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Abstract. In this paper, we introduce methods from convex optimization to solve the mul-
timarginal transport type problems that arise in the context of density functional theory. Convex
relaxations are used to provide outer approximation to the set of N -representable 2-marginals and 3-
marginals, which in turn provide lower bounds to the energy. We further propose rounding schemes
to obtain upper bound to the energy. Numerical experiments demonstrate a gap of the order of
10 - 3 to 10 - 2 between the upper and lower bounds. The Kantorovich potential of the multimarginal
transport problem is also approximated with a similar accuracy.
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1. Introduction. We propose a novel convex relaxation framework for solving
multimarginal optimal transport type problems in the context of density functional
theory for strictly correlated electrons. More precisely, we consider the type problems
that take the form

inf
\lambda 1,...,\lambda N ,\mu \in \Pi (\lambda 1,...,\lambda N )

N\sum 
i=1

gi(\lambda i) +

\int 
X1\times \cdot \cdot \cdot \times XN

f(x1, . . . , xN )d\mu (x1, . . . , xN ),(1)

\scrA i(\lambda i) = bi, i = 1, . . . , N,

where gi(\cdot ), i = 1, . . . , N are convex functionals, \scrA i, i = 1, . . . , N, are some linear
operators, and \Pi (\lambda 1, . . . , \lambda N ) denotes the space of probability measures on X1\times \cdot \cdot \cdot \times 
XN with marginals \lambda 1, . . . , \lambda N . In this paper, the domain of the cost X1 \times \cdot \cdot \cdot \times XN

is discrete and the cost function f has the form

(2) f(x1, . . . , xN ) =

N\sum 
i,j=1,i>j

Cij(xi, xj).

A particular situation that we are interested in is when f(x1, . . . , xN ) and \mu (x1, . . . , xN )
are symmetric when any xi and xj are swapped, i.e., gi := g, and Cij := C for
i, j = 1, . . . , N . In such a situation, the task is to solve

(3) inf
\lambda ,\mu \in \Pi N,sym(\lambda )

g(\lambda ) +

\int 
XN

f(x1, . . . , xN )d\mu (x1, . . . , xN ), \scrA (\lambda ) = b,
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B774 YUEHAW KHOO AND LEXING YING

where \Pi N,sym(\lambda ) denotes the space of symmetric probability measures on XN with
the marginals being \lambda . Solving this problem is particularly useful in the context
of density functional theory (DFT), where the density for many-electrons is indeed
symmetric. A brief introduction to how such a problem can arise in DFT when the
electrons are strictly correlated is given in section 1.1. Although problem (3) is a linear
programming problem for discrete X, the domain of optimization is exponentially
large for any practical computation.

1.1. Background on DFT for strictly correlated electrons. A key task in
DFT is to determine the minimum of an energy functional E(\rho ) of the 1-marginal

(4) \rho (x) =

\int 
XN - 1

| \psi (x, . . . , xN )| 2dx2dx3 . . . dxN ,

where \psi (x1, . . . , xN ) is a many-body wavefunction for N electrons (due to the proper-
ties of electrons | \psi (x1, . . . , xN )| 2 is symmetric). In this paper, we consider an energy
functional introduced in [8]

(5) E(\rho ) = V SCE
ee (\rho ) + Ekd(\rho ) +

\int 
X

vext(x)\rho (x)dx,

which is suitable for studying strongly correlated electrons. The functional Ekd(\rho )
corresponds to kinetic energy with some correction terms, vext is some external po-
tential (for example, potential exerted by nuclei), and the central object of the study
is the strictly correlated density functional V SCE

ee (\rho ) defined as

(6) V SCE
ee (\rho ) := inf

\lambda ,\mu \in \Pi N,sym(\lambda )

\int 
XN

N\sum 
i,j=1,i>j

1

\| xi  - xj\| 
d\mu (x1, . . . , xN ), \lambda = \rho .

This framework of DFT gives rise to the following two problems:
\bullet Solving for the strictly correlated density functional V SCE

ee (\rho ) via the opti-
mization problem (6). This is, in fact, the well-known multimarginal optimal
transport problem.

\bullet Direct minimization of the total energy functional E(\cdot ) in (5), when the kinetic
energy Ekd(\rho ) is either convex or negligible (thus can be dropped). In this
case, the minimization problem takes the form

inf
\rho 

V SCE
ee (\rho ) + Ekd(\rho ) +

\int 
X

vext(x)\rho (x)dx

\leftrightarrow inf
\rho 

Ekd(\rho ) +

\int 
X

vext(x)\rho (x)dx(7)

+ inf
\lambda ,\mu \in \Pi N,sym(\lambda ),\lambda =\rho 

\int 
XN

N\sum 
i,j=1,i>j

1

\| xi  - xj\| 
d\mu (x1, . . . , xN )

\leftrightarrow inf
\lambda ,\mu \in \Pi N,sym(\lambda )

Ekd(\lambda ) +

\int 
X

vext(x)\lambda (x)dx(8)

+

\int 
XN

1

\| xi  - xj\| 
d\mu (x1, . . . , xN ).

