
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE MODEL. SIMUL. © 2021 Society for Industrial and Applied Mathematics
Vol. 19, No. 3, pp. 1261--1284

EFFICIENT CONSTRUCTION OF TENSOR RING
REPRESENTATIONS FROM SAMPLING\ast 

YUEHAW KHOO\dagger , JIANFENG LU\ddagger , AND LEXING YING\S 

Abstract. In this paper we propose an efficient method to compress a high dimensional function
into a tensor ring format, based on alternating least squares (ALS). Since the function has size
exponential in d, where d is the number of dimensions, we propose an efficient sampling scheme
to obtain O(d) important samples in order to learn the tensor ring. Furthermore, we devise an
initialization method for ALS that allows fast convergence in practice. Numerical examples show
that to approximate a function with similar accuracy, the tensor ring format provided by the proposed
method has fewer parameters than the tensor-train format and also better respects the structure of
the original function.
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1. Introduction. Consider a function f : [n]d \rightarrow \BbbR which can be treated as a
tensor of size nd ([n] := \{ 1, . . . , n\} ). In order to store and perform algebraic manipu-
lation of the exponentially sized tensor, typically the tensor f has to be decomposed
into various low complexity formats. Most current applications involve the CP [8] or
Tucker decompositions [8, 17]. However, the CP decomposition for a general tensor
is nonunique, whereas the components of a Tucker decomposition have exponential
size in d. The tensor train (TT) [14], better known as the matrix product states
(MPS) proposed earlier in the physics literature (see, e.g., [1, 19, 15]), emerges as an
alternative that breaks the curse of dimensionality while avoiding the ill-posedness
issue in tensor decomposition. For this format, function compression and evaluation
can be done in O(d) complexity. The situation is, however, unclear when generalizing
a TT to a tensor network. Therefore, in this paper, we consider the compression of a
black box function f into a tensor ring (TR), i.e., to find 3-tensors H1, . . . ,Hd such
that for x := (x1, . . . , xd) \in [n]d

(1) f(x1, . . . , xd) \approx Tr
\bigl( 
H1(:, x1, :)H

2(:, x2, :) \cdot \cdot \cdot Hd(:, xd, :)
\bigr) 
.

Here Hk \in \BbbR rk - 1\times n\times rk , rk \leq r and we often refer to (r1, . . . , rd) as the TR rank.
Such type of tensor format is a generalization of the TT format for which H1 \in 
\BbbR 1\times n\times r1 , Hd \in \BbbR rd - 1\times n\times 1. The difference between TR and TT is illustrated in Fig-
ure 1 using tensor network diagrams introduced in section 1.1. Due to the exponential
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1262 YUEHAW KHOO, JIANFENG LU, AND LEXING YING
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Fig. 1. Comparison between a TR and a TT.

number of entries, typically we do not have access to the entire tensor f . Therefore,
TR format has to be found based on ``interpolation"" from f(\Omega ) where \Omega is a subset
of [n]d. For simplicity, in the rest of the note, we assume r1 = r2 = \cdot \cdot \cdot = rd = r.

1.1. Notations. We first summarize the notations used in this note and intro-
duce tensor network diagrams for the ease of presentation. Depending on the context,
f is often referred to as a d-tensor of size nd (instead of a function). For a p-tensor
T , given two disjoint subsets \alpha , \beta \subset [p] where \alpha \cup \beta = [p], we use

(2) T\alpha ;\beta 

to denote the reshaping of T into a matrix, where the dimensions corresponding to
sets \alpha and \beta give rows and columns, respectively. Often we need to sample the values
of f on a subset of [n]d grid points. Let \alpha and \beta be two groups of dimensions where
\alpha \cup \beta = [d], \alpha \cap \beta = \emptyset , and \Omega 1 and \Omega 2 be some subsampled grid points along the
subsets of dimensions \alpha and \beta , respectively. We use

(3) f(\Omega 1; \Omega 2) := f\alpha ;\beta (\Omega 1 \times \Omega 2)

to indicate the operation of reshaping f into a matrix, followed by rows and columns
subsampling according to \Omega 1,\Omega 2. For any vector x \in [n]d and any integer i, we let

(4) xi := x[(i - 1) mod d]+1.

For a p-tensor T , we define its Frobenius norm as

(5) \| T\| F :=

\biggl( \sum 
i1,...,ip

T (i1, . . . , ip)
2

\biggr) 1/2

.

The notation vec(A) is used to denote the vectorization of a matrix A, formed by
stacking the columns of A into a vector. For two sets \alpha , \beta , we also use the notation

(6) \alpha \setminus \beta := \{ i \in \alpha | i \in \beta c\} 

to denote the set difference between \alpha , \beta .
In this note, for the convenience of presentation, we use tensor network diagrams

to represent tensors and contractions between them. A tensor is represented as a
node, where the number of legs of a node indicates the dimensionality of the tensor.
For example Figure 2(a) shows a 3-tensor A and a 4-tensor B. When joining edges
between two tensors (for example, in Figure 2(b) we join the third leg of A and first
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CONSTRUCTION OF TENSOR RING REPRESENTATIONS 1263

(a) (b)

Fig. 2. (a) Tensor diagram for a 3-tensor A and a 4-tensor B. (b) Contraction between tensors
A and B.

leg of B), we mean (with the implicit assumption that the dimensions represented by
these legs have the same size)

(7)
\sum 
k

Ai1i2kBkj2j3j4 .

See the review article [12] for a more complete introduction of tensor network dia-
grams.

1.2. Previous approaches. In this section, we survey previous approaches for
compressing a blackbox function into TT or TR. In [13], successive CUR (skeleton)
decompositions [6] are applied to find a decomposition of tensor f in TT format.
In [4], a similar scheme is applied to find a TR decomposition of the tensor. A
crucial step in [4] is to ``disentangle"" one of the 3-tensors Hk's, say H1, from the TR.
First, f is treated as a matrix where the first dimension of f gives rows, the second,
third, . . . , dth dimensions of f give columns, i.e., reshaping f to f1;[d]\setminus 1. Then CUR
decomposition is applied such that

(8) f1;[d]\setminus 1 = CUR

and the matrix C \in \BbbR n\times r2 in the decomposition is regarded as H1
2;3,1 (the R part

in CUR decomposition is never formed due to its exponential size). As noted by the
authors in [4], a shortcoming of the method lies in the reshaping of C into H1. As
in any factorization of a low-rank matrix, there is an inherent ambiguity for CUR
decomposition in that CUR = CAA - 1UR for any invertible matrix A. Such ambigu-
ity in determining H1 may lead to large TR rank in the subsequent determination of
H2, H3, . . . ,Hd. More recently, [22] proposes various alternating least squares (ALS)-
based techniques to determine the TR decomposition of a tensor f . However, they
only consider the situation where entries of f are fully observed, which limits the
applicability of their algorithms to the case with rather small d. Moreover, depending
on the initialization, ALS can suffer from slow convergence. In [18], ALS is used to
determine the TR in a more general setting where only partial observations of the
function f are given. In this paper, we further assume the freedom to observe any
O(d) entries from the tensor f . As we shall see, leveraging such freedom, the com-
plexity of the iterations can be reduced significantly compare to the ALS procedure
in [18].

1.3. Our contributions. In this paper, assuming f admits a rank-r TR decom-
position, we propose an ALS-based two-phase method to reconstruct the TR when
only a few entries of f can be sampled. Here we summarize our contributions.
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1264 YUEHAW KHOO, JIANFENG LU, AND LEXING YING

1. The optimization problem of finding the TR decomposition is nonconvex
hence requires good initialization in general. We devise a method for initial-
izing H1, . . . ,Hd that helps to resolve the aforementioned ambiguity issues
via certain probabilistic assumption on the function f .

2. When updating each 3-tensor in the TR, it is infeasible to use all the entries
of f . We devise a hierarchical strategy to choose the samples of f efficiently
via interpolative decomposition. Furthermore, the samples are chosen in a
way that makes the per iteration complexity of the ALS linear in d.

While we focus in this note on the problem of construction of the TR format,
the above proposed strategies can be applied to tensor networks in higher spatial
configuration (like PEPS; see, e.g., [12]), which will be considered in future works.

