinsic ill-conditioning
present in the matrix.

7.2 The Effect of Row-Partitioning

Column KM-4 in Table 2 shows that partitioning the rows as discussed in Section 5.5.8 does
improve the run time of the algorithm corresponding to column KM-3. However, the speedup due
to partitioning is not as dramatic as the reduction in the worst-case complexity. This is primarily
because of two reasons. First, the worst-case bound of O(|V||E|log|V]) is quite loose. This bound
is based on assigning a cost of O(|E|log|V|) to each augmenting-path search. Even without row-
partitioning, the search for an augmenting path usually involves only a small fraction of the total
number of edges in the graph, especially with some of the optimizations suggested in Section 5.5.
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KM-3 KM-4 MCé6y
Matrix time (s) | time (s) | time (s)
af23560 0.50 0.45 0.56
allgrade 16.7 4.76 17.9
av41092 100. 44.0 118.
compl 6.76 3.89 6.44
cry10000 0.05 0.05 0.06
€40r0000 0.47 0.47 0.40
€40r1000 1.79 1.46 1.20
€40r5000 3.24 2.65 3.57
epb3 0.50 0.44 0.49
fidapm11 5.41 3.54 7.51
kk6 6.31 2.57 3.23
lhr34 3.06 1.72 3.94
lhr34c 4.87 291 4.69
lhr71 8.29 3.66 12.7
lhr71c 11.3 6.56 13.0
pre2 47.7 17.4 144
rmal0 2.02 1.85 3.35
rwb151 0.57 0.43 0.52
s3dkq4m?2 2.10 1.87 1.96
s3dkt3m2 1.75 1.55 1.81
shyy161 8.82 3.30 1.33
twotone 1.82 1.23 2.44
utmb940 .099 .093 0.10
venkat(01 1.36 1.24 1.08
venkat50 1.35 1.24 1.10

Table 4: Effect of row-partitioning on the run time of the Kuhn/Munkres algorithm. The three
columns in this table represent the same algorithms as the last three columns of Table 2, except
that a randomly permuted version of the original matrix is supplied to the algorithms.
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Secondly, all graphs in Table 2 come from real problems and the rows and columns in most of
them are numbered in some natural way corresponding to the physical domain that the problem is
modeling. The intrinsic locality of this natural ordering encompasses some of the features of a row-
partitioning based ordering suggested in Section 5.5.8 and prevents a large number of augmenting
path searches from spanning large portions of the graph. In Table 4 we reproduce the run times of
algorithms KM-3, KM-4, and MC64, except that this time we permuted the input matrix randomly
before starting. A comparison of the corresponding columns of Tables 2 and 4 reveals that the KM-
4 run time is largely unaffected by the initial ordering; however, the KM-3 and MC64 run times
are quite sensitive to the initial numbering of rows and columns in the sparse matrix. In Table 4,
the KM-4 run times are significantly better than those of KM-3 and MC64. Thus, Table 4 captures
the real impact of the recursive row-partitioning on the time complexity of the Kuhn/Munkres
algorithm on sparse bipartite graphs.

7.3 Comparison With a Cost Scaling Push-Relabel Code

As mentioned in Section 1, there are two classes of algorithms for solving the maximum matching
problems—augmenting path algorithms and flow algorithms. In this section, we present timing
results of the best known implementation, namely CSA, [25] of the asymptotically fastest flow
algorithm [22] and compare them with the run times of the augmenting path algorithms given
in Table 2. The asymptotic complexity of the CSA algorithm [22, 25] is O(|E|\/[V[log(|V|K)),
where the edge-weights are integers in the range [—K, ..., K]. Since the CSA algorithm admits
only integer edge-weights, we had to make an adaptation to use it for our application, in which,
the edge-weights are real, in general. Additionally, we are interested in maximizing the product of
the absolute values of the diagonal entries of a matrix. Therefore, if w(ij) is a nonzero entry in the
i-th row and the j-th column of the original sparse matrix, then we assign a weight w(ij) = PREC
x (log(|(w(i7)|) — log(wmin) + 1) — PREC + 1 to the corresponding edge of the bipartite graph.
In the preceding expression for w(ij), Wmin is the nonzero element of the matrix with the smallest
absolute value and PREC > 1 is a measure of the precision that is preserved while converting the
real values into integers to input to the CSA code. After taking the logarithms, first the values
are normalized so that the smallest edge-weight is 1. Now, if PREC = 1, then effectively all real
edge-weight values are truncated to their integer parts. If PREC = 10%, then ¢ decimal digits from
the fractional part are taken into account by the CSA code. The smallest edge-weight is maintained
at 1, but the the largest integer edge-weight input to the CSA code increases with ¢ (and hence,
with PREC).

