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RECURSIVE SWEEPING PRECONDITIONER
FOR THE THREE-DIMENSIONAL HELMHOLTZ EQUATION∗

FEI LIU† AND LEXING YING‡

Abstract. This paper introduces the recursive sweeping preconditioner for the numerical so-
lution of the Helmholtz equation in three dimensions. This is based on the earlier work of the
sweeping preconditioner with the moving perfectly matched layers. The key idea is to apply the
sweeping preconditioner recursively to the quasi-two-dimensional auxiliary problems introduced in
the three-dimensional (3D) sweeping preconditioner. Compared to the nonrecursive 3D sweeping
preconditioner, the setup cost of this new approach drops from O(N4/3) to O(N), the application
cost per iteration drops from O(N logN) to O(N), and the iteration count increases only mildly
when combined with the standard GMRES solver. Several numerical examples are tested and the
results are compared with the nonrecursive sweeping preconditioner to demonstrate the efficiency of
the new approach.
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1. Introduction. Let the domain of interest be the unit cube D = (0, 1)3 for
simplicity. The time-independent wave field u(x) satisfies the Helmholtz equation

(1) ∆u(x) +
ω2

c2(x)
u(x) = f(x) ∀x ∈ D,

where ω is the angular frequency, c(x) is the velocity field with a bound cmin ≤ c(x) ≤
cmax where cmin and cmax are assumed to be of Θ(1), and f(x) is the time-independent
external force. The typical boundary conditions for this problem are approximations
of the Sommerfeld radiation condition, which means that the wave is absorbed by the
boundary and there is no reflection coming from it. Other boundary conditions, such
as the Dirichlet boundary condition, can also be specified on part of the boundary
depending on the modeling setup.

In this setting, ω/(2π) is the typical wave number of the problem and λ = 2π/ω is
the typical wavelength. For most applications, the Helmholtz equation is discretized
with at least a few points (typically 4 to 20) per wavelength. So the number of points
n in each direction is at least proportional to ω. As a result, the total degree of
freedom N = n3 = Ω(ω3) can be very large for high frequency three-dimensional
(3D) problems. In addition, the corresponding discrete system is highly indefinite
and the standard iterative solvers and/or preconditioners are no longer efficient for
such problems. These together make the problem challenging for numerical solution.
We refer to the review article [10] by Ernst and Gander for more details on this.
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RECURSIVE SWEEPING PRECONDITIONER A815

Recently in [8], Engquist and Ying developed a sweeping preconditioner using
the moving perfectly matched layers (PMLs) and obtained essentially linear solve
times for 3D high frequency Helmholtz equations. A key step of that approach is to
approximate the 3D problem with a sequence of O(n) PML-padded auxiliary quasi-2D
problems, each of which can be solved efficiently with a sparse direct method such as
the nested dissection algorithm. As an extension, this paper applies the sweeping idea
recursively to further reduce each auxiliary quasi-2D problem into a sequence of PML-
padded quasi-1D problems, each of which can be solved easily with the sparse LDU
factorization for banded systems. As a result, the setup cost of the preconditioner
improves from O(N4/3) to O(N) and the application cost reduces from O(N logN)
to O(N).

There is a vast literature on iterative methods and preconditioners for the
Helmholtz equation, among which the multigrid method combined with a shifted
operator is one of the most effective approaches. For instance, in [2], Calandra et
al. proposed a new two-grid method and achieved an improvement of the iteration
number, which grows linearly in ω even in high frequency ranges. Our approach is
different from the complex shift based method, and typically the iteration number
grows at most logarithmically in ω, while the computational cost per iteration is
higher than for those based on the multigrid method. For a complete discussion of
the iterative methods for the Helmholtz equation, we refer to the review articles [9]
by Erlangga and [10] by Ernst and Gander. The discussion below only touches on the
methods that share similarity with the sweeping preconditioners. The analytic ILU
factorization [11] is the first to use incomplete LDU factorizations for preconditioning
the Helmholtz equation. Compared to the moving PML sweeping preconditioner, the
method uses the absorbing boundary condition, which is less effective compared to
the PML, and hence the iteration count grows much more rapidly.

Since the sweeping preconditioners [7, 8] were proposed, there have been a number
of exciting developments for the numerical solutions of the high frequency Helmholtz
equation, including but not limited to [16, 15, 19, 17, 18, 20, 3, 4, 21]. In [16], Stolk
proposed a domain decomposition algorithm that utilizes suitable transmission con-
ditions based on the PMLs between the subdomains to achieve a near-linear cost. In
[15], Poulson et al. discussed a parallel version of the moving PML sweeping precondi-
tioner to deal with large-scale problems from applications such as seismic inversion. In
[19, 17, 18], Tsuji and coauthors extended the moving PML sweeping preconditioner
method to other time-harmonic wave equations and more general numerical discretiza-
tion schemes. In [20], Vion and Geuzaine proposed a double sweep algorithm, studied
several implementations of the absorbing boundary conditions, and compared their
numerical performance. Finally in [3, 4], Chen and Xiang introduced a sweeping-style
domain decomposition method where the emphasis was on the source transferring
between the adjacent subdomains. In [21], Zepeda-Núñez and Demanet developed
a novel parallel domain decomposition method that uses transmission conditions to
define explicitly the up- and down-going waves.

The rest of the paper is organized as follows. We first state the problem and
the discretization used in section 2. Section 3 reviews the nonrecursive moving PML
sweeping preconditioner proposed in [8]. Section 4 discusses in detail the recursive
sweeping preconditioner. Numerical results are presented in section 5. Finally, the
conclusion and some future directions are provided in section 6.