The paper is organized as followed. In section 2 we detail the proposed algorithm.
In section 3, we provide intuition and theoretical guarantess to motivate the proposed
initialization procedure, based on certain probabilistic assumption on f . In section 4,
we demonstrate the effectiveness of our methods through numerical examples. Finally
we conclude the paper in section 5.

2. Proposed method. In order to find a TR decomposition (1), our overall
strategy is to solve the minimization problem

(9) min
H1,...,Hd

\sum 
x\in [n]d

\bigl( 
Tr(H1[x1] \cdot \cdot \cdot Hd[xd]) - f(x1, . . . , xd)

\bigr) 2
,

where
Hk[xk] := Hk(:, xk, :) \in \BbbR r\times r

denotes the xkth slice of the 3-tensor Hk along the second dimension. It is compu-
tationally infeasible just to set up problem (9), as we need to evaluate f nd times.
Therefore, analogously to the matrix or CP-tensor completion problem [3, 21], a ``TR
completion"" problem [18]

(10) min
H1,...,Hd

\sum 
x\in \Omega 

\bigl( 
Tr(H1[x1] \cdot \cdot \cdot Hd[xd]) - f(x1, . . . , xd)

\bigr) 2
,

where \Omega is a subset of [n]d should be solved instead. Since there are a total of dnr2

parameters for the tensorsH1, . . . ,Hd, there is hope that by observing a small number
of entries in f (at least O(ndr2)), we can obtain the rank-r TR.

A standard approach for solving the minimization problem of the type (10) is via
ALS. At every iteration of ALS, a particular Hk is treated as variable while H l, l \not = k
are kept fixed. Then Hk is optimized w.r.t. the least-squares cost in (10). More
precisely, to determine Hk, we solve

(11) min
Hk

\sum 
x\in \Omega 

\bigl( 
Tr(Hk[xk]C

x\setminus xk) - f(x)
\bigr) 2
,

where each coefficient matrix

(12) Cx\setminus xk := Hk+1[xk+1] \cdot \cdot \cdot Hd[xd]H
1[x1] \cdot \cdot \cdot Hk - 1[xk - 1], x \in \Omega .

By an abuse of notation, we use x \setminus xk to denote the exclusion of xk from the d-tuple
x. As mentioned previously, | \Omega | should be at least O(ndr2) in order to determine
the TR decomposition. This creates a large computational cost in each iteration of
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CONSTRUCTION OF TENSOR RING REPRESENTATIONS 1265

the ALS, as it takes | \Omega | (d - 1) (which has O(d2) scaling as | \Omega | has size O(d)) matrix
multiplications just to construct Cx\setminus xk for all x \in \Omega . When d is large, such quadratic
scaling in d for setting up the least-squares problem in each iteration of the ALS is
undesirable.

The following simple but crucial observation allows us to gain a further speedup.
Although O(ndr2) observations of f are required to determine all the components
H1, . . . ,Hd, when it comes to determining each individual Hk via solving the linear
system (11), only O(nr2) equations are required for the well-posedness of the linear
system. This motivates us to use different \Omega k's each having size O(nr2) (with | \Omega 1| +
\cdot \cdot \cdot + | \Omega d| \sim O(ndr2)) to determine different Hk's in the ALS steps instead of using
a fixed set \Omega with size O(ndr2) for Hk's. If \Omega k is constructed from densely sampling
the dimensions near k (where a neighborhood is defined according to ring geometry)
while sparsely sampling the dimensions far away from k, computational savings can
be achieved. The specific construction of \Omega k is made precise in section 2.1. We further
remark that if

(13) Tr(Hk[xk]C
x\setminus xk) \approx f(x)

holds with small error for every x \in [n]d, then using any \Omega k \in [n]d in place of \Omega in
(11) should give similar solutions, as long as (11) is well-posed. Therefore, we solve

(14) min
Hk

\sum 
x\in \Omega k

\bigl( 
Tr(Hk[xk]C

x\setminus xk) - f(x)
\bigr) 2

instead of (11) in each step of the ALS where the index sets \Omega k's depend on k. We
note that in practice, a regularization term \lambda \sigma k\| Hk(xk)\| 2F is added to the cost in
(14) to reduce numerical instability resulting from a potential high condition number
of the least-squares problem (14). In all of our experiments, \lambda is set to 10 - 9 and \sigma k

is the top singular value of the Hessian of the least-squares problem (14). From our
experience, the quality of TR is rather insensitive to the choice of \lambda , which indicates
the problem of determining Hk's is rather well-posed.

At this point it is clear that there are two issues needed to be addressed. The
first issue is concerning the choice of \Omega k, k \in [d]. Another issue is that the nonconvex
nature of the TR completion problem 10 may cause difficulty in the convergence of
ALS. We solve the first issue using a hierarchical sampling strategy. As for the second
issue, by making certain probabilistic assumptions on f , we are able to obtain a
cheap and intuitive initialization that allows fast convergence. Before moving on, we
summarize the full algorithm in Algorithm 1. The steps of Algorithm 1 are further
detailed in sections 2.1, 2.2, and 2.3.

Algorithm 1 Alternating least squares.

Require:
Function f : [n]d \rightarrow \BbbR .

Ensure:
TR H1, . . . ,Hd \in \BbbR r\times n\times r.

1: Identify the index sets \Omega k's and compute f(\Omega k) for each k \in [d] (section 2.1).
2: Initialize H1, . . . ,Hd (section 2.2).
3: Start ALS by solving (14) for each k \in [d] (section 2.3).D

ow
nl

oa
de

d 
07

/2
1/

22
 to

 1
32

.1
74

.2
51

.2
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1266 YUEHAW KHOO, JIANFENG LU, AND LEXING YING

2.1. Constructing \Omega \bfitk . In this section, we detail the construction of \Omega k for
each k \in [d]. We first construct an index set \Omega envi

k \subset [n]d - 3 with fixed size s. The
elements in \Omega envi

k correspond to different choices of indices for the [d]\setminus \{ k - 1, k, k+1\} th
dimensions of the function f . Then for each of the elements in \Omega envi

k , we sample all
possible indices from the (k  - 1)th, kth, (k + 1)th dimensions of f to construct \Omega k,
i.e., letting

(15) \Omega k = [n]3 \times \Omega envi
k .

We let | \Omega envi
k | = s for all k where s is a constant that does not depend on the

dimension d. In this case, when determining Cx\setminus xk , x \in \Omega k, in (14), only O(| \Omega envi
k | d)

multiplications of r\times r matrices are needed, giving a complexity that is linear in d when
setting up the least-squares problem. We want to emphasize that although naively
it seems that O(n3) samples are needed to construct \Omega k in (15), the n3 samples
corresponding to each sample in \Omega envi

k can be obtained via applying interpolative
decomposition [5] to the n\times n\times n tensor with O(n) observations.

It remains that \Omega envi
k 's need to be constructed. There are two criteria we use for

constructing \Omega envi
k , k \in [d]. First, we want the range of fk;[d]\setminus k(\Omega k) to be the same as

the range of fk;[d]\setminus k. This is a necessary condition of the least squares in (14) having
a small residual. In this case, the following observation holds.

Observation 1. If

(16)

\sqrt{} \sum 
x\in \Omega k

\bigl( 
Tr(Hk[xk]Cx\setminus xk) - f(x)

\bigr) 2 \leq \epsilon ,

then

(17) \| Hk
2;3,1  - fk;[d]\setminus k(\Omega k)[vec(C

x\setminus xk)]\dagger x\in \Omega k
\| F \leq 

\epsilon 

\sigma min([vec(Cx\setminus xk)]x\in \Omega k
)
,

where \dagger denotes the pseudoinverse, and \sigma min denotes the smallest singular value.

Therefore, Range(Hk
2;3,1) is similar to Range(fk;[d]\setminus k(\Omega k)). On the other hand, an

optimal Hk should satisfy

(18) Hk
2;3,1[vec(C

x\setminus xk)]x\in [n]d = fk;[d]\setminus k

for all the entries of f , thus

(19) Range(fk;[d]\setminus k(\Omega k)) \approx Range(fk;[d]\setminus k).

Here we emphasize that it is possible to reshape f(\Omega k) into a matrix fk;[d]\setminus k(\Omega k) as
in (17) due to the product structure of \Omega k in (15), where the indices along dimension
k are fully sampled. The second criterion is that we require the cost in (14) to
approximate the cost in (9).