Notice that the first problem, i.e., (6), takes the form of (3) when \scrA is the identity
and b = \rho , while the second problem, presented in (9), takes the form of (3) when the
constraint \scrA (\lambda ) = b is absent.
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CONVEX RELAXATION FOR STRICTLY CORRELATED DFT B775

1.2. Our contributions. In this paper, we propose a scheme with practical
running time to approximately solve (3) where the approximation is observed to be
sufficiently tight. To this end, we work with an equivalent formulation of (3) in terms
of the 2-marginals. Although this seems to break the aforementioned complexity
barrier for solving (3), enforcing that the 2-marginals being the marginalization of
a probability measure on XN , is nontrivial. Leveraging the results of [7] concerning
the extreme points of the N -representable 2-marginals, we propose a semidefinite
programming (SDP) relaxation, SDP-Coulomb, to provide an outer approximation to
the set of N -representable 2-marginals, therefore breaking the complexity barrier in
optimizing the high-dimensional measure in (3). The property of the proposed SDP is
discussed in light of the results in [7]. We further propose a tighter convex relaxation
SDP-Coulomb2 based on a formulation of (3) in terms of the 3-marginals. As the
proposed convex relaxations only provide lower bounds to the energy, we further
propose rounding schemes to give upper bounds. Numerical simulations show that
the proposed approaches give a relative gap between the upper and lower bounds
of size 10 - 3 to 10 - 2, which, in turn, sets an upper bound on the approximation
accuracy. Before delving into the details, in Figure 1 we show an example where we
solve the multimarginal transport problem (6) with N = 8, \rho (x) \propto exp( - x2/

\surd 
\pi ),

and the discrete domain X has size | X| = 1600. The running time is 2560s. Such a
problem size would be impossible to be solved by traditional methods such as linear
programming since it requires the storage of a tensor with 1025 entries. Moreover, in
this example, we obtain an estimate of V SCE

ee (\rho ) with 3.6e-04 error.

-2 2

-2

2

Fig. 1. Approximating the 2-marginal of the solution to the multimarginal optimal transport
problem (6) via solving SDP-Coulomb with \rho (x) \propto exp( - x2/

\surd 
\pi ) being the marginal. Here N = 8,

| X| = 1600, d = 1. The error of the energy is 3.6e - 04.

1.3. Prior works. The consideration of numerically solving an optimal trans-
port problem with a Coulomb cost is a relatively new field. In [12], the dual problem
to problem (3) is solved, via a parameterization of the dual function. In [5], linear
programming is applied to solve the problem involving 2-electrons in three dimensions
(3D) as part of a self-consistent DFT iterations. In [2], the Sinkhorn scaling algorithm
is applied to an entropic regularized problem of (3). Although these methods have
shown various levels of success in practice, the constraints or variables involved grow
exponentially in the number of electrons.
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B776 YUEHAW KHOO AND LEXING YING

1.4. Organization. In section 2, we detail the proposed SDP relaxation for
problem (3) in terms of the 2-marginal. In section 3, we characterize the property
of the SDP relaxation. In section 4, a further tightening of the SDP relaxation
is proposed by formulating problem (3) in terms of the 3-marginal. In section 5,
rounding schemes are provided to obtain an upper bound of the energy. In section 6,
we demonstrate the effectiveness of the proposed method through numerical examples.

1.5. Notation. In what follows, I is used to denote the identity matrix as
usual and we use AT to denote the matrix transpose. For a p-dimensional tensor
T , T (j1, j2, . . . , jp) denotes its (i1, . . . , ip)th entry. MATLAB notation ``:"" is used to
extract a slice of a tensor. For example, for a matrix A, A(:, i) gives the ith column
of the matrix. 1 is used to denote an all-one vectors of appropriate size. For a matrix
A \in \BbbR L\times L, the operator diag(A) \in \BbbR L extracts the diagonal of A and diag\ast denotes
the adjoint of diag. More precisely, for a vector a \in \BbbR L,

(9) diag\ast (a) :=

\left[   a(1) . . .

a(L)

\right]   .
The notation \odot and \otimes are used to denote the Hadamard and tensor products respec-
tively. For a p-dimensional tensor T , \| T\| 2F is defined as

(10) \| T\| 2F :=
\sum 

i1,...,ip

| T (i1, . . . , ip)| 2.

