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Solving inverse wave scattering with deep learning

Yuwei Fan and Lexing Ying

This paper proposes a neural network approach for solving two

classical problems in the two-dimensional inverse wave scattering:

far field pattern problem and seismic imaging. The mathematical

problem of inverse wave scattering is to recover the scatterer field

of a medium based on the boundary measurement of the scattered

wave from the medium, which is high-dimensional and nonlinear.

For the far field pattern problem under the circular experimental

setup, a perturbative analysis shows that the forward map can be

approximated by a vectorized convolution operator in the angular

direction. Motivated by this and filtered back-projection, we pro-

pose an effective neural network architecture for the inverse map

using the recently introduced BCR-Net along with the standard

convolution layers. Analogously for the seismic imaging problem,

we propose a similar neural network architecture under the rectan-

gular domain setup with a depth-dependent background velocity.

Numerical results demonstrate the efficiency of the proposed neural

networks.
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1. Introduction

Inverse wave scattering is the problem of determining the intrinsic property

of an object based on the data collected from the object scatters incoming

waves under the illumination of an incident wave, which can be acoustic,

electromagnetic, or elastic. In most cases, inverse wave scattering is non-

intrusive to the object under study and therefore it has a wide range of

applications including radar imaging [8], sonar imaging [32], seismic explo-

ration [65], geophysics exploration [64], and medicine imaging [35] and so

on.
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Background. We focus on the time harmonic acoustic inverse scattering in
two dimensions. Let Ω be a compact domain of interest. The inhomogeneous
media scattering problem at a fixed frequency ω is modeled by the Helmholtz
equation

(1) Lu :=

(
−Δ− ω2

c2(x)

)
u,

where c(x) is the unknown velocity field. Assume that there exists a known
background velocity c0(x) such that c(x) is identical to c0(x) outside the
domain Ω. By introducing the scatterer η(x):

(2) η(x) =
ω2

c(x)2
− ω2

c0(x)2

compactly supported in Ω, one can equivalently work with η(x) instead of
c(x). Note that in this definition η(x) scales quadratically with the frequency
ω. However, as ω is assumed to be fixed throughout this paper, this scaling
does not affect our discussion.

In order to recover the unknown η(·), a typical setup of an experiment is
as follows. For each source s from a source set S, one specifies an incoming
wave (typically either a plane wave or a point source) and propagates the
wave to the scatterer η(·). The scattered wave field us(x) is then recorded
at each receiver r from a receiver set R (typically placed at the domain
boundary or infinity). The whole dataset, indexed by both the source s
and the receiver r, is denoted by {d(s, r)}s∈S,r∈R. The forward problem is
to compute d(s, r) given η(x). The inverse scattering problem is to recover
η(x) given d(s, r),

Both the forward and inverse problems are computationally quite chal-
lenging, and in the past several decades a lot of research has been devoted to
their numerical solution [21, 22]. For the forward problem, the time-harmonic
Helmholtz equation, especially in the high-frequency regime ω � 1, is hard
to solve mainly due to two reasons: (1) the Helmholtz operator has a large
number of both positive and negative eigenvalues, with some close to zero;
(2) a large number of degrees of freedom are required for discretization due
to the Nyquist sampling rate. In recent years, quite a few methods have been
developed for rapid solutions of Helmholtz operator [29, 18, 20, 19, 51]. The
inverse problem is quite more difficult for numerical solution, due to the
nonlinearity of the problem. For the methods based on optimization, as the
loss landscape is highly non-convex (for example, the cycle skipping problem
in seismic imaging [55]), the optimization can get stuck at a local minimum
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with rather large loss value. Other popular methods include the factorization
method and the linear sampling method [44, 11, 9].

A deep learning approach. Deep learning (DL) has recently become the
state-of-the-art approach in many areas of machine learning and artificial
intelligence, including computer vision, image processing, and speech recog-
nition [36, 46, 31, 54, 49, 62, 48, 61]. From a technical point of view, this suc-
cess can be attributed to several key developments: neural networks (NNs) as
a flexible framework for representing high-dimensional functions and maps,
simple algorithms such as back-propagation (BP) and stochastic gradient
descent (SGD) for tuning the model parameters, efficient general software
packages such as Tensorflow and Pytorch, and unprecedented computing
power provided by GPUs and TPUs.