2. Problem formulation. Following [8], we assume that the PML [1, 5, 13] is
utilized at part of the boundary where the Sommerfeld radiation condition is specified.
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A816 FEI LIU AND LEXING YING

The sweeping preconditioner in [8] requires that at least one of the six faces of the
domain D = (0, 1)3 is specified with the PML boundary condition. As we shall see
soon, the recursive sweeping preconditioner instead requires the PML condition to be
specified at least at two nonparallel faces. Without loss of generality, we assume that
it is specified at x2 = 0 and x3 = 0. There is no restriction on the type of boundary
conditions specified on the other four faces. However, to simplify the discussion, we
assume that the Dirichlet condition is used. The PML boundary condition introduces
auxiliary functions

σ(x) =


C

η

(
x− η
η

)2

, x ∈ [0, η],

0, x ∈ (η, 1],

and

s(x) =

(
1 + i

σ(x)

ω

)−1

, s1(x) ≡ 1, s2(x) = s(x2), s3(x) = s(x3),

where C is an appropriate positive constant independent of ω, and η is the PML
width, which is typically around one wavelength. The Helmholtz equation with PML
is

(2)


(

(s1∂1)2 + (s2∂2)2 + (s3∂3)2 +
ω2

c2(x)

)
u(x) = f(x) ∀x ∈ D = (0, 1)3,

u(x) = 0 ∀x ∈ ∂D.

It is typically assumed that the support of f(x) is in (0, 1) × (η, 1) × (η, 1), which
means that the force is not located in the PML region. The cube [0, 1]3 is discretized
with a Cartesian grid where the grid size is h = 1

n+1 and n is proportional to ω. The
set of all the interior points of the grid is given by

P = {pi,j,k = (ih, jh, kh) : 1 ≤ i, j, k ≤ n},

and the degree of freedom is N = n3.
Applying the standard seven-point finite difference stencil results in the dis-

cretized system

(3)

(s1)i,j,k
h

(
(s1)i+1/2,j,k

h
(ui+1,j,k − ui,j,k)−

(s1)i−1/2,j,k

h
(ui,j,k − ui−1,j,k)

)
+

(s2)i,j,k
h

(
(s2)i,j+1/2,k

h
(ui,j+1,k − ui,j,k)−

(s2)i,j−1/2,k

h
(ui,j,k − ui,j−1,k)

)
+

(s3)i,j,k
h

(
(s3)i,j,k+1/2

h
(ui,j,k+1 − ui,j,k)−

(s3)i,j,k−1/2

h
(ui,j,k − ui,j,k−1)

)
+

(
ω2

c2

)
i,j,k

ui,j,k = fi,j,k ∀1 ≤ i, j, k ≤ n,

where the subscript (i, j, k) means that the corresponding function is evaluated at
the point pi,j,k = (ih, jh, kh) and the definition of the points here extends to half
integers as well. The computational task is to solve (3) efficiently. We note that,
unlike the symmetric version adopted in [7, 8], here the nonsymmetric version of the
equation is used. Figure 1 provides an illustration of the computational domain and
the discretization grid.
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RECURSIVE SWEEPING PRECONDITIONER A817

PML
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x1

PML
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zero Dirichlet

x3
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PML
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zero Dirichlet

zero
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let

Fig. 1. The domain of interest. Left is a 3D view of the domain. Right is an x3-x2 cross-section
view, where each cell stands for a 1D column. The gray area stands for the PML region.

3. Review of the sweeping preconditioner with moving PML. This sec-
tion gives a brief review of the nonrecursive moving PML sweeping preconditioner
proposed in [8] for completeness. More details can be found in the original paper [8].
The starting point of the sweeping preconditioner is a block LDU factorization called
the sweeping factorization. To build this factorization, the algorithm sweeps along
the x3 direction starting from the face x3 = 0. The unknowns with subscript index
(i, j, k) are ordered with column-major order, i.e., first dimension 1, then dimension
2, and finally dimension 3. We define the vectors

u = [u1,1,1, . . . , un,1,1, . . . , un,n,1, . . . , un,n,n]T ,

f = [f1,1,1, . . . , fn,1,1, . . . , fn,n,1, . . . , fn,n,n]T .

By introducing
Pm = {p1,1,m, . . . , pn,1,m, . . . , pn,n,m}

as the points on the mth plane and also

u:,:,m = [u1,1,m, . . . , un,1,m, . . . , un,n,m]T ,

f:,:,m = [f1,1,m, . . . , fn,1,m, . . . , fn,n,m]T ,

one can write the system (3) compactly as Au = f with the following block form:

(4)


A1,1 A1,2

A2,1 A2,2
. . .

. . .
. . . An−1,n

An,n−1 An,n



u:,:,1
u:,:,2

...
u:,:,n

 =


f:,:,1
f:,:,2

...
f:,:,n

 .
By defining Sk and Tk recursively via

S1 = A1,1, T1 = S−1
1 ,

Sm = Am,m −Am,m−1Tm−1Am−1,m, Tm = S−1
m , m = 2, . . . , n,
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A818 FEI LIU AND LEXING YING

the standard block LDU factorization of the block tridiagonal matrix A is

A = L1 . . . Ln−1

S1

. . .

Sn

Un−1 . . . U1,

where Lm and Um are the corresponding unit lower and upper triangular matrices
with the only nonzero off-diagonal blocks

Lm(Pm+1, Pm) = Am+1,mTm, Um(Pm, Pm+1) = TmAm,m+1, m = 1, . . . , n− 1.

It is not difficult to see that computing this factorization takes O(N7/3) steps. Once
it is available, u can be computed in O(N5/3) steps by

u =

u:,:,1...
u:,:,n

 = A−1f = U−1
1 . . . U−1

n−1

T1 . . .