To meet the first criterion, we propose a hierarchical strategy to determine \Omega envi
k

such that fk;[d]\setminus k(\Omega k) has large singular values. Assuming d = 3 \cdot 2L for some natural
number L, we summarize such a strategy in Algorithm 2 (the upward pass) and 3 (the
downward pass). The dimensions are divided into groups of size 3 \cdot 2L - l on each level l
for l = 1, . . . , L. We emphasize that level l = 1 corresponds to the coarsest partitioning
of the dimensions of the tensor f . The purpose of the upward pass is to hierarchically
find skeletons \Theta in,l

k which represent the kth group of indices, while the downward pass
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hierarchically constructs representative environment skeletons \Theta envi,l
k . At each level,

the skeletons are found by using rank revealing QR (RRQR) factorization [9].
After a full upward-downward pass where the RRQR are called O(d log d) times,

\Theta envi,L
k with k \in [2L] are obtained. Then another upward pass can be reinitiated.

Instead of sampling new \Theta envi,l
k 's, the stored \Theta envi,l

k 's in the downward pass are used.
Multiple upward-downward passes can be called to further improved these skeletons.
Finally, we let

(20) \Omega envi
3k - 1 := \Theta envi

k , k \in [2L].

Observe that we have only obtained \Omega envi
k for k = 2, 5, . . . , d  - 1. Therefore, we

need to apply the upward-downward pass to different groupings of tensor f 's dimen-
sions in step (1) of the upward pass. More precisely, we group the dimensions as
(2, 3, 4), (5, 6, 7), . . . , (d - 1, d, 1) and (d, 1, 2), (3, 4, 5), . . . , (d - 3, d - 2, d - 1) when ini-
tializing the upward pass to determine \Omega envi

k with k = 3, 6, . . . , d and k = 1, 4, . . . , d - 2,
respectively.

Finally, to meet the second criterion that the cost in (14) should approximate
the cost in (9), to each \Omega envi

k , we add extra samples x \in [n]d - 3 by sampling xi's
uniformly and independently from [n]. We typically sample an extra 5s samples to
each \Omega envi

k . This completes the construction for \Omega envi
k 's and their corresponding \Omega k's

in Algorithm 1.

Algorithm 2 Upward pass.

Require:
Function f : [n]d \rightarrow \BbbR , number of skeletons s.

Ensure:
Skeleton sets \Theta in,l

k 's
1: Decimate the number of dimensions by clustering every three dimensions. More

precisely, for each k \in [2L], let

\~\Theta in,L
k := \{ (x3k - 2, x3k - 1, x3k) | x3k - 2, x3k - 1, x3k \in [n]\} .

There are 2L index sets after this step. For each k \in [2L], construct the set of
environment skeletons

(21) \Theta envi,l
k \subset [n]d - 3

with s elements either by selecting multi-indices from [n]d - 3 randomly, or by using
the output of Algorithm 3 (when an iteration of upward and downward passes is
employed). This step is illustrated in the following figure:

[𝑛][𝑛][𝑛] [𝑛][𝑛][𝑛]

Θ%&
'(,*: = 𝑛 - [𝑛][𝑛][𝑛]

for l = L to l = 1
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1268 YUEHAW KHOO, JIANFENG LU, AND LEXING YING

2: Find the skeletons within each index set \~\Theta in,l
k , k \in [2l], where the elements in

each \~\Theta in,l
k are multi-indices of length 3 \cdot 2L - l. Apply RRQR factorization to the

matrix

(22) f(\Theta envi,l
k ; \~\Theta in,l

k ) \in \BbbR s\times | \~\Theta in,l
k | 

to select s columns that best resembles the range of f(\Theta envi,l
k ; \~\Theta in,l

k ). The multi-

indices for these s columns form the set \Theta in,l
k . Store \Theta in,l

k for each k \in [2l].
This step is illustrated in the following figure, where the thick lines are used to
denote the index sets with size larger than s.

Θ"
#$%& ,(Θ)"

&$,(

Θ"
&$,( ∀𝑘 ∈ 2(

3: If l > 1, for each k \in [2l - 1], construct

(23) \~\Theta in,l - 1
k := \Theta in,l

2k - 1 \times \Theta in,l
2k .

Then, sample s elements randomly from

(24)
\prod 

j\in [2l]\setminus \{ 2k - 1,2k\} 

\Theta in,l
j

to form \Theta envi,l - 1
k , or by using the output of Algorithm 3 (when an iteration of

upward and downward passes is employed). This step is depicted in the next
figure, and again thick lines are used to denote the index sets with size larger
than d.

Θ"#$%
&',) Θ"#

&',)

∀𝑘 ∈ 2)$%Θ.#
&',)$%

end for
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CONSTRUCTION OF TENSOR RING REPRESENTATIONS 1269

Algorithm 3 Downward pass.

Require:
Function f : [n]d \rightarrow \BbbR , \Theta in,l

k 's from the upward pass, number of skeletons s.
Ensure:

Skeletons \Theta envi,l
k 's

1: Let \Theta envi,1
1 = \Theta in,1

2 , \Theta envi,1
2 = \Theta in,1

1 .

Θ"
#$,"(Θ'

($)#,") Θ'
#$,"(Θ"

($)#,")

for l = 2 to l = L
2: For each k \in [2l], we obtain \Theta envi,l

k by applying RRQR factorization to

(25) f(\Theta in,l
k ; \Theta in,l

k+1 \times \Theta envi,l - 1
(k+1)/2)

or

(26) f(\Theta in,l
k ; \Theta in,l

k - 1 \times \Theta envi,l - 1
k/2 )

for odd or even k, respectively, to obtain s important columns. The multi-
indices corresponding to these s columns are used to update \Theta envi,l

k . The
selection of the environment skeletons when k is odd is illustrated in the next
figure:

Θ"#$
%&,( ×Θ("#$)/-

.&/%,(0$Θ"
%&,(

Θ"
%&,( Θ"

.&/% ,( ∀𝑘 ∈ 2(

end for

2.2. Initialization. Due to the nonlinearity of the optimization problem (10), it
is possible for ALS to get stuck at local minima or saddle points. A good initialization
is crucial for the success of ALS. One possibility is to use the ``opening"" procedure in
[4] to obtain 3-tensors each. As mentioned previously, this may suffer an ambiguity
issue, leading us to consider a different approach. The proposed initialization pro-
cedure consists of two steps. First we obtain Hk's up to gauges Gk's between them
(Algorithm 4). Then we solve d least-squares problems to fix the gauges between the
Hk's (Algorithm 5). More precisely, after Algorithm 4, we want to use T k,C as Hk.
However, as in any factorization, SVD can only determine the factorization of T k,C

up to gauge transformations, as shown in Figure 3. Therefore, between T k,C and
T k+1,C , some appropriate gauge Gk has to be inserted (Figure 3).

After gauge fixing, we complete the initialization step in Algorithm 1. Before
moving on, we demonstrate the superiority of this initialization versus random ini-
tialization. In Figure 4 we plot the error between TR and the full function versus
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1270 YUEHAW KHOO, JIANFENG LU, AND LEXING YING

𝑇𝑘,𝐶 𝑇𝑘+1,𝐶𝐺𝑘

Fig. 3. A gauge Gk needs to be inserted between Tk,C and Tk+1,C .

10
0

10
1

10
2

10
3

Number of iteration

10
-6

10
-4

10
-2

10
0

10
2

E
rr

o
r

Proposed initialization

Random initialization

Fig. 4. Plot of convergence of the ALS using both random and the proposed initializations for
the numerical example given in section 4.3 with n = 3, d = 12. The error measure is defined in
(40).

the number of iterations in ALS, when using the proposed initialization and random
initialization. By random initialization, we mean the Hk's are initialized by sampling
their entries independently from the normal distribution. Then ALS is performed on
the example detailed in section 4.3 with n = 3, d = 12. We set the TR rank to be
r = 3. As we can see, after one iteration of ALS, we already obtain a 10 - 4 error using
our proposed method, whereas with random initialization, the convergence of ALS is
slower and the solution has a lower accuracy.

2.3. Alternating least squares. After constructing \Omega k and initializing Hk,
k \in [d], we start ALS by solving problem (14) at each iteration. This completes
Algorithm 1.