More recently, deep neural networks (DNNs) have been increasingly used
in scientific computing and computational engineering, particularly for PDE-
related problems [41, 6, 33, 25, 3, 58, 47, 28]. One direction focuses on the
low-dimensional parameterized PDE problems by representing the nonlinear
map from the high-dimensional parameters of the PDE solution using DNNs
[52, 34, 41, 25, 24, 23, 50, 4]. A second direction aims to use DNNs as an
ansatz for high-dimensional PDEs [60, 10, 33, 42, 17] since DNNs offer a
powerful tool for approximating high-dimensional functions and densities
[15].

Related to the first direction mentioned above, DNNs have been widely
applied to inverse problems [43, 37, 40, 2, 53, 63, 26, 27, 59]. For the for-
ward problem, as applying neural networks to input data can be carried out
rapidly due to novel software and hardware architectures, the forward so-
lution can be significantly accelerated once the forward map is represented
with a DNN. For the inverse problem, two critical computational issues are
the choices of the solution algorithm and the regularization term. DNNs can
help on both aspects: first, concerning the solution algorithm, due to its
flexibility in representing high-dimensional functions, DNN can potentially
be used to approximate the full inverse map, thus avoiding the iterative
solution process; second, concerning the regularization term, DNNs often
can automatically extract features from the data and offer a data-driven
regularization prior.

This paper applies the deep learning approach to inverse wave scattering
by representing the whole inverse map using neural networks. Two cases
are considered here: (1) far field pattern and (2) seismic imaging. In our
relatively simple setups, the main difference between the two is the source
and receiver configurations: in the far field pattern, the sources are plane
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waves and the receivers are regarded as placed at infinity; in the seismic
imaging, both the sources and receivers are placed at the top surface of the
survey domain.

In each case, the starting point is a perturbative analysis of the for-
ward map, which reveals that the forward map contains a vectorized one-
dimensional convolution, after appropriate reparameterization of η(x) and
d(s, r). This observation suggests to represent the forward map from η to d
by a one-dimensional convolution neural network (with multiple channels).
Following the idea of the filtered back-projection method [56], the inverse
map can then be approximated by the adjoint map followed by a pseudo-
differential filtering step. This suggests an architecture for the inverse map
by reversing the forward map network followed by a simple two-dimensional
convolution neural network. For the test problems being considered, the re-
sulting neural networks have a relatively small number of parameters, thanks
to the convolutional structure. This small number of parameters allows for
more accurate and rapid training, even with a somewhat limited dataset.

Organization. This rest of the paper is organized as follows. Section 2 dis-
cusses the far field pattern problem. Section 3 considers the seismic imaging
problems. Section 4 concludes some discussions for future work.

2. Far field pattern

2.1. Mathematics analysis

In the far field pattern case, the background velocity field c0(x) is constant,
and without loss of generality, equal to one. We introduce the base operator
L0 = −Δ− ω2/c20 = −Δ− ω2 and write L in a perturbative way as

(3) L = L0 − η.

The sources are parameterized by s ∈ S = [0, 2π). For each source s,
the incoming wave is a plane wave eiωŝ·x with the unit direction given by
ŝ = (cos(s), sin(s)) ∈ S1. The scattered wave us(x) satisfies the following
equation

(4) (L0 − η)(eiωŝ·x + us(x)) = 0,

along with the Sommerfeld radiation boundary condition at infinity [14].
The receivers are also indexed by r ∈ R = [0, 2π). The far field pattern at
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the unit direction r̂ = (cos(r), sin(r)) ∈ S1 is defined as

ûs(r) ≡ lim
ρ→∞

√
ρe−iωρus(ρ · r̂).

The recorded data is the set of far field pattern from all incoming directions:

d(s, r) ≡ ûs(r) for r ∈ R and s ∈ S.

In order to understand better the relationship between η(x) and d(s, r),

we perform a perturbative analysis for small η. Expanding (4) leads to

(L0u
s)(x) = η(x)eiωŝ·x + . . . ,

where . . . stands for higher order terms in η. Letting G0 = L−1
0 be the

Green’s functions of the free-space Helmholtz operator L0, we get

us(y) =

∫
G0(y − x)η(x)eiωŝ·x dx+ . . .