Tn

L−1
n−1 . . . L

−1
1 f.

The main disadvantage of the above algorithm is that Sm and Tm are in general dense
matrices of size n2 × n2, so the corresponding dense linear algebra operations are
expensive. The sweeping preconditioner overcomes this difficulty by approximating
Tm efficiently for Pm with mh ∈ (η, 1], i.e., for Pm not in the PML region at the face
x3 = 0. The key point is to consider the physical meaning of Tm. From now on let
us assume η = bh, which implies that there are b layers in the PML region at x3 = 0.
Restricting the factorization to the upper left m×m block of A where m = b+1, . . . , n
gives
A1,1 A1,2

A2,1 A2,2
. . .

. . .
. . . Am−1,m

Am,m−1 Am,m

 = L1 . . . Lm−1


S1

S2

. . .

Sm

Um−1 . . . U1,

where Lt and Ut are redefined by restricting to their upper left m×m blocks. Inverting
both sides leads to

A1,1 A1,2

A2,1 A2,2

. . .

. . .
. . . Am−1,m

Am,m−1 Am,m


−1

= U−1
1 . . . U−1

m−1


T1

T2

. . .

Tm

L−1
m−1 . . . L

−1
1 .

The left-hand side is the discrete half-space Green’s function with Dirichlet zero bound-
ary condition at x3 = (m + 1)h and a straightforward calculation shows that the
lower right block of the right-hand side is Tm. Therefore, Tm is the discrete half-space
Green’s function restricted to the mth layer. Note that the PML at x3 = 0 is used to
simulate an absorbing boundary condition. If we assume that there is little reflection
during the transmission of the wave, we can approximate Tm by placing the PML
right next to the mth layer since the domain of interest is only the mth layer (see
Figure 2). This is the key idea of the moving PML sweeping preconditioner, where
the operator Tm is numerically approximated by putting the PML right next to the
domain of interest and solving a much smaller system to save the computational cost.
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RECURSIVE SWEEPING PRECONDITIONER A819

x3

x2 Pm

zero
D

irich
let

Pm

Tm

x3

x2 Pm

zero
D

irich
let

Pm

bTmc

Fig. 2. Left: Tm is the restriction to Pm (the dashed grid) of the half-space Green’s function
on the solid grid. Right: By moving the PML right next to the layer Pm, the operator Tm is
approximated by solving the equation on a much smaller grid.

More precisely, we introduce an auxiliary problem on the domain Dm = [0, 1] ×
[0, 1]× [(m− b)h, (m+ 1)h]:

(
(s1∂1)2 + (s2∂2)2 + (sm3 ∂3)2 +

ω2

c2(x)

)
v(x) = g(x) ∀x ∈ Dm,

v(x) = 0 ∀x ∈ ∂Dm,

where sm3 (x) = s(x3 − (m− b)h). The domain Dm is discretized with the partial grid

P(m−b+1):m := {Pt : m− b+ 1 ≤ t ≤ m}.

Applying the same central finite difference scheme gives rise to the corresponding
discretized system, denoted as

Hmv = g, m = b+ 1, . . . , n.

To approximate Tm, we numerically define operator bTmc : α ∈ Cn2 → β ∈ Cn2

by
the following procedure:

1. Introduce a vector g defined on P(m−b+1):m by setting α to the layer Pm and
zero everywhere else.

2. Solve the discretized auxiliary problem Hmv = g on P(m−b+1):m with g from
step 1.

3. Set β as the restriction on Pm of the solution v from step 2.
The discretized system is a quasi-2D system as b is typically a small constant, so the
system can be solved efficiently by the nested dissection method [12, 6, 14].

The first b layers, which are in the PML region of the original problem (2), need
to be handled with a slight difference. Define

u:,:,1:b = [uT:,:,1, . . . , u
T
:,:,b]

T ,

f:,:,1:b = [fT:,:,1, . . . , f
T
:,:,b]

T .
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A820 FEI LIU AND LEXING YING

Then the system Au = f can be written as
A1:b,1:b A1:b,b+1

Ab+1,1:b Ab+1,b+1
. . .

. . .
. . . An−1,n

An,n−1 An,n



u:,:,1:b
u:,:,b+1

...
u:,:,n

 =


f:,:,1:b
f:,:,b+1

...
f:,:,n

 .

For the first b layers, we simply define bT1:bc as the inverse operator of Hb := A1:b,1:b.
However, it is essential that bT1:bc is stored in a factorized form by applying the nested
dissection method to Hb, since Hbv = g is also a quasi-2D problem.

Based on the above discussion, the setup algorithm of the moving PML sweeping
preconditioner is given in Algorithm 1.

Algorithm 1. Construction of the moving PML sweeping preconditioner of the
system (3). Complexity = O(b3n4) = O(b3N4/3).

Construct the nested dissection factorization of Hb, which defines bT1:bc.
for m = b+ 1, . . . , n do

Construct the nested dissection factorization of Hm, which defines bTmc.
end for

Once the factorization is completed, bT1:bc and bTmc can be applied using the
nested dissection factorization. The application process of the sweeping preconditioner
is given in Algorithm 2.

Algorithm 2. Computation of u ≈ A−1f using the factorization from Algorithm 1.
Complexity = O(b2n3 log n) = O(b2N logN).

u:,:,1:b = bT1:bcf:,:,1:b
u:,:,b+1 = bTb+1c(f:,:,b+1 −Ab+1,1:bu:,:,1:b)
for m = b+ 1, . . . , n− 1 do
u:,:,m+1 = bTm+1c(f:,:,m+1 −Am+1,mu:,:,m)

end for
for m = n− 1, . . . , b+ 1 do
u:,:,m = u:,:,m − bTmc(Am,m+1u:,:,m+1)

end for
u:,:,1:b = u:,:,1:b − bT1:bc(A1:b,b+1u:,:,b+1)

4. Recursive sweeping preconditioner. Recall that the PML is also applied
to the face x2 = 0. Therefore, each quasi-2D auxiliary problem is itself a discretization
of the Helmholtz equation with the PML specified on one side. Following the treat-
ment in [8] for the 2D Helmholtz equation, it is natural to apply the same sweeping
idea once again along the x2 direction, instead of the nested dissection algorithm used
in the previous section.