When running ALS, sometimes we want to increase the TR rank to obtain a
higher accuracy approximation to the function f . In this case, we simply add a row
and column of random entries to each Hk, i.e.,

(27) Hk(:, i, :)\leftarrow 
\biggl[ 
Hk(:, i, :) \epsilon i,k1

\epsilon i,k2 1

\biggr] 
, i = 1, . . . , n, k = 1, . . . , d,

where each entry of \epsilon i,k1 \in \BbbR r\times 1, \epsilon i,k2 \in \BbbR 1\times r is sampled from a Gaussian distribu-
tion, and continue with the ALS procedure with the new Hk's until the error stops
decreasing. The variance of each Gaussian random variable is typically set to 10 - 8.

3. Motivation of the initialization procedure. In this section, we motivate
our initialization procedure in Algorithm 4. The main idea is by fixing a random
index set, a portion of the ring can be singled out and extracted. To this end, we
place the following assumption on the TR f .
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CONSTRUCTION OF TENSOR RING REPRESENTATIONS 1271

Algorithm 4

Require:
Function f : [n]d \rightarrow \BbbR .

Ensure:
T k,L \in \BbbR n\times r, T k,C \in \BbbR r\times n\times r, T k,R \in \BbbR r\times n, k \in [d].
for k = 1 to k = d

1: Pick an arbitrary z \in [n]d - 3 and let

(28) \Omega ini
k :=

\bigl\{ 
x \in [n]d | x[d]\setminus \{ k - 1,k,k+1\} = z, xk - 1, xk, xk+1 \in [n]

\bigr\} 
.

Define

(29) T k := f(\Omega ini
k ) \in \BbbR n\times n\times n,

where the first, second, and third dimensions of T k correspond to the (k  - 
1), k, (k + 1)th dimensions of f . Note that we only pick one z in \Omega envi

k , which
is the key that we can use an SVD procedure in the next step and avoid
ambiguity in the initialization. The justification of such a procedure can be
found in Appendix 3.

2: Now we want to factorize the 3-tensor T k into a TT with three nodes using
SVD. First treat T k as a matrix by treating the first leg as rows and the second
and third legs as columns. Apply a rank-r approximation to T k using SVD:

(30) T k
1;2,3 \approx UL\Sigma LV

T
L .

Let Ck \in \BbbR r\times n\times n be reshaped from \Sigma LV
T
L \in \BbbR r\times n2

.
3: Treat Ck as a matrix by treating the first and second legs as rows and the

third leg as columns. Apply SVD to obtain a rank-r approximation:

(31) Ck
1,2;3 \approx UR\Sigma RV

T
R .

Let \~T k,C \in \BbbR r\times n\times r be reshaped from UR\Sigma R \in \BbbR rn\times r.

4: Let T k,L := UL\Sigma 
1/2
L and T k,R := \Sigma 

1/2
R V T

R . Let T k,C be defined by

Σ"
#$/& 𝑇(),+

𝑇),+ ≔

Σ-
#$/&

3-tensor T k is thus approximated by a TT with three tensors T k,L \in 
\BbbR n\times r, T k,C \in \BbbR r\times n\times r, T k,R \in \BbbR r\times n.

end for

Assumption 1. Let the TR f be partitioned into four disjoint regions (Figure
5): Regions a, b, c1, and c2, where a, b, c1, c2 \subset [d]. Regions a, b, c1, c2 contain
La, Lb, Lc1 , Lc2 number of dimensions, respectively, where La + Lb + Lc1 + Lc2 = d.
If La, Lb \geq Lbuffer for any z \in [n]La+Lb , the TR f satisfies

(35) f(xc1 , xa\cup b, xc2)| xa\cup b=z \propto g(xc1 , xa\cup b)| xa\cup b=zh(xa\cup b, xc2)| xa\cup b=z
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1272 YUEHAW KHOO, JIANFENG LU, AND LEXING YING

Algorithm 5

Require:
Function f : [n]d \rightarrow \BbbR , T k,L, T k,C , T k,R for k \in [d] from Algorithm 4.

Ensure:
Initialization Hk, k \in [d].
for k = 1 to k = d

1: Pick an arbitrary z \in [n]d - 4 and let
(32)
\Omega gauge

k :=
\bigl\{ 
x \in [n]d | x[d]\setminus \{ k - 1,k,k+1,k+2\} = z, \forall xk - 1, xk, xk+1, xk+2 \in [n]

\bigr\} 
and sample

(33) Sk = f(\Omega gauge
k ) \in \BbbR n\times n\times n\times n.

2: Solve the least-squares problem

(34) Gk = argmin
G

\| Lk
1,2;3GRk

1;2,3  - Sk
1,2;3,4\| 2F

where Lk and Rk are defined as

𝑇𝑘,$ 𝑇𝑘,𝐶 𝑇𝑘+1,𝐶 𝑇𝑘+1,𝑅

1 2

3 1

2 3

𝐿, = 𝑅, =

3: Obtain Hk:

𝑇",$ 𝐺"

𝐻" =

end for

for some functions g, h. Here ``\propto "" denotes the proportional up to a constant relation-
ship.

We note that Assumption 1 holds if f is a nonnegative function and admits a
Markovian structure. Such functions can arise from a Gibbs distribution with energy
defined by short-range interactions [20], for example, the Ising model.

Next we make certain non-degeneracy assumption on the TR f .

Assumption 2. Any segment H of the TR f (for example Ha, Hb, Hc1 , Hc2 shown
in Figure 6), satisfies

(36) rank(HL+1,L+2;[L]) = r2

if L \geq L0 for some natural number L0. In particular, if L \geq L0, we assume the
condition number of H[L];L+1,L+2 \geq \kappa for some \kappa = 1 + \delta \kappa , where \delta \kappa \geq 0 is a small
parameter.
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𝐻" = 1

…

𝐿" + 1 𝐿" + 2

1

2…

𝐿()

𝐻() =

𝐿"2 …

𝐻* = 1 2 𝐿*…

𝐿* + 1 𝐿* + 2 𝐿()+2

𝐿()+1

𝐻(+ =

𝐿(++1

𝐿(++2

1
2

𝐿(+

Region 𝑎

Region 𝑏 Region 𝑐/Region 𝑐0

Fig. 5. Figure of TR f partitioned into regions a, b, c1, c2.

Fig. 6. Figure of a segment of TR, denoted as H, with L + 2 dimensions. The 1, . . . , Lth
dimensions have size n, corresponding to outgoing legs of the TR, and the L+1, L+2th dimensions
are the latent dimensions with size r.

Since HL+1,L+2;[L] \in \BbbR r2\times nL

, it is natural to expect when nL \geq r2, HL+1,L+2;[L]

is rank r2 generically [15].
We now state a proposition that leads us to the intuition behind designing the

initialization procedure Algorithm 4.

Proposition 1. Let

(37) s1 = ei1 \otimes ei2 \otimes \cdot \cdot \cdot \otimes eiLa
, s2 = ej1 \otimes ej2 \otimes \cdot \cdot \cdot \otimes ejLb

be any two arbitrary sampling vectors, where \{ ek\} nk=1 is the canonical basis in \BbbR n.
If La, Lb, Lc1 , Lc2 \geq max(L0, Lbuffer), the two matrices B1, B2 \in \BbbR r\times r defined in
Figure 7 are rank-1.

Proof. Due to Assumption 2,Hc1
Lc1+1,Lc1+2;[Lc1 ]

\in \BbbR r2\times nLc1 andHc2
Lc2+1,Lc2+2;[Lc2 ]

\in \BbbR r2\times nLc2 defined in Figure 7 are rank-r2. Along with the implication of Assumption
1 that

(38) rank
\bigl( \bigl( 
Hc1

Lc1+1,Lc1+2;[Lc1 ]

\bigr) T
B1 \otimes B2Hc2

Lc2+1,Lc2+2;[Lc2 ]

\bigr) 
= 1,

we get

(39) rank(B1 \otimes B2) = 1.

Since rank(B1) rank(B2) = rank(B1\otimes B2) = 1, it follows that the rank of B1, B2 are
1.
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𝐵1 =

𝐵2 =

𝑠1

𝑠&Region 𝑐( Region 𝑐&Region 𝑏

Region 𝑎

Fig. 7. Definition of the matrices B1, B2 in Proposition 1.

𝑠2
𝑝𝑏 		(𝑞𝑏)

𝑇

Fig. 8. Applying a sampling vector s2 in the canonical basis to region b gives the TT.