Using the expansion at infinity

G0(z) ≈
1√
|z|

(
eiω|z| + o(1)

)
,

we arrive at

(5)

ûs(r) = lim
ρ→∞

√
ρe−iωρus(ρ · r̂) ≈ lim

ρ→∞

∫
1
√
ρ
eiω(ρ−r̂·x)√ρe−iωρη(x)eiωŝ·x dx

=

∫
e−iω(r̂−ŝ)·xη(x) dx ≡ d1(s, r),

where the notation d1(s, r) stands for the first order approximation to d(s, r)

in η.

2.1.1. Problem setup. For the far field pattern problem, we are free

to treat the domain Ω as the unit disk centered at origin (by appropriate

rescaling and translation), as illustrated in Fig. 1. In a common setting,

the sources and receivers are uniformly sampled in S1, and s = 2πj
Ns

, j =

0, . . . , Ns − 1 and r = 2πk
Nr

, k = 0, . . . , Nr − 1, where Ns = Nr in the current

setup.
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Figure 1: Illustration of the incoming and outgoing waves for a far field
pattern problem. The scatterer η(x) is compactly supported in the domain
Ω. The incoming plane wave points at direction ŝ = (cos(s), sin(s)). The far
field pattern is sampled at each receiver direction r̂ = (cos(r), sin(r)).

2.1.2. Forward map. Since the domain Ω is the unit disk, it is conve-
nient to work with the problem in the polar coordinates. Let x = (ρ cos(θ),
ρ sin(θ)), where ρ ∈ [0, 1] is the radial coordinate and θ ∈ [0, 2π) is the an-
gular one. Due to the circular tomography geometry that r, s ∈ [0, 2π), it is
convenient to reparameterize the measurement data by a change of variables

(6) m =
r + s

2
, h =

r − s

2
, r = m+ h, s = m− h,

where all the variables m,h, r, s are understood modulus 2π. Figure 2 pre-
sents an example of the scatterer field η(x) and the measurement data d(s, r)
in the original and transformed coordinates.

With a bit abuse of notation, we can redefine the measurement data

(7) d(m,h) ≡ d(s, r)|s=m−h,r=m+h,

and so does d1(m,h). At the same time, we redefine

η(θ, ρ) = η(ρ cos(θ), ρ sin(θ)

in the polar coordinates. Since the first order approximation d1(m,h) is
linearly dependent on η(θ, ρ), there exists a kernel distribution K(m,h, θ, ρ)
such that

(8) d1(m,h) =

∫ 1

0

∫ 2π

0
K(m,h, θ, ρ)η(θ, ρ) dρdθ.

Since the domain is the unit disk centered at origin and the background
velocity field c0 = 1 is constant, the whole problem is equivariant to rotation.



Solving inverse wave scattering with deep learning 29

Figure 2: Visualization of the scatterer field η and the measurement data
d. The upper figures are the scatterer and the real and imaginary part of
the measurement data d, respectively. The lower-left figure is the scatterer
in the polar coordinates and the lower-right two figures are the real and
imaginary part of the measurement data after change of variable.

In this case, the system can be dramatically simplified due to the following
proposition.

Proposition 1. There exists a function κ(h, ρ, ·) periodic in the last param-
eter such that K(m,h, θ, ρ) = κ(h, ρ,m− θ) or equivalently,

(9) d1(m,h) =

∫ 1

0

∫ 2π

0
κ(h, ρ,m− θ)η(ρ, θ) dθ dρ.

Proof. A simple calculation shows that the phase (r̂ − ŝ) · x now becomes

(r̂− ŝ) · x = ( ̂(m+ h)− ̂(m− h)) · (ρ cos(θ), ρ sin(θ)) = 2ρ sin(h) sin(θ−m).

Therefore, (5) turns to

d1(m,h) =

∫ 1

0

∫ 2π

0

(
ρe2iρω sinh sin(m−θ)

)
η(θ, ρ) dθ dρ.