4.1. Inner sweeping. Recall that the quasi-2D subproblems of the non-
recursive sweeping preconditioners are Hmv = g,m = b, . . . , n. Since they have
essentially the same structure, it is sufficient to consider a single system Ãv = g,
where Ã can be any of the Hm’s. Here the accent mark emphasizes that the problem
under consideration is quasi-2D. To formalize the sweeping preconditioner along the
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RECURSIVE SWEEPING PRECONDITIONER A821

x2 direction, we define, up to a translation,

P̃ = {pi,j,k = (ih, jh, kh) : 1 ≤ i, j ≤ n, 1 ≤ k ≤ b}

to be the discretization grid. For each m = 1, . . . , n, let

P̃m = {p1,m,1, . . . , p1,m,b, . . . , pn,m,b},
v:,m,: = [v1,m,1, . . . , v1,m,b, . . . , vn,m,b]

T ,

g:,m,: = [g1,m,1, . . . , g1,m,b, . . . , gn,m,b]
T .

For the first b layers in the x2 direction, we also define

P̃1:b = {P̃1, . . . , P̃b},
v:,1:b,: = [vT:,1,:, . . . , v

T
:,b,:]

T ,

g:,1:b,: = [gT:,1,:, . . . , g
T
:,b,:]

T .

In this section, we reorder the vectors v, g by grouping the third dimension first and
applying the column-major ordering to dimensions 1 and 2:

v = [vT:,1,:, . . . , v
T
:,n,:]

T ,

g = [gT:,1,:, . . . , g
T
:,n,:]

T .

With this ordering, the corresponding system Ãv = g is written as
Ã1:b,1:b Ã1:b,b+1

Ãb+1,1:b Ãb+1,b+1
. . .

. . .
. . . Ãn−1,n

Ãn,n−1 Ãn,n



v:,1:b,:
v:,b+1,:

...
v:,n,:

 =


g:,1:b,:
g:,b+1,:

...
g:,n,:

 .

For the block LDU factorization of Ã, we define

S̃1:b = Ã1:b,1:b, T̃1:b = S̃−1
1:b ,

S̃b+1 = Ãb+1,b+1 − Ãb+1,1:bT̃1:bÃ1:b,b+1, T̃b+1 = S̃−1
b+1,

S̃m = Ãm,m − Ãm,m−1T̃m−1Ãm−1,m, T̃m = S̃−1
m , m = b+ 2, . . . , n;

then Ã can be factorized as

Ã = L̃1:bL̃b+1 . . . L̃n−1


S̃1:b

S̃b+1

. . .

S̃n

 Ũn−1 . . . Ũb+1Ũ1:b,

where the nonzero off-diagonal blocks of the unit lower and upper triangular matrices

L̃m and Ũm are given by

L̃1:b(P̃b+1, P̃1:b) = Ãb+1,1:bT̃1:b, Ũ1:b(P̃1:b, P̃b+1) = T̃1:bÃ1:b,b+1,

L̃m(P̃m+1, P̃m) = Ãm+1,mT̃m, Ũm(P̃m, P̃m+1) = T̃mÃm,m+1, m = b+ 1, . . . , n− 1.
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Then the solution v can be computed by

v =


v:,1:b,:
v:,b+1,:

...
v:,n,:

 = Ã−1g = Ũ−1
1:b Ũ

−1
b+1 . . . Ũ

−1
n−1


T̃1:b

T̃b+1

. . .

T̃n

 L̃−1
n−1 . . . L̃

−1
b+1L̃

−1
1:bg.

By comparing the factorization of the upper left (m− b+ 1)× (m− b+ 1) block of Ã,
where m = b+ 1, . . . , n, we have

Ã1:b,1:b Ã1:b,b+1

Ãb+1,1:b Ãb+1,b+1
. . .

. . .
. . . Ãm−1,m

Ãm,m−1 Ãm,m



= L̃1:bL̃b+1 . . . L̃m−1


S̃1:b

S̃b+1

. . .

S̃m

 Ũm−1 . . . Ũb+1Ũ1:b,

where L̃t and Ũt are redefined as their restrictions to their top left (m− b+ 1)× (m−
b+ 1) blocks. Inverting both sides gives

Ã1:b,1:b Ã1:b,b+1

Ãb+1,1:b Ãb+1,b+1
. . .

. . .
. . . Ãm−1,m

Ãm,m−1 Ãm,m


−1

= Ũ−1
1:b Ũ

−1
b+1 . . . Ũ

−1
m−1


T̃1:b

T̃b+1

. . .

T̃m

 L̃−1
m−1 . . . L̃

−1
b+1L̃

−1
1:b .

Thus, by repeating the argument in section 3, the matrix T̃m is the restriction to the
layer P̃m of the discrete half-space Green’s function. It can be approximated by bT̃mc,
which is defined by solving a quasi-1D problem obtained by placing a moving PML
right next to x2 = mh (see Figure 3). Each auxiliary quasi-1D problem in this inner
sweeping step can be solved by the sparse block LDU factorization efficiently, with
ordering the system by grouping dimensions 3 and 2 first and dimension 1 last.