The conclusion of Proposition 1 implies that to obtain the segment of TR in
region a, one simply needs to apply some sampling vector s2 in the canonical basis to
region b to obtain the configuration in Figure 8, where the vectors pb, qb \in \BbbR r. Our
goal is to extract the nodes in region a as Hk's. It is intuitively obvious that one can
apply the TT-SVD technique in [13] to extract them. Such a technique is indeed used
in the proposed initialization procedure where we assume Lbuffer = 1, L0 = 1, La =
1, Lb = d  - 3. For completeness, in Proposition 2 in the appendix, we formalize
the fact that one can use TT-SVD to learn each individual 3-tensor in the TR f up
to some gauges. We further provide a perturbation analysis for the case when the
Markovian-type assumption holds only approximately in Proposition 2.

4. Numerical results. In this section, we present numerical results on the pro-
posed method for TR decomposition. We calculate the error between the obtained
TR decomposition and function f as

(40) E =

\sqrt{}    \sum 
x\in \Omega 

\bigl( 
Tr(H1[x1] \cdot \cdot \cdot Hd[xd]) - f(x1, . . . , xd)

\bigr) 2\sum 
x\in \Omega f(x1, . . . , xd)2

.

Whenever it is feasible, we let \Omega = [n]d. Otherwise, we subsample \Omega from [n]d

at random: For every x \in \Omega , xi is drawn from [n] uniformly at random. If the
dimensionality of f is large, we simply sample \Omega from [n]d at random. For the
proposed algorithm, we also measure the error on the entries sampled for learning
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CONSTRUCTION OF TENSOR RING REPRESENTATIONS 1275

TR as

(41) Eskeleton =

\sqrt{}    \sum 
x\in \cup k\Omega k

\bigl( 
Tr(H1[x1] \cdot \cdot \cdot Hd[xd]) - f(x1, . . . , xd)

\bigr) 2\sum 
x\in \cup k\Omega k

f(x1, . . . , xd)2
.

In the experiments, we compare our method, denoted as ITR-ALS (``I"" stands for
``initialized"") with TR-ALS proposed in [18]. In [18], the cost in (9) is minimized using
ALS where (11) is solved for each k in an alternating fashion. Although [18] proposed
an SVD-based initialization approach similar to the recursive SVD algorithm for TT
[13], this method has exponential complexity in d. Therefore the comparison with
such an initialization is omitted and we use a randomized intialization for TR-ALS.
As we shall see, ITR-ALS is generally an order of magnitude faster than TR-ALS,
due to the special structure of the samples. For each experiment we run both TR-
ALS and ITR-ALS five times and report the median accuracy. For TR-ALS, we often
have to use fewer samples such that the running time is not excessively long (recall
that TR-ALS has O(d2) complexity per iteration). To compare with the algorithm
in [4], we simply cite the results in [4] since the software is not publicly available.
We also compare ourselves with the density matrix renormalization group (DMRG)-
cross algorithm [16] (which gives a TT). As a method that is based on interpolative
decomposition, DMRG-cross is able to obtain a high quality approximation if we allow
a large TT-rank representation. Since we obtain the TR based on ALS optimization,
the accuracy may not be comparable to DMRG-cross. What we want to emphasize
here is that if the given situation only requires moderate accuracy, our method could
give a more economical representation than TT obtained from DMRG-cross. To
convey this message, we set the accuracy of DMRG-cross so that it matches the
accuracy of our proposed TR-ALS.

4.1. Example 1: A toy example. We first compress the function

(42) f(x1, . . . , xd) =
1\sqrt{} 

1 + x2
1 + \cdot \cdot \cdot + x2

d

, xk \in [0, 1],

considered in [4] into a TR. The results are presented in Table 1. In this example,
we let s = 4 (recall that s is the size of \Omega envi

k ) in ITR-ALS. The number of samples
we can afford to use for TR-ALS is less than ITR-ALS due to the excessively long
running time since each iteration of TR-ALS has a complexity scaling of O(d2). In
this example, although sometimes ITR-ALS has lower accuracy than TR-ALS, the
running time of ITR-ALS is significantly shorter. In particular, for the case when
d = 12, TR-ALS fails to converge using the same amount of samples as ITR-ALS.
Both ITR-ALS and TR-ALS give TR with tensor components with smaller sizes than
TT. The error E reported for the case of d = 12 is obtained from sampling 105 entires
of the tensor f .

4.2. Example 2: Ising spin glass. In this example, we demosntrate the advan-
tage of ITR-ALS in compressing a high-dimensional function arising from many-body
physics, the traditional field where TT or MPS is extensively used [1, 19]. We consider
compressing the free energy of Ising spin glass with a ring geometry:

(43) f(J1, . . . , Jd) =  - 
1

\beta 
log

\biggl[ 
Tr

\biggl( d\prod 
i=1

\biggl[ 
e\beta Ji e - \beta Ji

e - \beta Ji e\beta Ji

\biggr] \biggr) \biggr] 
.

We let \beta = 10 and Ji \in \{  - 2.5, - 1.5, 1, 2\} , i \in [d]. This corresponds to an Ising model
with temperature of about 0.1K. The results are presented in Table 2. We let the
number of environment samples s = 5. When computing the error E for the case
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Table 1
Results for Example 1. n corresponds to the number of uniform grid points on [0, 1] for each

xk. The tuple (r1, . . . , rd) indicates the rank of the learned TR and TT. Eskeleton is computed on
the samples used for learning the TR.

Setting Format
Rank
(r1, . . . , rd)

Eskeleton E Number of observations
nd Run time (s)

d = 6, n = 10 ITR-ALS (3,3,3,3,3,3) 2.3e-03 6.3e-04 1.8e-01 4.7
TR-ALS (3,3,3,3,3,3) 4.3e-05 4.5e-05 2.8e-02 1360

TT (5,5,5,5,5,1) - 1.2e-04 - 2.4
TR[4] (3,3,3,3,3,3) - 2.3e-04 - -

d = 6, n = 20 ITR-ALS (3,3,3,3,3,3) 5.1e-04 9.4e-05 2.1e-02 24
TR-ALS (3,3,3,3,3,3) 5.0e-05 5.4e-05 8.2e-04 2757

TT (5,5,6,5,5,1) - 6.8e-05 - 7.1
TR[4] (3,3,5,6,6,6) - 1.8e-03 - -

d = 12, n = 5 ITR-ALS
(3,3,3,3,3,3
3,3,3,3,3,3)

7.1e-04 5.9e-04 1.7e-04 28

TR-ALS
(3,3,3,3,3,3
3,3,3,3,3,3)

0.97 0.97 1.7e-04 3132

TT
(5,6,6,6,6,6
6,6,5,5,5,1)

- 2.2e-05 - 2.9

Table 2
Results for Example 2. Learning the free energy of Ising spin glass.

Setting Format
Rank
(r1, . . . , rd)

Eskeleton E Number of observations
nd Run time (s)

d = 12, n = 4 ITR-ALS
(4,4,4,4,4,4
4,4,4,4,4,4)

3.9e-03 3.8e-03 1.6e-02 7

TR-ALS
(4,4,4,4,4,4
4,4,4,4,4,4)

4.4e-02 5.2e-02 1.6e-02 994

TT
(6,7,7,7,7,7
7,7,7,6,4,1)

- 4.2e-03 - 2.8

d = 24, n = 4 ITR-ALS

(3,3,3,3,3,3
3,3,3,3,3,3
3,3,3,3,3,3
3,3,3,3,3,3)

4.8e-03 2.7e-03 1.6e-10 19

TR -ALS - - - 1.6e-10 -

TT

(6,8,8,8,6,6
6,6,6,6,7,6
5,6,6,6,6,7
7,6,6,6,4,1)

- 3.7e-03 - 9.3

of d = 24, due to the size of f , we simply subsample 105 entries of f , where Ji's
are sampled independently and uniformly from \{  - 2.5, - 1.5, 1, 2\} . For d = 12, the
solution obtained by ITR-ALS is superior due to the initialization procedure. We see
that in both d = 12, 24 cases, the running time of TR-ALS is much longer compare
to ITR-ALS.