By introducing κ(h, ρ, y) = ρe2iρω sinh sin(y), we complete the proof.
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Proposition 1 shows that K acts on η in the angular direction by a
convolution, which allows us to evaluate the map η(θ, ρ) → d1(m,h) by a
family of 1D convolutions, parameterized ρ and h.

Discretization. Until now, the discussion is in continuous space. The nu-
merical discretization and numerical method for the Helmholtz equation will
be presented in the numerical section. With a slight abuse of notation, the
same symbols will be used to denote the discretization version of the con-
tinuous data and kernels. Then the discretization version of Equations (5)
and (9) takes the form

(10) d(m,h) ≈
∑
ρ,θ

K(m,h, θ, ρ)η(θ, ρ) =
∑
ρ

(κ(h, ρ, ·) ∗ η(·, ρ)) (m).

2.2. Neural network

Forward map. The perturbative analysis shows that, when η is sufficiently
small, the forward map η(θ, ρ) → d(m,h) can be approximated by (10).
In terms of the NN architecture, for small η, the forward map (10) can
be approximated by a one-dimensional (non-local) convolution layer on the
angular direction by taking h and ρ as the channels. For larger η, this lin-
ear approximation is no longer accurate. In order to address the nonlinear
case, we propose to increase the number of convolution layers and include
nonlinear activations for the neural network of (10).

Algorithm 1 Neural network architecture for the forward map η → d.

Require: c, Ncnn ∈ N+, η ∈ RNθ×Nρ

Ensure: d ∈ RNs×Nh

1: ξ = Conv1d[c, 1, id](η) with ρ as the channel direction � Resampling η to fit for
BCR-Net

2: ζ = BCR-Net[c,Ncnn](ξ) � Use BCR-Net to implement the convolutional neural
network.

3: d = Conv1d[Nh, 1, id](ζ) � Reconstruct the result d from the output of BCR-Net.
4: return d

In the convolutional neural network, the h and ρ directions are taken as
channels direction. The number of channels, denoted by c, is quite problem-
dependent and will be discussed in the numerical section. In the angular
direction, since the convolution between η and d is global, in order to rep-
resent global interactions the window size of the convolution layer w must
satisfy the constraint

(11) wNcnn ≥ Nθ,
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where Ncnn is the number of layers and Nθ is number of discretization points
on the angular direction. A simple calculation shows that the number of pa-
rameters of the neural network is O(wNcnnc

2) ∼ O(Nθc
2). The recently

proposed BCR-Net [23] has been demonstrated to require fewer number of
parameters and provide good efficiency for such interactions. Therefore, we
replace the convolution layers with the BCR-Net in our architecture. The
resulting neural network architecture for the forward map is summarized
in Algorithm 1 with an estimate of O(c2 log(Nθ)Ncnn) parameters. The com-
ponents of Algorithm 1 are detailed below.

• ξ = Conv1d[c, w, φ](η) mapping η ∈ RNθ×Nρ to ξ ∈ RNθ×c is the one-
dimensional convolution layer with window size w, channel number c,
activation function φ and period padding on the first direction.

• BCR-Net is motivated by the data-sparse nonstandard wavelet repre-
sentation of the linear operators [7]. It processes the information at
different scale separately and each scale can be understood as a local
convolutional neural network. The one-dimensional ζ = BCR-Net[c,
Ncnn](ξ) maps ξ ∈ RNθ×c to ζ ∈ RNθ×c where the number of channels
and layers in the local convolutional neural network in each scale are c
and ncnn, respectively. The readers are referred to [23] for more details
on the BCR-Net.

Inverse map. As we have seen, if η is sufficiently small, the forward map can
be approximated by d ≈ Kη, the operator notation of the discretization (10).
Here η is a vector indexed by (θ, ρ), d is a vector indexed by (m,h), and K
is a matrix with row indexed by (m,h) and column indexed by (θ, ρ).

The filtered back-projection method [56] suggests the following formula
to recover η:

(12) η ≈ (KTK + εI)−1KTd,

where ε is a regularization parameter. The first pieceKTd can also be written
as a family of convolutions as well

(13) (KTd)(θ, ρ) =
∑
h

(κ(h, ρ, ·) ∗ d(·, h))(θ).