In [25], Goldberg and Kennedy describe a few different variations of their CSA code. According
to the authors, CSA_Q_QM is the most promising version of their code, although they report some
classes of problems on which CSA_S_QM performs better. In the first two columns of Table 5, we
present the timing results of CSA_S_QM and CSA_Q_QM on our suite of test matrices for PREC
= 1. Although CSA_S_QM is the faster of the two on more matrices than CSA_Q_QM, the latter
appears to be more robust. For instance, on matrices s8dkg4m2 and s3dkt3m2, CSA_S_QM is
extremely slow. For some higher values of PREC, CSA_S_QM gave abnormally slow timings for
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CSAS_.QM | CSA_Q-QM | CSA_Q-QM | CSA_Q_.QM | CSA_Q-QM
Matrix PREC = 1 PREC =1 PREC = 10 PREC = 102 PREC = 103
af23560 3.12 3.62 1.57 1.66 1.79
allgrade 9.81 11.5 12.6 13.6 14.8
av41092 80.6 87.0 101. 104. 85.7
compl 9.50 9.46 9.76 15.0 14.7
cry10000 0.16 0.41 0.13 0.13 0.14
€40r0000 3.31 2.30 2.81 3.04 3.60
e40r1000 3.68 3.63 3.40 3.76 3.67
e40r5000 16.4 20.1 5.95 4.11 3.64
epb3 1.56 1.62 1.28 1.38 1.51
fidapm11 20.8 25.3 8.55 7.35 9.69
kk6 8.84 9.45 12.0 114 6.88
lhr34 6.09 6.06 6.43 6.38 6.34
lhr34c 154 16.1 15.9 15.6 15.8
lhr71 16.2 18.3 18.0 18.0 18.7
lhr71c 31.5 34.8 37.3 33.2 32.7
pre2 81.8 132. 115. 145. 133.
rmal0 46.7 45.7 7.39 8.49 8.79
rwb151 0.51 0.59 0.56 0.58 0.56
s3dkq4m?2 67.8 4.27 4.82 5.26 5.44
s3dkt3m2 55.0 4.61 5.10 5.48 5.73
shyy161 1.17 0.78 4.73 5.84 6.71
twotone 10.3 16.5 12.5 13.2 13.3
utmb5940 0.44 0.46 0.32 0.34 0.34
venkat(1 5.04 5.17 4.94 5.38 6.58
venkatb0 5.73 6.44 6.31 6.78 7.13
rnd25kR 15.7 15.6 3.69 3.10 3.16
rnd25k06 9.19 9.39 7.45 6.55 8.37
rnd25k12 20.5 21.3 11.7 11.8 12.0
rnd50kR 38.4 42.0 7.95 7.48 8.07
rnd50k06 27.0 30.9 20.7 32.3 24.4
rnd50k12 31.1 35.2 39.6 41.6 35.8

Table 5: Run times of the two most promising versions of the cost scaling push-relabel algorithm
for finding the maximum weight matchings with different precisions.
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kk6 and the four [hr matrices too. Therefore, we consider CSA_Q_QM as the algorithm of choice
and give detailed results for higher values of PREC (the 3rd, 4th and 5th columns in Table 5) only
for CSA_Q_QM. Upon comparing the results of Table 5 with those of Tables 2 and 3, we find that
irrespective of the value of PREC, CSA is significantly slower than the Kuhn/Munkres algorithm
(i.e., algorithms KM-3, MC64), even without a graph-partioning based ordering of matrix rows
(KM-4). Exceptions to this are some of the MATLAB generated random matrices on which CSA
seems to outperform the Kuhn/Munkres algorithm if the condition number of the matrix is not too
high. Just like KM-1 and MC64, the running time of CSA increases with the condition number of
the random matrix, whereas that of KM-3 is almost stable. In conclusion, our tests indicate that for
sparse matrices arising in a variety of real problems, a good implementation of the Kuhn/Munkres
algorithm is much faster than that of the CSA algorithm.

8 Conclusions and Future Work

In this paper, we have surveyed algorithms for finding maximum cardinality and maximum weight
matching on bipartite graphs. We have suggest several improvements to the basic Kuhn/Munkres
algorithm for finding a bipartite matching with maximum weight and present experimental results
to show the effect of these improvements on the running time of the algorithm. We present a tech-
nique that reduces the worst-case complexity of the maximum weight bipartite matching algorithm
to O(|VI*(|E| + |[V|1log|V])) (e < 1) for a large class of graphs from the currently best known
strongly polynomial bound of O(|V'|(|E|||V|log|V|)). Our experimental results show that two of
the techniques suggested in this paper, namely column-scaling and row-partitioning can signifi-
cantly reduce the run time of this algorithm. This is important in the context of the application
of the algorithm to solving sparse linear systems because a typical application may involve solving
the maximum weight bipartite matching problem hundreds or thousands of times.

We also present a comparison between augmenting-paths based and flow based algorithms for
finding maximum weight matchings. We found that for all matrices in our test suite that come from
real problems, the augmenting-paths based algorithms are significantly faster. Moreover, since the
fast flow-based algorithms work with integer weights, they may not produce the absolutely optimal
solution for graphs with real weights, unless the latter are converted to integer weights with a
high degree of precision (which, in turn, can further slow down the flow based code). Further,
it is not clear if a suitable matrix scaling, which is obtained free of cost from an augmenting-
paths based primal-dual algorithm, can be obtained inexpensively through a flow based code.
Therefore, we conclude that the augmenting-paths based Kuhn/Munkres algorithm is more suitable
for our application of maximizing the absolute diagonal products of sparse matrices prior to LU
factorization.

There are several issues pertaining to the maximum weight bipartite matching problem that
need further investigation. The run time of the sparse Kuhn/Munkres algorithm is highly sensitive
to the weights of the edges in the given graph. Exploring the possibility of formally expressing the
complexity of the algorithm in terms a parameter based on matrix values (in addition to |V| and
|E|) could be one direction of future work in this area. We already present strong experimental
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evidence suggesting the dependence of the run time on the condition number of the sparse matrix
corresponding to the graph.

Another important direction of future work in this area would be to explore efficient paral-
lel algorithms for finding maximum cardinality and maximum bipartite matchings. To date, no
parallel algorithms for these problems have been proposed whose processor-time product does not
asymptotically exceed the serial complexity of the algorithm. A nested partition based row order-
ing has the potential to lead to an efficient parallel formulation of the sparse assignment problem
for the class of bipartite graphs ((X,Y), E) for which a sublinear size separator of X exists. The
augmenting path search in the two partitions can proceed independently and this parallelism can
be applied recursively.
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