4.3. Example 3: Parametric elliptic partial differential equation (PDE).
In this section, we demonstrate the performance of our method in solving a parametric
PDE. We are interested in solving an elliptic equation with random coefficients

(44)
\partial 

\partial x
a(x)

\biggl( 
\partial 

\partial x
u(x) + 1

\biggr) 
= 0, x \in [0, 1],

subject to a periodic boundary condition, where a(\cdot ) is a random field. In particular,
we want to parameterize the effective conductance function

(45) Aeff(a(\cdot )) :=
\int 
[0,1]

a(x)

\biggl( 
\partial 

\partial x
u(x) + 1

\biggr) 2

dx
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Table 3
Results for Example 3. Solving a parametric elliptic PDE.

Setting Format
Rank
(r1, . . . , rd)

Eskeleton E Number of observations
nd Run time (s)

d = 12, n = 3 ITR-ALS
(3,3,3,3,3,3
3,3,3,3,3,3)

1.1e-05 1.1e-05 1.4e-02 22

TR-ALS
(3,3,3,3,3,3
3,3,3,3,3,3)

5.7e-06 6.8e-06 1.4e-02 1414

TT
(5,5,5,5,5,5
5,5,5,3,3,1)

- 2.5e-05 - 0.76

d = 24, n = 3 ITR-ALS

(3,3,3,3,3,3
3,3,3,3,3,3
3,3,3,3,3,3
3,3,3,3,3,3)

2.6e-05 2.8e-05 5.5e-06 47

TR-ALS - - - 5.5e-06 -

TT

(5,5,5,5,5,5
5,5,5,5,5,5
5,5,5,5,5,5
5,5,5,3,3,1)

- 1.7e-05 - 1.5

as a TR. By discretizing the domain into d segments and assuming a(x) =
\sum d

i=1 ai\chi i(x),
where each ai \in [1, 2, 3] and \chi i's being step functions on uniform intervals on [0, 1],
we determine Aeff(a1, . . . , ad) as a TR. In this case, the effective coefficients have an
analytic solution

(46) Aeff(a1, . . . , ad) =

\biggl( 
1

d

d\sum 
i=1

ai

\biggr)  - 1

and we use this formula to generate samples to learn the TR. For this example, we
pick s = 4. The results are reported in Table 3. When computing E with d = 24,
again 105 entries of f are subsampled, where the ai's are sampled independently and
uniformly from \{ 1, 2, 3\} . We note that although in this situation, there is an analytic
formula for the function we want to learn as a TR, we foresee further usage of our
method when solving parametric PDEs with periodic boundary conditions, where
there is no analytic formula for the physical quantity of interest (for example for the
cases considered in [10]).

5. Conclusion. In this paper, we propose a method for learning a TR repre-
sentation based on ALS. Since the problem of determining a TR is a nonconvex op-
timization problem, we propose an initialization strategy that helps the convergence
of ALS. Furthermore, since using the entire tensor f in the ALS is infeasible, we
propose an efficient hierarchical sampling method to identify the important samples.
Our method provides a more economical representation of the tensor f than the TT
format. As for future works, we plan to investigate the performance of the algorithms
for quantum systems. One difficulty is that the Assumption 1 (Appendix 3) for the
proposed initialization procedure does not in general hold for quantum systems with
short-range interactions. Instead, a natural assumption for a quantum state exhibit-
ing a TR format representation is the exponential correlation decay [7, 2]. The design
of efficient algorithms to determine the TR representation under such an assumption
is left for future works. Another natural direction is to extend the proposed method to
tensor networks in higher spatial dimensions, which we shall also explore in the future.

Appendix A. Stability of initialization. In this section, we analyze the
stability of the proposed initialization procedure, where we relax Assumption 1 to
approximate Markovianity.
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Assumption 3. Let

(47) \Omega z :=
\bigl\{ 
(xc1 , xa\cup b, xc2) | xc1 \in [n]Lc1 , xc2 \in [n]Lc2 , xa\cup b = z

\bigr\} 
for some given z \in [n]La+Lb . For any z \in [n]La+Lb , we assume

(48)
\| f(\Omega z)c1;a\cup b\cup c2\| 22
\| f(\Omega z)c1;a\cup b\cup c2\| 2F

\geq \alpha 

for some 0 < \alpha \leq 1 if La, Lb \geq Lbuffer.

This assumption is a relaxation of Assumption 1. Indeed, if (48) holds for \alpha = 1,
it implies that f(\Omega z)c1;a\cup b\cup c2 is rank 1. Under Assumption 3, we want to show that
using Algorithm 4, one can extract Hk's approximately. The final result is stated in
Proposition 2, obtained via the next few lemmas. In particular, we show that when
the condition number \kappa of the TR components (defined in Lemma 1) satisfies \kappa = 1,
as \alpha \rightarrow 1, the approximation error goes to 0. In the first lemma, we show that B1, B2

defined in Figure 7 are approximately rank-1.

Lemma 1. Let Hc1 , Hc2 , B1, B2 be defined according to Figures 5 and 7, where
the sampling vectors s1, s2 are defined in Proposition 1. If Lc1 , Lc2 , La, Lb \geq 
max(L0, Lbuffer), then

(49)
\| B1\| 22
\| B1\| 2F

,
\| B2\| 22
\| B2\| 2F

\geq \alpha 

\kappa 4
.

Proof. By Assumption 3,

\alpha \leq 

\bigm\| \bigm\| \bigl( Hc1
Lc1

+1,Lc1
+2;[Lc1

]

\bigr) T
B1 \otimes B2Hc2

Lc2
+1,Lc2

+2;[Lc2
]

\bigm\| \bigm\| 2
2\bigm\| \bigm\| \bigl( Hc1

Lc1
+1,Lc1

+2;[Lc1
]

\bigr) T
B1 \otimes B2Hc2

Lc2
+1,Lc2

+2;[Lc2
]

\bigm\| \bigm\| 2
F

\leq \kappa 2
c1\kappa 

2
c2

\| B1 \otimes B2\| 22
\| B1 \otimes B2\| 2F

= \kappa 2
c1\kappa 

2
c2

\| B1\| 22
\| B1\| 2F

\| B2\| 22
\| B2\| 2F

,(50)

where \kappa c1 , \kappa c2 \leq \kappa are condition numbers of Hc1
Lc1+1,Lc1+2;[Lc1 ]

and Hc2
Lc2+1,Lc2+2;[Lc2 ]

,

respectively.

Let pb(qb)T be the best rank-1 approximation to B2. Before registering the next
corollary, we define H [d]\setminus b and \~H [d]\setminus a in Figure 9.

Corollary 1. Under the assumptions of Lemma 1, for any sampling operator
s2 defined in Proposition 1,

(51)
\| H [d]\setminus b

[d - Lb];d - Lb+1,d - Lb+2vec(p
b(qb)T ) - f[d]\setminus b;bs

2\| 22
\| f[d]\setminus b;bs2\| 2F

\leq \kappa 2
\Bigl( 
1 - \alpha 

\kappa 4

\Bigr) 
.

Proof. Lemma 1 implies

\| Hb
Lb+1,Lb+2;[Lb]

s2  - vec(pb(qb)T )\| 22
\| Hb

Lb+1,Lb+2;[Lb]
s2\| 22
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𝑑 − 𝐿$ + 1 𝑑 − 𝐿$ + 2

1

2

𝑑 − 𝐿$

𝑑 − 𝐿( + 1 𝑑 − 𝐿( + 2
𝑑 − 𝐿(

𝐻 * ∖( =	

𝐻.[*]\2 =	

𝐵4	

1

2

Fig. 9. Definition of H[d]\setminus b and \~H[d]\setminus a.

=
\| B2  - pb(qb)T \| 2F

\| B2\| 2F
=
\| B2\| 2F  - \| pb(qb)T \| 2F

\| B2\| 2F
\leq 1 - \alpha 

\kappa 4
.(52)

Then

\| H [d]\setminus b
[d - Lb];d - Lb+1,d - Lb+2vec(p

b(qb)T ) - f[d]\setminus b;bs
2\| 22

\| f[d]\setminus b;bs2\| 22

\leq 
\| H [d]\setminus b

[d - Lb];d - Lb+1,d - Lb+2\| 
2
2\| Hb

Lb+1,Lb+2;[Lb]
s2  - vec(pb(qb)T )\| 22

\| H [d]\setminus b
[d - Lb];d - Lb+1,d - Lb+2H

b
Lb+1,Lb+2;[Lb]

s2\| 22

\leq \kappa 2
[d]\setminus b
\| Hb

Lb+1,Lb+2;[Lb]
s2  - vec(pb(qb)T )\| 22

\| Hb
Lb+1,Lb+2;[Lb]

s2\| 22
,(53)

where \kappa 2
[d]\setminus b is the condition number of H

[d]\setminus b
[d - Lb];d - Lb+1,d - Lb+2. Recall that Hb is

defined in Figure 5.