The application of KT to d can be approximated with a neural network
similar to the one for K in Algorithm 1, by reversing the order. The second
piece (KTK + εI)−1 is a pseudo-differential operator in the (θ, ρ) space
and it is implemented with several two-dimensional convolutional layers for
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Figure 3: Neural network architecture for the inverse map of far field pattern
problem.

simplicity. Putting two pieces together, the resulting architecture for the

inverse map is summarized in Algorithm 2 and illustrated in Fig. 3. Here,

Conv2d[c2, w, φ] used in Algorithm 2 is a two-dimensional convolution layer

with window size w, channel number c2, activation function φ and periodic

padding on the first direction and zero padding on the second direction.

The selection of the hyper-parameters in Algorithm 2 will be discussed in

the numerical section.

Algorithm 2 Neural network architecture for the inverse problem d → η.

Require: c, c2, w, Ncnn, Ncnn2 ∈ N+, d ∈ RNs×Nh

Ensure: η ∈ RNθ×Nρ

# Application of KT to d
1: ζ = Conv1d[c, 1, id](d) with h as the channel direction
2: ξ = BCR-Net[c,Ncnn](ζ)
3: ξ(0) = Conv1d[Nρ, 1, id](ξ)

# Application of (KTK + εI)−1

4: for k from 1 to Ncnn2 − 1 do
5: ξ(k) = Conv2d[c2, w,ReLU](ξ(k−1))
6: end for
7: η = Conv2d[1, w, id](ξ(Ncnn2−1))
8: return d

2.3. Numerical examples

This section report the numerical setup and results of the proposed neural

network architecture in Algorithm 2 for the inverse map d → η.
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2.3.1. Experimental setup. Since the scatterer η is compactly sup-

ported in the unit disk Ω, we embed Ω into the square domain [−1, 1]2 and

solve the Helmholtz equation (1) in the square. In the numerical solution

of the Helmholtz equation, we discretize [−1, 1]2 with a uniform Cartesian

mesh with 192 points (wave frequency is ω = 16 and the number of points

in each wavelength is 12) in each direction by a finite difference scheme. The

perfectly matched layer [5] is used to deal with the Sommerfeld boundary

condition and the solution of the discrete system can be accelerated with

appropriate preconditioners (for example, [20]).

In the polar coordinates of Ω, (θ, ρ) ∈ [0, 2π) × [0, 1] is partitioned by

uniformly Cartesian mesh with 192× 96 points, i.e., Nθ = 192 and Nρ = 96.

Given the values of η in the Cartesian grid, the values η(θ, ρ) used in Algo-

rithm 2 in the polar coordinates are computed via linear interpolation.

The number of sources and receivers are Ns = Nr = 192. The mea-

surement data d(s, r) is generated by solving the Helmholtz equation Ns

times with different incident plane wave. For the change of variable of

(s, r) → (m,h), linear interpolation is used to generate the data d(m,h)

from d(s, r). In the (m,h) space, Nm = 192 for m ∈ [0, 2π) and Nh = 96

for h ∈ (−π/2, π/2). Since the measurement data is complex, the real and

imaginary parts can be treated separately as two channels. In the actual

simulation, numerical tests show that the real part is enough to generate

good results. Hence, the following results, only the real part of d(m,h) are

used as the input of the neural network in Algorithm 2.

The NN in Algorithm 2 is implemented with Keras [12] running on

top of TensorFlow [1]. All the parameters of the network are initialized by

Xavier initialization [30]. The loss function is the mean squared error and

the optimizer is the Nadam [16]. In the training process, the batch size and

the learning rate is firstly set as 32 and 10−3 respectively, and the NN is

trained 100 epochs. We then increase the batch size by a factor 2 till 512

with the learning rate unchanged, and then decreases the learning rate by a

factor 101/2 to 10−5 with the batch size fixed as 512. In each step, the NN

is trained with 50 epochs. For the hyper-parameters used in Algorithm 2,

Ncnn = 6, Ncnn2 = 5, and w = 3× 3. The selection of the channel number c

will be studied next.