More specifically, for each m, we introduce the auxiliary problem on the domain
D̃m = [0, 1]× [(m− b)h, (m+ 1)h]× [0, (b+ 1)h]:

(
(s1∂1)2 + (sm2 ∂2)2 + (s3∂3)2 +

ω2

c2(x)

)
w(x) = q(x) ∀x ∈ D̃m,

w(x) = 0 ∀x ∈ ∂D̃m,

where sm2 (x) = s(x2 − (m− b)h). The domain D̃m is discretized with the grid

P̃(m−b+1):m := {P̃t : m− b+ 1 ≤ t ≤ m},
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x3

x2

P̃m T̃m

x3

x2

P̃m bT̃mc

Fig. 3. Left: T̃m is the restriction to P̃m (the dashed grid) of the Green’s function on the

quasi-2D solid grid. Right: By moving the PML right next to P̃m, the operator T̃m is approximated
by solving the problem on a quasi-1D grid.

and the same central difference numerical scheme is used here. We denote the corre-
sponding discretized system as H̃mw = q. Similar to the process described in section 3,
we define the operator bT̃mc : α ∈ Cnb → β ∈ Cnb by the following procedure:

1. Introduce a vector q defined on the grid P̃(m−b+1):m by setting α to the layer

P̃m and zero everywhere else.
2. Solve the auxiliary quasi-1D problem H̃mw = q on P̃(m−b+1):m with q from

step 1.
3. Set β as the restriction on P̃m of the solution w from step 2.

For the first b layers, bT̃1:bc is simply defined as the inverse operator of H̃b := Ã1:b,1:b,

which is essentially the same as T̃1:b, but implemented by using the sparse block
LDU factorization of H̃b. Summarizing all this, the setup and application algorithm
of the inner moving PML sweeping preconditioner are given in Algorithms 3 and 4,
respectively.

Algorithm 3. Construction of the inner moving PML sweeping preconditioner of
the quasi-2D problem Ãv = g. Complexity = O(b6n2).

Construct the sparse block LDU factorization of H̃b, which defines bT̃1:bc.
for m = b+ 1, . . . , n do

Construct the sparse block LDU factorization of H̃m, which defines bT̃mc.
end for

4.2. Putting together. As we pointed out earlier, the matrix Ã can be any one
of Hm,m = b, . . . , n, where Algorithms 3 and 4 can be applied. Notice that solving the
subproblems exactly with the nested dissection algorithm results in the approximation
bTmc to Tm. This extra level of approximation defines a further approximation, which

shall be denoted by TTmU : α ∈ Cn2 → β ∈ Cn2

(to be precise, for the first b layers, it

is TT1:bU : α ∈ Cn2b → β ∈ Cn2b). The steps for carrying out TTmU are similar to the
ones for bTmc except that one uses Algorithms 3 and 4 to solve the quasi-2D problems
approximately (instead of the nested dissection method that solves them exactly).
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A824 FEI LIU AND LEXING YING

Algorithm 4. Computation of v ≈ Ã−1g using the factorization from Algorithm 3.
Complexity = O(b4n2).

v:,1:b,: = bT̃1:bcg:,1:b,:
v:,b+1,: = bT̃b+1c(g:,b+1,: − Ãb+1,1:bv:,1:b,:)
for m = b+ 1, . . . , n− 1 do
v:,m+1,: = bT̃m+1c(g:,m+1,: − Ãm+1,mv:,m,:)

end for
for m = n− 1, . . . , b+ 1 do
v:,m,: = v:,m,: − bT̃mc(Ãm,m+1v:,m+1,:)

end for
v:,1:b,: = v:,1:b,: − bT̃1:bc(Ã1:b,b+1v:,b+1,:)

Given all these preparations, the setup algorithm of the recursive sweeping precon-
ditioner can be summarized compactly in Algorithm 5 and the application algorithm
is given in Algorithm 6.

Algorithm 5. Construction of the recursive moving PML sweeping preconditioner
of the linear system (3). Complexity = O(b6n3) = O(b6N).

Construct the inner moving PML sweeping preconditioner of Hb by Algorithm 3.
This gives TT1:bU.
for m = b+ 1, . . . , n do

Construct the inner moving PML sweeping preconditioner of Hm by Algorithm 3.
This gives TTmU.

end for

Algorithm 6. Computation of u ≈ A−1f using the factorization from Algorithm 5.
Complexity = O(b4n3) = O(b4N).

u:,:,1:b = TT1:bUf:,:,1:b
u:,:,b+1 = TTb+1U(f:,:,b+1 −Ab+1,1:bu:,:,1:b)
for m = b+ 1, . . . , n− 1 do
u:,:,m+1 = TTm+1U(f:,:,m+1 −Am+1,mu:,:,m)

end for
for m = n− 1, . . . , b+ 1 do
u:,:,m = u:,:,m − TTmU(Am,m+1u:,:,m+1)

end for
u:,:,1:b = u:,:,1:b − TT1:bU(A1:b,b+1u:,:,b+1)

In the outer loop of Algorithm 6, the unknowns are eliminated layer by layer
in the x3 direction. In the application of TTmU, there is the inner loop in which
the unknowns in each quasi-2D problem are eliminated in the x2 direction. The
whole algorithm serves as a preconditioner for the original linear system (3). Notice
that, in the recursive sweeping preconditioner, the quasi-2D problems are solved only
approximately. Therefore, the overall accuracy might not be as good as the non-
recursive method. But as we will show in the next section, the performance of the
preconditioner is only mildly affected.
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RECURSIVE SWEEPING PRECONDITIONER A825

The above algorithms are described in a way to present the main ideas clearly. In
the actual implementations, a couple of modifications are taken in order to maximize
the efficiency:

1. For each auxiliary problem, in both the inner loop and the outer loop, several
layers are processed together instead of one layer.