This corollary states that the situation in Figure 8 holds approximately. More

precisely, let T, \^T \in \BbbR nd - Lb be defined as

(54) T := H
[d]\setminus b
[d - Lb];d - Lb+1,d - Lb+2vec(p

b(qb)T ), \^T := f[d]\setminus b;bs
2,

respectively, as demonstrated in Figure 10(a), where pb, qb appear in Corollary 1.
Corollary 1 implies

(55) T = \^T + E,
\| E\| 2F
\| \^T\| 2F

\leq \kappa 2
\Bigl( 
1 - \alpha 

\kappa 4

\Bigr) 
.

In the following, we want to show that we can approximately extract the Hk's in
region a. For this, we need to take the right-inverses of \~Hc1

Lc1
+1;[Lc1

] and
\~Hc2
Lc2

+1;[Lc2
],

defined in Figure 10(b). This requires a singular value lower bound, provided by the
next lemma.

Lemma 2. Let \sigma k : \BbbR m1\times m2 \rightarrow \BbbR be a function that extracts the kth singular
value of an m1 \times m2 matrix. Then

(56)
\sigma r( \~H

c1
Lc1+1;[Lc1 ]

)2\sigma r( \~H
c2
Lc2+1;[Lc2 ]

)2

\| \~H [d]\setminus a
d - La+1,d - La+2;[d - La]

\| 22
\geq 1

\kappa 6
 - 2
\surd 
r

\kappa 2

\sqrt{} 
1 - \alpha 

\kappa 4
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𝑝" (𝑞")&

𝐵(

Region 𝑎Region 𝑐+ Region 𝑐(

𝑇 =	

𝑇/ =	

(a)

𝐻"#$ = 𝐻& =

Region 𝑐( Region 𝑐)Region 𝑎

𝐻"#+ =

𝑇 =	
𝐿#$ + 1

1 … 𝐿#$ 1𝐿#+

𝐿#+ + 1

…

(b)

Fig. 10. (a) Definition of T and \^T . The dimensions in region a, c1, c2 are grouped into

\scrI a, \scrI c1 , \scrI c2 , respectively, for the tensors T and \^T . (b) Individual components of T .

assuming

(57)
1

\kappa 4
 - 2
\surd 
r

\sqrt{} 
1 - \alpha 

\kappa 4
\geq 0.

Proof. First,

\sigma r2(T\scrI a;\scrI c1
\scrI c2

)2

\| \^T\scrI a;\scrI c1
,\scrI c2
\| 22
\leq 
\| Ha

[La];La+1,La+2\| 
2
2\sigma r2( \~H

c1
Lc1

+1;[Lc1
] \otimes \~Hc2

Lc2
+1;[Lc2

])
2

\| \^T\scrI a;\scrI c1
,\scrI c2
\| 22

=
\| Ha

[La];La+1,La+2\| 
2
2\sigma r( \~H

c1
Lc1

+1;[Lc1
])
2\sigma r( \~H

c2
Lc2

+1;[Lc2
])
2

\| Ha
[La];La+1,La+2

\~H
[d]\setminus a
d - La+1,d - La+2;[d - La]

\| 22

\leq 
\| Ha

[La];La+1,La+2\| 
2
2\sigma r( \~H

c1
Lc1+1;[Lc1 ]

)2\sigma r( \~H
c2
Lc2+1;[Lc2 ]

)2

\sigma r2(H
a
[La];La+1,La+2)

2\| \~H [d]\setminus a
d - La+1,d - La+2;[d - La]

\| 22

\leq \kappa 2
\sigma r( \~H

c1
Lc1

+1;[Lc1
])
2\sigma r( \~H

c2
Lc2

+1;[Lc2
])
2

\| \~H [d]\setminus a
d - La+1,d - La+2;[d - La]

\| 22
.(58)

The equality follows from

\^T\scrI a;\scrI c1
,\scrI c2

= Ha
[La];La+1,La+2

\~H
[d]\setminus a
d - La+1,d - La+2;[d - La]

,

which follows from (54), and the definition of \~H [d]\setminus a in Figure 9.
Observe that

\sigma r2(T\scrI a;\scrI c1
,\scrI c2

)2

\| \^T\scrI a;\scrI c1 ,\scrI c2
\| 22
\geq 

\sigma r2( \^T\scrI a;\scrI c1
,\scrI c2

)2  - 2\| E\| F\sigma r2( \^T\scrI a;\scrI c1
,\scrI c2

) + \| E\| 2F
\| \^T\scrI a;\scrI c1 ,\scrI c2

\| 22

\geq 
\sigma r2( \^T\scrI a;\scrI c1 ,\scrI c2

)2

\| \^T\scrI a;\scrI c1
,\scrI c2
\| 22
 - 

2\| E\| F\sigma r2( \^T\scrI a;\scrI c1 ,\scrI c2
)

\| \^T\scrI a;\scrI c1
,\scrI c2
\| 22

\geq 
\sigma r2(H

a
[La];La+1,La+2)

2\sigma r2( \~H
[d]\setminus a
d - La+1,d - La+2;[d - La]

)2

\| Ha
[La];La+1,La+2\| 

2
2\| \~H

[d]\setminus a
d - La+1,d - La+2;[d - La]

\| 22
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 - 
2\| E\| F\sigma r2( \^T\scrI a;\scrI c1 ,\scrI c2

)

\| \^T\scrI a;\scrI c1
,\scrI c2
\| 22

\geq 1

\kappa 4
 - 

2\| E\| F\sigma r2( \^T\scrI a;\scrI c1
,\scrI c2

)

\| \^T\scrI a;\scrI c1
,\scrI c2
\| 22

\geq 1

\kappa 4
 - 

2
\surd 
r\sigma r2( \^T\scrI a;\scrI c1

,\scrI c2
)\| E\| F

\| \^T\scrI a;\scrI c1 ,\scrI c2
\| 2\| \^T\scrI a;\scrI c1 ,\scrI c2

\| F

\geq 1

\kappa 4
 - 2
\surd 
r

\sqrt{} 
1 - \alpha 

\kappa 4
;(59)

we established the claim. The first inequality regarding perturbation of singular values
follows from the theorem by Mirsky [11]:

(60)
\bigm| \bigm| \sigma r2(T\scrI a;\scrI c1 ,\scrI c2

) - \sigma r2( \^T\scrI a;\scrI c1 ,\scrI c2
)
\bigm| \bigm| \leq \| E\| 2 \leq \| E\| F ,

and assuming \| E\| F \leq \sigma r2( \^T\scrI a;\scrI c1 ,\scrI c2
) . Such an assumption holds when demanding

the lower bound in (59) to be nonnegative, i.e.,

(61)
\sigma r2( \^T\scrI a;\scrI c1 ,\scrI c2

)2

\| \^T\scrI a;\scrI c1
,\scrI c2
\| 22
 - 

2\| E\| F\sigma r2( \^T\scrI a;\scrI c1 ,\scrI c2
)

\| \^T\scrI a;\scrI c1
,\scrI c2
\| 22

\geq 1

\kappa 4
 - 2
\surd 
r

\sqrt{} 
1 - \alpha 

\kappa 4
\geq 0.

The last inequality follows from Corollary 1.

In the next lemma, we prove that when applying Algorithm 4 to \^T , where \^T is
treated as a 3-tensor formed from grouping the dimensions in each of set \scrI a, \scrI c1\scrI c2 ,
it gives a close approximation to \^T .

Lemma 3. Let

\Pi 1 :=
\bigl\{ 
Y | Y = XXT , X \in \BbbR nLc1\times r, XTX = I

\bigr\} 
,

\Pi 2 :=
\bigl\{ 
Y | Y = XXT , X \in \BbbR nLc2\times r, XTX = I

\bigr\} 
,(62)

where I is the identity matrix. Let P \ast 
1 \in \Pi 1 be the best rank-r projection for \^T\scrI c2

\scrI a;\scrI c1

such that \^T\scrI c2
\scrI a;\scrI c1

P \ast 
1 \approx \^T\scrI c2

\scrI a;\scrI c1
in the Frobenius norm, and

P \ast 
2 = min

P2\in \Pi 2

\| ( \^T\scrI a;\scrI c1
\scrI c2

(I \otimes P2) - \^T\scrI a;\scrI c1
\scrI c2

)(P \ast 
1 \otimes I)\| 2F .