2.3.2. Results. For a fixed η, d(m,h) stands for the exact measurement

data solved by numerical discretization of (1). The prediction of the NN

from d(m,h) is denoted by ηNN. The metric for the prediction is the peak
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Figure 4: The test PSNR for different channel numbers c for the dataset
Nshape = 4.

signal-to-noise ratio (PSNR), which is defined as

(14) PSNR = 10 log10

(
Max2

MSE

)

where Max = maxij(ηij)−minij(ηij) and MSE = 1
NθNρ

∑
i,j |ηi,j−ηNN

i,j |2. For
each experiment, the test PSNR is then obtained by averaging (14) over a
given set of test samples. The numerical results presented below are obtained
by repeating the training process five times, using different random seeds
for the NN initialization.

The numerical experiments focus on the shape reconstruction setting [44,
45, 13], where η are often piecewise constant inclusions. Here, the scatterer
field η is assumed to be the sum ofNshape piecewise constant shapes. For each
shape, it can be either triangle, square or ellipse, its direction is uniformly
random over the unit circle, its position is uniformly sampled in the disk,
and its inradius is sampled from the uniform distribution U(0.1, 0.2). When
a shape is an ellipse, the width and height are sampled from the uniform
distribution U(0.1, 0.2) and U(0.05, 0.1). It is also required that each shape
lies in the disk and there is no intersection between every two shapes. We
generate two dataset for Nshape = 2 and Nshape = 4, and each has 20,480
samples {(ηi, di)} with 16,384 used for training and the remaining 4,096 for
testing.

We first study the choice of channel number c in Algorithm 2. Figure 4
presents the test PSNR and the number of parameters for different channel
number c for the dataset Nshape = 4. As the channel number c increases,
the test PSNR first increases consistently and then saturates. Note that
the number of parameters of the neural network is O(c2 log(Nθ)Ncnn). The
choice of c = 24 offers a reasonable balance between accuracy and efficiency
and the total number of parameters is 439K.
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Figure 5: NN prediction for far field pattern of a sample in the test data for
Nshape = 4 (first row) or Nshape = 2 (second row) for different noise level
δ = 0, 10% and 100%.

To model the uncertainty in the measurement data, we introduce noises
to the measurement data by defining dδi ≡ (1+Ziδ)di, where Zi is a Gaussian
random variable with zero mean and unit variance and δ controls the signal-
to-noise ratio. For each noisy level δ = 0, 10%, 100%, an independent NN is
trained and tested with the noisy dataset {(dδi , ηi)}.

Figure 5 collects, for different noise level δ = 0, 10%, 100%, samples for
different Nshape = 2, 4. The NN is trained with the datasets generated in
the same way as the test data. When there is no noise in the measurement
data, the NN consistently gives accurate predictions of the scatterer field η,
in the position, shape, and direction of the shapes. In particular, for the case
Nshape = 4, the square in the left part of the domain is close to a triangle.
The NN is able to distinguish the shapes and gives a clear boundary of each.
For the small noise levels, for example, δ = 10%, the boundary of the shapes
slightly blurs while the position, direction and shape are still correct. As
the noise level δ increases, the boundary of the shapes blurs more, but the
position and direction of shape are always correct.

The next test is about the generalization of the proposed NN. We first
train the NN with one data set (Nshape = 2 or 4) with noise level δ = 0, 10%
or 100% and test with the other (Nshape = 4 or 2) with the same noise level.
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Figure 6: NN generalization test for far field pattern problem. The upper
(or lower) figures: the NN is trained by the data of the number of shapes
Nshape = 4 (or 2) with noise level δ = 0, 10% or 100% and test by the data
of Nshape = 2 (or 4) with the same noise level.

The results, presented in Fig. 6, indicate that the NN trained by the data
with two inclusions is capable of recovering the measurement data of the
case with four inclusions, and vice versa. Moreover, the prediction results
are comparable with those in Fig. 5. This shows that the trained NN is
capable of predicting beyond the training scenario.