2. Proposed method. In this section, we proposed an SDP relaxation to solve
the equivalent problem of (3) in terms of the 2-marginals. In terms of the 2-marginals
\gamma ij , the cost of (3) is
(11)

g(\lambda ) +

N\sum 
i,j=1,i<j

\int 
XN

Cij(xi, xj)d\gamma ij(xi, xj) = g(\lambda ) +
N(N  - 1)

2

\int 
X2

C(x, y)d\gamma (x, y),

where \gamma ij(xi, xj) = \gamma (xi, xj) due to the symmetry of \mu . The 2-marginal \gamma is called
an N -representable measure, since it comes from the marginalization of a symmetric
probability measure on XN . A more general definition for k-marginal is given below.

Definition 1. A k-marginal on XN is called N -representable if it results from
the marginalization of a symmetric probability distribution on XN .

As we consider a discrete state space X, problem (11) in terms of the discrete
2-marginals takes the form

min
\gamma \in \BbbR L\times L

g(\gamma 1) +
N(N  - 1)

2
Tr
\bigl( 
C\gamma )(12)

s.t. \gamma is N -representable,
diag(\gamma ) = 0,
\scrA (\gamma 1) = b.

Here we added a problem-dependent constraint diag(\gamma ) = 0, due to the fact the
Coulomb cost C(\cdot , \cdot ) is infinity when two arguments coincide. To derive an SDP re-
laxation to (12), one first needs a characterization of the N -representable 2-marginals.
For this, we leverage the following result from [7], where conv(S) denotes the convex
hull of a set S.
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CONVEX RELAXATION FOR STRICTLY CORRELATED DFT B777

Theorem 1. The set of discrete N -representable 2-marginals is conv(\Gamma 2) where

(13) \Gamma 2 =

\biggl\{ 
N

N  - 1
\lambda \lambda T  - 1

N  - 1
diag\ast (\lambda ) | \lambda \in \{ 0, 1/N, 2/N, . . . , 1\} | X| , \lambda T1 = 1

\biggr\} 
.

Moreover, \Gamma 2 is the set of extreme points of conv(\Gamma 2).

Since we are interested in the 2-marginals \gamma where the diagonal element is zero,
we characterize the subset \~\Gamma 2 \subset \Gamma 2 with this extra zero constraint in the following
corollary. Let

(14) \scrB N (X) = \{ \lambda \in \BbbR | X| | \lambda T1 = 1, \lambda (i) \in \{ 0, 1/N\} , i = 1, . . . , | X| \} ,

which denotes the set of binarized probability vector on a discrete domain X.

Corollary 1. Let

(15) \~\Gamma 2 =

\biggl\{ 
N

N  - 1
\lambda \lambda T  - 1

N  - 1
diag\ast (\lambda ) | \lambda \in \scrB N (X)

\biggr\} 
,

then

(16) conv(\~\Gamma 2) = \{ \gamma \in \BbbR | X| \times | X| | \gamma is N -representable, diag(\gamma ) = 0\} .

Moreover, \~\Gamma 2 is the extreme points of conv(\~\Gamma 2).

For completeness, a short proof of Corollary 1 is presented in section 3. With this
characterization, an equivalent formulation of (12) is obtained as

min
\gamma \in \BbbR | X| \times | X| 

g(\gamma 1) +
N(N  - 1)

2
Tr
\bigl( 
C\gamma )(17)

s.t. \gamma \in conv(\~\Gamma 2),
\scrA (\gamma 1) = b.

We claim that this is also equivalent to the following minimization problem:

min
\gamma ,\lambda ,a

g(\gamma 1) +
N(N  - 1)

2
Tr(C\gamma )(18)

s.t. \gamma =
N

N  - 1

m\sum 
i=1

a(i)\lambda i\lambda 
T
i  - 

1

N  - 1
diag\ast 

\Biggl( 
m\sum 
i=1

a(i)\lambda i

\Biggr) 
,

m\sum 
i=1

a(i) = 1, a(i) \geq 0, i = 1, . . . ,m,

\lambda Ti 1 = 1, i = 1, . . . ,m,
\lambda i \in \{ 0, 1/N\} | X| , i = 1, . . . ,m,
\scrA (\gamma 1) = b.