2. For the PML introduced in the auxiliary problems, the number of layers in
the auxiliary PML region does not have to match the number of layers b used
for the boundary PML at x2 = 0 and x3 = 0. In fact, the thickness of the
auxiliary PML is typically thinner for the sake of efficiency.

3. The problem we described above has zero Dirichlet boundary conditions on
the other four faces of the cube. If instead the PMLs are put on all the faces,
then the sweeping preconditioner sweeps with two fronts from two opposite
faces respectively and they meet in the middle with a subproblem with PML
on both sides instead of only one side, as described in [8].

5. Numerical results. This section presents the numerical results to illustrate
the performance of the recursive sweeping preconditioner. All algorithms are imple-
mented in MATLAB and the tests are performed on a 2.0-GHz computer with 256
GB memory. We force MATLAB to use only one computational thread to test the
sequential time cost.

5.1. Comparison with the nonrecursive method. In this subsection, we
adopt the standard seven-point finite difference scheme and compare the recursive
approach with the nonrecursive one in [8]. The GMRES algorithm is used as the
iterative solver with the relative residual equal to 10−3. As we shall see, since all tests
converge within a few iterations, we can use the nonrestarted version of the GMRES
algorithm. Threrefore, the iteration counts reported in the following tables are the
so-called inner iteration count, which is essentially equal to the number of applications
of the preconditioner. Because of the effectiveness of the preconditioner, the value of
the restart number is irrelevant as long as it is greater than 5.

Each quasi-2D problem is solved approximately by applying the inner sweeping
preconditioner only once in order to maximize the efficiency. The velocity fields and
forcing terms are kept the same as those used in [8]. The PMLs are put on all six
sides of the cube [0, 1]3 to simulate the Sommerfeld radiation condition.

The three velocity fields used here are as follows (see Figure 4):
(i) a converging lens with a Gaussian profile at the center of the domain,

(ii) a vertical waveguide with a Gaussian cross section,
(iii) a random velocity field.

For each velocity field, the tests are performed for two external forces:
(a) a Gaussian point source centered at (1/2, 1/2, 1/4),
(b) a Gaussian wave packet with wavelength comparable to the typical wavelength

of the domain. The packet centers at (1/2, 1/4, 1/4) and points to the direction
(0, 1/

√
2, 1/
√

2).
In each test, we vary the typical wave number ω/(2π), study the behavior of the re-
cursive preconditioner, and compare the results with the nonrecursive preconditioner.

In our numerical implementation, each wavelength is discretized with q = 8 points.
The width of the PML at the boundary of the cube is 9h, and the width of the
auxiliary PML for the middle layers is bh = 5h. The number of layers processed in
each auxiliary problem is 4.D
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(i) (ii) (iii)

Fig. 4. The three velocity fields tested.

Fig. 5. The solutions of velocity field (i) in Figure 4 with ω/(2π) = 32. Left: the wave field
generated by force (a) at x1 = 0.5. Right: the wave field generated by force (b) at x1 = 0.5.

Table 1
The results for velocity field (i) in Figure 4 with varying ω.

Tsetup Niter Tsolve
ω
2π

N NR R Ratio f(x) NR R NR R Ratio

8 633 1.12e+02 1.63e+01 14%
(a) 3 3 1.09e+01 1.08e+01 100%
(b) 4 4 1.41e+01 1.37e+01 97%

16 1273 1.67e+03 1.29e+02 8%
(a) 3 4 1.15e+02 1.30e+02 113%
(b) 4 5 1.54e+02 1.64e+02 106%

32 2553 2.55e+04 1.10e+03 4%
(a) 4 4 1.85e+03 1.29e+03 69%
(b) 4 5 1.89e+03 1.62e+03 86%

Figures 5, 6, and 7 plot the solution profiles under the two external forces for the
three velocity fields, respectively. The numerical results are summarized in Tables 1,
2, and 3, where Tsetup is the time used to construct the preconditioner in seconds,
Tsolve is the time used to solve the system in the preconditioned GMRES solver in
seconds, and Niter is the number of preconditioner applications in the iterative solving
process. “NR” stands for the original nonrecursive method, while “R” stands for
the recursive method introduced in this paper. The “ratio” is the time cost of the
recursive method over the nonrecursive method. The numerical implementation of
the nonrecursive method is slightly improved as compared to [8], by incorporating a
more accurate PML discretization. Therefore, the results here for the nonrecursive
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RECURSIVE SWEEPING PRECONDITIONER A827

Fig. 6. The solutions of velocity field (ii) in Figure 4 with ω/(2π) = 32. Left: the wave field
generated by force (a) at x1 = 0.5. Right: the wave field generated by force (b) at x1 = 0.5.

Table 2
The results for velocity field (ii) in Figure 4 with varying ω.

Tsetup Niter Tsolve
ω
2π

N NR R Ratio f(x) NR R NR R Ratio

8 633 1.12e+02 1.62e+01 14%
(a) 3 3 1.07e+01 1.06e+01 99%
(b) 3 4 1.05e+01 1.37e+01 130%

16 1273 1.65e+03 1.26e+02 8%
(a) 4 4 1.53e+02 1.29e+02 84%
(b) 3 4 1.15e+02 1.30e+02 113%

32 2553 2.52e+04 1.05e+03 4%
(a) 5 5 2.33e+03 1.63e+03 70%
(b) 4 4 1.87e+03 1.32e+03 70%

Fig. 7. The solutions of velocity field (iii) in Figure 4 with ω/(2π) = 32. Left: the wave field
generated by force (a) at x1 = 0.5. Right: the wave field generated by force (b) at x1 = 0.5.

method are better compared to the ones in [8].
Based on the results presented here, we can make the following observations:
1. The setup time cost of the recursive preconditioner is significantly lowered

compared to the nonrecursive one. This becomes clearer as the problem size
gets larger. The scaling difference between the O(N) setup time cost of the
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Table 3
The results for velocity field (iii) in Figure 4 with varying ω.