Then

(63) \| \^T\scrI a;\scrI c1\scrI c2
(I \otimes P \ast 

2 )(P
\ast 
1 \otimes I) - \^T\scrI a;\scrI c1\scrI c2

\| 2F \leq 2\| E\| 2F .

Proof. To simplify the notations, let \~T\scrI a;\scrI c1\scrI c2
:= \^T\scrI a;\scrI c1\scrI c2

(I \otimes P2). Then

min
P2\in \Pi 2

\| \^T\scrI a;\scrI c1\scrI c2
(I \otimes P2)(P

\ast 
1 \otimes I) - \^T\scrI a;\scrI c1\scrI c2

\| 2F

= min
P2\in \Pi 2

\| ( \~T\scrI a;\scrI c1
\scrI c2
 - \^T\scrI a;\scrI c1

\scrI c2
+ \^T\scrI a;\scrI c1

\scrI c2
)(P \ast 

1 \otimes I) - \^T\scrI a;\scrI c1
\scrI c2
\| 2F

= min
P2\in \Pi 2

\| \^T\scrI a;\scrI c1
\scrI c2

(I  - P \ast 
1 \otimes I)\| 2F + \| ( \~T\scrI a;\scrI c1

\scrI c2
 - \^T\scrI a;\scrI c1

\scrI c2
)(P \ast 

1 \otimes I)\| 2F

\leq min
P2\in \Pi 2

\| \^T\scrI a;\scrI c1\scrI c2
(I  - P \ast 

1 \otimes I)\| 2F + \| \~T\scrI a;\scrI c1\scrI c2
 - \^T\scrI a;\scrI c1\scrI c2

\| 2F
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= min
P2\in \Pi 2

\| \^T\scrI a;\scrI c1
\scrI c2

(I  - P \ast 
1 \otimes I)\| 2F + \| \^T\scrI a;\scrI c1

\scrI c2
(I  - I \otimes P2)\| 2F .(64)

The inequality comes from the fact that P \ast 
1 \otimes I is a projection matrix. Next,

(65) \| \^T\scrI a;\scrI c1\scrI c2
(I  - P \ast 

1 \otimes I)\| 2F + min
P2\in \Pi 2

\| \^T\scrI a;\scrI c1\scrI c2
(I  - I \otimes P2)\| 2F

= min
P1\in \Pi 1

\| \^T\scrI a;\scrI c1
\scrI c2

(I  - P1 \otimes I)\| 2F + min
P2\in \Pi 2

\| \^T\scrI a;\scrI c1
\scrI c2

(I  - I \otimes P2)\| 2F

\leq \| E\| 2F + \| E\| 2F \leq 2\| E\| 2F ,

and we can conclude the lemma. The equality comes from the definition of P \ast 
1 ,

whereas the inequality is due to the facts that P1, P2 are rank-r projectors, and there
exists T such that \^T = T  - E, where rank(T\scrI c1\scrI a;\scrI c2

), rank(T\scrI c1 ;\scrI a\scrI c2
) \leq r.

We are ready to state the final proposition.

Proposition 2. Let

\^\^T\scrI a;\scrI c1
\scrI c2

:= \^T\scrI a;\scrI c1
\scrI c2

(I \otimes P \ast 
2 )(P

\ast 
1 \otimes I),(66)

where P \ast 
1 , P

\ast 
2 are defined in Lemma 3. Then

(67)

\| Ha
[La];La+1,La+2  - 

\^\^T\scrI a;\scrI c1
\scrI c2

( \~Hc1
Lc1

+1;[Lc1
] \otimes \~Hc2

Lc2
+1;[Lc2

])
\dagger \| 2F

\| Ha
[La];La+1,La+2\| 

2
F

\leq 
(1 +

\surd 
2)2\kappa 4(1 - \alpha 

\kappa 4 )
1
\kappa 4  - 2

\surd 
r
\sqrt{} 
1 - \alpha 

\kappa 4

,

where ``\dagger "" is used to denote the pseudoinverse of a matrix, if the upper bound is
positive. When \kappa = 1 + \delta \kappa and \alpha = 1  - \delta \alpha , where \delta \kappa , \delta \alpha \geq 0 are small parameters,
we have

(68)
\| Ha

[La];La+1,La+2  - 
\^\^T\scrI a;\scrI c1

\scrI c2
( \~Hc1

Lc1+1;[Lc1 ]
\otimes \~Hc2

Lc2+1;[Lc2 ]
)\dagger \| 2F

\| Ha
[La];La+1,La+2\| 

2
F

\leq O(\delta \alpha + 4\delta \kappa ).

Proof. From Lemma 3 and (55), we get

\| \^\^T\scrI a;\scrI c1
\scrI c2
 - T\scrI a;\scrI c1

\scrI c2
\| F

= \| \^T\scrI a;\scrI c1
\scrI c2

(I \otimes P \ast 
2 )(P

\ast 
1 \otimes I) - T\scrI a;\scrI c1

\scrI c2
\| F

\leq \| \^T\scrI a;\scrI c1
\scrI c2

(I \otimes P \ast 
2 )(P

\ast 
1 \otimes I) - \^T\scrI a;\scrI c1

\scrI c2
\| F + \| \^T\scrI a;\scrI c1

\scrI c2
 - T\scrI a;\scrI c1

\scrI c2
\| F

\leq (1 +
\surd 
2)\| E\| F .(69)

Recalling that

(70) Ha
[La];La+1,La+2 = T\scrI a;\scrI c1

,\scrI c2
( \~Hc1

Lc1+1;[Lc1 ]
\otimes \~Hc2

Lc2+1;[Lc2 ]
)\dagger ,

where the existence of a full-rank pseudoinverse is guaranteed by the singular value
lower bound in Lemma 2, we have

\| Ha
[La];La+1,La+2  - 

\^\^T\scrI a;\scrI c1
,\scrI c2

( \~Hc1
Lc1

+1;[Lc1
] \otimes \~Hc2

Lc2
+1;[Lc2

])
\dagger \| 2F

\| Ha
[La];La+1,La+2\| 

2
F

\leq 
(1 +

\surd 
2)2\| E\| 2F \| ( \~H

c1
Lc1

+1;[Lc1
] \otimes \~Hc2

Lc2
+1;[Lc2

])
\dagger \| 22

\| Ha
[La];La+1,La+2\| 

2
F
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\leq (1 +
\surd 
2)2\| E\| 2F

\sigma r( \~H
c1
Lc1

+1;[Lc1
])
2\sigma r( \~H

c2
Lc2

+1;[Lc2
])
2\| Ha

[La];La+1,La+2\| 
2
F

=
(1 +

\surd 
2)2\| \^T\| 2F

\sigma r( \~H
c1
Lc1+1;[Lc1 ]

)2\sigma r( \~H
c2
Lc2+1;[Lc2 ]

)2\| Ha
[La];La+1,La+2\| 

2
F

\| E\| 2F
\| \^T\| 2F

\leq 
(1 +

\surd 
2)2\| \~H [d]\setminus a

d - La+1,d - La+2;[d - La]
\| 22

\sigma r( \~H
c1
Lc1

+1;[Lc1
])
2\sigma r( \~H

c2
Lc2

+1;[Lc2
])
2

\| E\| 2F
\| \^T\| 2F

\leq (1 +
\surd 
2)2

1
\kappa 6  - 2

\surd 
r

\kappa 2

\sqrt{} 
1 - \alpha 

\kappa 4

\kappa 2

\biggl( 
1 - \alpha 

\kappa 4

\biggr) 
.(71)

The first inequality follows from (69) and (70), and the last inequality follows from
Corollary 1 and Lemma 2.

When La = Lc1 = Lc2 = 1, applying Algorithm 4 to \^T results in \^\^T (represented
by the tensors T a,L, T a,C , and T a,R). Therefore, this proposition essentially implies
T a,C approximates Ha up to a gauge transformation.
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