3. Seismic imaging

3.1. Mathematics analysis

In the seismic imaging case, Ω is a rectangular domain with Sommerfeld
radiation boundary condition specified, as illustrated in Fig. 7. Following
[38, 57], we apply periodic boundary condition in the horizontal direction
to our problem for simplicity. This setup is also appropriate for studying
periodic material, such as phononic crystals [57, 39], etc. After appropriate
rescaling, we consider the domain Ω = [0, 1] × [0, Z], where Z is a fixed
constant. Both the sources S = {xs} and the receivers R = {xr} are a set
of uniformly sampled points along a horizontal line near the top surface of
the domain, and xr = (r, Z) and xs = (s, Z), for r, s ∈ [0, 1].
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Figure 7: Illustration of a simple seismic imaging setting. The sources and
receivers are located near the surface level (top) of the domain Ω. The scat-
terer field η(x) is assumed to be well-separated from the sources and the
receivers.

Using the background velocity field c0(x), we first introduce the back-
ground Helmholtz operator L0 = −Δ − ω2/c0(x)

2. For each source s, we
place a delta source at point xs and solve the the Helmholtz equation (in
the differential imaging setting)

(15) (L0 − η)(G0(x, xs) + us(x)) = 0,

where G0 = L−1
0 be the Green’s functions of the background Helmholtz

operator L0. The solution is recorded at points xr for r ∈ R and the whole
dataset is d(s, r) ≡ us(xr). In order to understand better the relationship
between η(x) and d(s, r), let us perform a perturbative analysis for small η.
Expanding (15) gives rise to

(L0u
s)(x) = η(x)G0(x, xs) + . . . .

Solving this leads to

d(s, r) = us(r) =

∫
G0(xr, x)G0(x, xs)η(x) dx+ . . . .

Again, we introduce d1(s, r) =
∫
G0(xr, x)G0(x, xs)η(x) dx as the leading

order linear term in η.
Figure 8 gives an example of the scatterer field and the measurement

data. Notice that the strongest signal concentrates at the diagonal of the
measurement data d(s, r). Because of the periodicity in the horizontal direc-
tion, it is convenient to rotate the measurement data by a change of variables
as

(16) m =
r + s

2
, h =

r − s

2
, or equivalently r = m+ h, s = m− h,
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Figure 8: Visualization of the scatterer field η and the measurement data
d for the seismic imaging. The upper figures are the scatterer and the real
and imaginary part of the measurement data d, respectively. The lower two
figures are the real and imaginary part of the measurement data after change
of variable.

where all the variables m,h, r, s are understood modulus 1. With a bit abuse

of notation, we recast the measurement data

(17) d(m,h) ≡ d(s, r)|s=m−h,r=m+h,

and so does for d1(m,h). At the same time, by letting x = (p, z) where

p is horizontal component of x and z is the depth component, we write

η(p, z) = η(x). Since d1(m,h) is linearly dependent on η(p, z), there exists a

kernel distribution K(m,h, p, z) such that

(18) d1(m,h) =

∫ Z

0

∫ 1

0
K(m,h, p, z)η(p, z) dz dp.

One of the most common scenario in seismic imaging is that c0(x) only

depends on the depth, i.e., c0(p, z) ≡ c0(z). Note that in this scenario the

whole problem is equivariant to translation in the horizontal direction. The

system can be dramatically simplified due to the following proposition.
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Proposition 2. There exists a function κ(h, z, ·) periodic in the last param-
eter such that K(m,h, p, z) = κ(h, z,m− p) or equivalently,

(19) d1(m,h) =

∫ Z

0

∫ 1

0
κ(h, z,m− p)η(p, z) dp dz.

Proof. Because of c0(p, z) = c0(z) and the periodic boundary condition in
the horizontal direction, the Green’s function of the background Helmholtz
operator G0 is translation invariant on the horizontal direction, i.e., there
exists a g0(·, ·, ·) such that G((x1, x2), (y1, y2)) = g(x1−y1, x2, y2). Therefore,

d1(m,h) =

∫ Z

0

∫ 1

0
G0((m+ h, Z), (p, z))G0((p, z), (m− h, Z))η(p, z) dz dp

=

∫ Z

0

∫ 1

0
g0(m− p+ h, Z, z)g0(p−m+ h, z, Z)η(p, z) dz dp.

By introducing κ(h, z, y) = g0(y + h, Z, z)g0(−y + h, z, Z), we complete the
proof.

To discrete the problem, the scatterer η(p, z) will be represented on a
uniform mesh of [0, 1] × [0, Z]. With a slight abuse of notation, we shall
use the same symbols to denote the discretization version of the continuous
kernels and variables. The discrete version of (19) then becomes

(20) d(m,h) ≈
∑
z

(κ(h, z, ·) ∗ η(·, z)) (m).