Tsetup Niter Tsolve
ω
2π

N NR R Ratio f(x) NR R NR R Ratio

8 633 1.12e+02 1.62e+01 14%
(a) 4 4 1.42e+01 1.40e+01 98%
(b) 4 4 1.41e+01 1.37e+01 98%

16 1273 1.65e+03 1.28e+02 8%
(a) 4 4 1.53e+02 1.28e+02 84%
(b) 5 5 1.92e+02 1.61e+02 84%

32 2553 2.52e+04 1.05e+03 4%
(a) 5 5 2.31e+03 1.62e+03 70%
(b) 5 5 2.36e+03 1.65e+03 70%

Table 4
Results for velocity field (ii) in Figure 4 with varying b for ω/(2π) = 16.

ω/(2π) N b Tsetup N
(a)
iter T

(a)
solve N

(b)
iter T

(b)
solve

16 1273 5 4.04e+01 4 1.27e+02 4 1.28e+02

16 1273 6 6.07e+01 4 1.68e+02 4 1.69e+02

16 1273 7 9.00e+01 3 1.61e+02 4 2.17e+02

16 1273 8 1.34e+02 3 2.18e+02 3 2.21e+02

Table 5
Results for velocity field (ii) in Figure 4 with varying b for ω/(2π) = 32.

ω/(2π) N b Tsetup N
(a)
iter T

(a)
solve N

(b)
iter T

(b)
solve

32 2553 5 1.60e+02 5 1.48e+03 4 1.19e+03

32 2553 6 2.45e+02 4 1.61e+03 4 1.64e+03

32 2553 7 3.79e+02 4 2.11e+03 4 2.13e+03

32 2553 8 5.72e+02 3 2.16e+03 4 2.93e+03

Table 6
Results for velocity field (ii) in Figure 4 with varying b for ω/(2π) = 64.

ω/(2π) N b Tsetup N
(a)
iter T

(a)
solve N

(b)
iter T

(b)
solve

64 5113 5 7.80e+02 6 1.63e+04 4 1.25e+04

64 5113 6 1.29e+03 5 2.05e+04 4 1.56e+04

64 5113 7 1.56e+03 4 2.05e+04 4 2.15e+04

64 5113 8 2.28e+03 4 2.87e+04 4 3.05e+04

recursive method and the O(N4/3) cost of the nonrecursive method can be
seen clearly from the results.

2. The iteration number of the recursive preconditioner increases only slightly
compared to the nonrecursive one. In some cases the recursive approach needs
one more iteration.

3. The application time of the recursive sweeping preconditioner is faster than
the nonrecursive one when the problem size gets larger. This is also consistent
with the O(N) versus O(N logN) scaling difference between the recursive
approach and the nonrecursive one.

5.2. Test with varying the auxiliary PML width. Next, we vary the auxil-
iary PML width bh to test the sensitivity of the recursive approach to the PML width.
Each subproblem processes four consecutive layers. The velocity field (ii) in Figure 4
is used here so the translational invariance along the x3 direction can be exploited to
save the setup and memory cost to scale the problem size to ω/(2π) = 64. The test

D
ow

nl
oa

de
d 

07
/2

0/
16

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RECURSIVE SWEEPING PRECONDITIONER A829

8 9 10 11

10
2.5

10
2.6

10
2.7

10
2.8

 

 

recursive

non−recursive

Fig. 8. A comparison of the solve time per iteration of the recursive approach and the non-
recursive approach with varying b when ω/(2π) = 32. The x-axis is b+3, which is the typical number
of layers (including the auxiliary PML layers) processed in each subproblem, and the y-axis is the
solve time per iteration in seconds. The figure shows that the recursive one is more sensitive to the
auxiliary PML width.

results for different b’s are given in Tables 4 to 6. The superscripts (a) and (b) stand
for the forces (a) and (b), respectively.

For the problems with the typical wave numbers up to 64, these test results show
that the iteration number scales roughly logarithmically with the wave number and the
width 5h is optimal among all the test cases in terms of both accuracy and efficiency.
In terms of physical quantities, this implies that for problems up to (64λ)3 in size,
around a half wavelength for the PML width is enough. For even larger problems, we
expect that at most a logarithmic increase of the PML width should be sufficient for
the algorithm to converge in a logarithmic number of iterations.

We would like to point out that the complexities of the nonrecursive and recursive
approaches depend quite differently on b. For the nonrecursive approach, the complex-
ities of the construction and application algorithms are O(b3N4/3) and O(b2N logN),
respectively. For the recursive approach, the complexities are O(b6N) and O(b4N),
respectively. Therefore, depending on the problem size N , the nonrecursive approach
is more effective if the value of b is sufficiently large. Figure 8 illustrates this behavior
for a fixed N and b ranging from 5 to 8.

5.3. Comparison of the spectrum of the preconditioned system in two
dimensions. This subsection compares the spectrum of the preconditioned system
of the recursive approach with the nonrecursive one. Since the 3D systems are too
large for the entire spectrum computation, 2D systems are studied here instead. In
the implementation for the 2D problems, the basic idea is the same: the nonrecursive
approach solves the quasi-1D subproblems exactly, while the recursive approach solves
each quasi-1D subproblem approximately with breaking it down to O(n) quasi-0D
(small rectangle) subproblems. The recursive approach does not help with reducing
the complexity in this case, since we already have the LDU factorization to solve
the quasi-1D subproblem efficiently. The purpose of this subsection is to use the
comparison result in two dimensions as an analogy to the 3D case. The velocity field is
chosen to be a constant field with velocity equal to 1 everywhere. The PMLs are put on
all sides of the unit square. The wave number w/(2π) is 16, the number of points per
wavelength is 8, the width of the boundary PML is 9h, the width of the auxiliary PML
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Fig. 9. The spectra of the preconditioned systems in two dimensions.

Table 7
Results of the compact stencil method for velocity field (i) in Figure 4 with varying ω.

ω/(2π) N b Tsetup Niter
(a) Tsolve

(a) Niter
(b) Tsolve

(b)

8 633 5 3.35e+01 3 1.52e+01 4 2.00e+01

16 1273 5 2.81e+02 4 2.51e+02 4 2.54e+02

32 2553 5 2.34e+03 4 2.53e+03 4 2.57e+03

Table 8
Results of the compact stencil method for velocity field (ii) in Figure 4 with varying ω.

ω/(2π) N b Tsetup Niter
(a) Tsolve

(a) Niter
(b) Tsolve

(b)

8 633 5 3.35e+01 3 1.51e+01 4 1.99e+01

16 1273 5 2.78e+02 3 1.89e+02 4 2.52e+02

32 2553 5 2.33e+03 4 2.51e+03 4 2.53e+03

Table 9
Results of the compact stencil method for velocity field (iii) in Figure 4 with varying ω.

ω/(2π) N b Tsetup Niter
(a) Tsolve

(a) Niter
(b) Tsolve

(b)

8 633 5 3.32e+01 4 2.00e+01 4 2.00e+01

16 1273 5 2.78e+02 4 2.52e+02 5 3.16e+02

32 2553 5 2.34e+03 4 2.51e+03 5 3.21e+03

is 5h, and the number of layers processed in each subproblem is 4. The results, given
in Figure 9, show that the spectra of both the nonrecursive one and the recursive one
are centered well at 1 + 0 i, though the spectrum of the recursive approach is slightly
more spread out. When combined with a standard GMRES solver, the recursive
approach results in slightly more iterations compared to the nonrecursive one.

5.4. Test with a compact stencil scheme. In this subsection, we implement
a fourth-order compact stencil discretization of the Laplace operator to show that the
recursive sweeping algorithm can be easily extended to more general and accurate
discretization schemes. The numerical results are given in Tables 7 to 9.

The results demonstrate that the iteration numbers are improved slightly in some
cases. The reason is that the 27-point stencil gives a smaller prefactor of the truncation
error in the PML and the auxiliary PML region. As a result, its dispersion relationship
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is much closer to the dispersion relationship of the Helmholtz equation. On the other
hand, both the setup and solve times increase compared to the seven-point scheme
due to more interactions between the unknowns.

6. Conclusion and future work. In this paper, we introduced a new recursive
sweeping preconditioner for the 3D Helmholtz equation based on the moving PML
sweeping preconditioner proposed in [8]. The idea of the sweeping preconditioner is
used recursively for the auxiliary quasi-2D problems. Both the setup cost and the
application cost of the preconditioner are reduced to strict linear complexity. The
iteration number remains essentially independent of the problem size when combined
with the standard GMRES solver. Numerical results show that the computational
cost is reduced especially in the setup stage of the algorithm.

Several questions remain open and some potential improvements can be made.
First, we use the PML to simulate the Sommerfeld condition. Many other simu-
lations of the absorbing boundary condition can be implemented and the recursive
sweeping idea can be used as long as the stencil of the simulation is local. Second,
the numerical schemes used in this paper are finite difference schemes, which require
more smoothness of the PML function s(x) than the finite element method. Other
numerical schemes such as the finite element method can be implemented and better
numerical results in terms of the iteration number are expected.

Parallel processing can also be introduced to the current recursive method. First,
when sweeping from both sides of the domain, either in the outer loop of the algorithm
or in the inner loop, the processing of the two fronts can be paralleled so in total
it could be four times faster with parallelization theoretically. Second, the quasi-
1D problems are solved by the block LDU factorization in the current setting. If
instead we use the 1D nested dissection algorithm for the quasi-1D problems, then
it can be easily paralleled and the total cost will remain essentially the same. Last,
one can notice that the setup process of the algorithm is essentially O(n2) quasi-1D
subproblems which are independent from each other, so this process can be done
in parallel, and compared to the original method, which contains only O(n) quasi-
2D independent subproblems, the potential advantages of parallelization in the setup
stage is more obvious here.

There are also several advantages of the recursive sweeping method that concern
flexibility. First, as mentioned above, the setup process contains O(n2) quasi-1D
independent subproblems. So if the velocity field is modified on a subdomain which
involves only limited subproblems, then the factorization can be updated with only a
slight modification on these involved subproblems. Compared to the original method,
where the subproblems are O(n) quasi-2D plates, the recursive method is more flexible
on updating the factorization. This could be advantageous in seismic imaging where
the velocity field is tested and modified frequently. Second, when the factorization for
the O(n2) subproblems is done, there are naturally two ways of using the factorization.
One is, as mentioned in this paper, sweeping along the x3 direction in the outer loop
and sweeping along the x2 direction in the inner loop. Another choice is to do the
opposite, which is sweeping along the x2 direction in the outer loop and along the
x3 direction in the inner loop. Each of these two choices shows some “bias” since
the residual of the system is accumulated in some “chosen” order. So one may ask
whether it is possible to combine the two choices together to make the solve process
more flexible such that the total solve time can be even less. This is another interesting
question to be examined.D
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