3.2. Neural network and numerical examples

3.2.1. Neural network. Note that the key of the neural network archi-
tecture in Algorithm 2 for the far field pattern case is the convolution form in
the angular direction in Proposition 1. For the seismic imaging case, Propo-
sition 2 is the counterpart of Proposition 1. Since the argument in Section 2.2
remains valid for seismic imaging, the neural network architecture for seismic
imaging is the same as that in Algorithm 2. However, the hyper-parameters
are problem-dependent.

3.2.2. Experimental setup. In the experiment Z = 1/2 and the domain
Ω = [0, 1] × [0, Z] is discretized with a uniform Cartesian mesh with 192 ×
96 points with the wave frequency ω = 16. The remaining setup of the
numerical solution of the Helmholtz equation is same as that for the far field
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Figure 9: The test PSNR for seismic imaging for different channel numbers
c with Nshape = 4.

pattern problem. For the measurement, we also set the number of sources
and receivers as Ns = Nr = 192. The measurement data d(s, r) is generated
by solving the Helmholtz equation Ns times by placing a delta function
on each source point. For the change of variable of (s, r) → (m,h), linear
interpolation is used for generating the data d(m,h) from d(s, r), with Nm =
192 for m ∈ [0, 1) and Nh = 96 for h ∈ (0, 1/2). In the actual simulation,
we use both the real and imaginary part and concentrate them on the h
direction as the input.

3.2.3. Results. The numerical experiments here focus on the shape re-
construction setting, where η are piecewise constant inclusions. Here, the
scatterer field η is assumed to be the sum of Nshape piecewise constant
shapes. For each shape, it can be either triangle, square or ellipse, the ori-
entation is uniformly random over the unit circle, the position is uniformly
sampled in the [0, 1] × [0.2, 0.4], and the circumradius is sampled from the
uniform distribution U(0.1, 0.2). If the shape is ellipse, its width and height
are sampled from the uniform distribution U(0.08, 0.16) and U(0.04, 0.8). It
is also required that there is no intersection between any two shapes. We
generate two datasets with Nshape = 2 and Nshape = 4 and each has 20,480
samples {(ηi, di)} with 16,384 used for training and the remaining 4,096
reserved for testing.

The first study is about the choice of the channel number c in Algo-
rithm 2. Figure 9 presents the test PSNR and the number of parameters,
for different channel number c on the dataset Nshape = 4. Similar to the far
field pattern problem, as the channel number c increases, the test PSNR first
consistently increases and then saturates. Notice that the number of param-
eters of the neural network is O(c2 log(Nθ)Ncnn). The choice of c = 36 is a
reasonable balance between accuracy and efficiency and the total number of
parameters is 981K.
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Figure 10: NN prediction for seismic imaging of a sample in the test data
for Nshape = 4 (first two rows) or Nshape = 2 (last two rows) for different
noise level δ = 0, 10% and 100%.

To model the uncertainty in the measurement data, the same method
as the far field pattern problem is used to add noises to the measurement
data. Figure 10 collects, for different noise level δ = 0, 10%, 100%, samples
for Nshape = 2 and 4, and Fig. 11 presents the generalization test of the
proposed NN by training and testing on different datasets..

4. Discussions

This paper presents a neural network approach for the two typical prob-
lems of the inverse scattering: far field pattern and seismic imaging. The
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Figure 11: NN generalization test for seismic imaging. The upper (or lower)
figures: the NN is trained by the data of the number of shapes Nshape = 4
(or 2) with noise level δ = 0, 10% or 100% and test by the data of Nshape = 2
(or 4) with the same noise level.

approach uses the NN to approximate the whole inverse map from the mea-
surement data to the scatterer field, inspired by the perturbative analysis
that indicates that the linearized forward map can be represented by a one-
dimensional convolution with multiple channels. The analysis in this paper
can also be extended to the three-dimensional scattering problems. The anal-
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ysis of seismic imaging can be easily extended to non-periodic boundary con-
ditions by replacing the periodic padding in Algorithm 2 with zero padding.
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