Here, the first four constraints are equivalent to \gamma being an element in conv(\~\Gamma 2). The
integer m specifies the number of elements in \~\Gamma 2 needed for representing \gamma , which
depends on the number of linear constraints \scrA (\gamma 1) = b. For the purpose of this
section it is not important to know what m is, and we can just treat it as an arbitrary
integer. A detailed discussion on what m is for the problem considered is provided in
section 5.2.
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B778 YUEHAW KHOO AND LEXING YING

2.1. Convex relaxation. Problem (18) involves optimizating over the set \scrB N (X),
which has a combinatorial complexity in the worst case. To cope with this issue, we
propose the following convex relaxation to problems (12) and (18):

min
\gamma ,\Lambda \in \BbbR | X| \times | X| 

g(\gamma 1) +
N(N  - 1)

2
Tr(C\gamma ) (SDP-Coulomb)(19)

s.t. \gamma =
N

N  - 1
\Lambda  - 1

N  - 1
diag\ast (\Lambda 1),

\scrA (\Lambda 1) = b,
\Lambda \succeq 0,
\Lambda \geq 0,
1T\Lambda 1 = 1,

diag(\Lambda ) =
1

N
\Lambda 1.

The details of going from (18) to (19) are presented in the subsequent sections.

2.1.1. Changing the variables to \Lambda . We start to derive SDP-Coulomb from
Problem (18). Instead of working with both sets of variables \{ \lambda i\} mi=1 and a as in
Problem (18), we will only work with a single matrix variable \Lambda . First, let

(20) \Lambda :=

m\sum 
i=1

a(i)\lambda i\lambda 
T
i , \lambda i \in \scrB N (X), i = 1, . . . ,m.

Since

(21) \Lambda 1 =

m\sum 
i=1

a(i)\lambda i\lambda 
T
i 1 =

m\sum 
i=1

a(i)\lambda i,

in terms of \Lambda the 2-marginal \gamma in (18) becomes

(22) \gamma =
N

N  - 1
\Lambda  - 1

N  - 1
diag\ast (\Lambda 1).

Notice that with such a change of variable,

(23) \gamma 1 = \Lambda 1.

2.1.2. Constraints on \Lambda . The variable \Lambda defined in (20) belongs to a nonconvex
set as it is a quadratic form of the binarized vectors \lambda 1, . . . , \lambda m. In order to obtain
the convex program SDP-Coulomb, we only enforce certain necessary conditions of \Lambda 
having the form in (20). First,

(24) \Lambda \succeq 0

due to the fact that a \geq 0 in (20). Then

(25) \Lambda \geq 0

since a, \lambda 1, . . . , \lambda m \geq 0 in (20). Since
\sum m

i=1 a(i) = 1, \lambda Ti 1 = 1, i = 1, . . . ,m,

(26) 1T\Lambda 1 = 1.
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CONVEX RELAXATION FOR STRICTLY CORRELATED DFT B779

As each \lambda i \in BN (X), therefore

(27) \lambda i \odot \lambda i = \lambda i/N, i = 1, . . . ,m,

implying

(28) diag(\Lambda ) =
1

N
\Lambda 1.

Together, the constraints (24), (25), (26), and (28) give the last four constraints in
SDP-Coulomb.

2.2. Duality and the Kantorovich potential. In [12], the (discrete) dual
problem to (6),

V SCE
ee (\rho ) = max

v\in \BbbR | X| 
vT \rho (29)

s.t.

N\sum 
k,l=1
k<l

C(ik, il) - 
N\sum 

k=1

v(ik) \geq 0 \forall (i1, . . . , iN ),

is used to solve for V SCE
ee (\rho ). This is called the Kantorovich problem and the dual

variable v is called the Kantorovich potential. Although the size of the optimization
variable is reduced to | X| when comparing to (6), the dual formulation has a number
of constraints being exponential in N . We can also use SDP-Coulomb to provide an
approximation to the Kantorovich potential. Let

(30) \scrA (\Lambda 1) = b\rightarrow \Lambda 1 = \rho 

and g = 0 in the cost. We then have

\^V SCE
ee (\rho ) := min

\Lambda \in \BbbR | X| \times | X| 

N(N  - 1)

2
Tr[(C  - diag\ast (diag(C))) \Lambda ](31)

s.t. w : \Lambda 1 = \rho ,
Y : \Lambda \succeq 0,
Z : \Lambda \geq 0,

u : diag(\Lambda ) =
1

N
\Lambda 1,

where the variables in front of the colon are the dual variables corresponding to the
constraints. \^V SCE

ee (\rho ) can be seen as an approximation to V SCE
ee (\rho ) in (29). The dual

to (31) is then

\^V SCE
ee (\rho ) = max

w\in \BbbR | X| ,

Y,Z\in \BbbR | X| \times | X| 

wT \rho (32)

s.t.
N(N  - 1)

2
[C  - diag\ast (diag(C))] - 1

2
(1wT + w1T )

 - diag\ast (u) + 1

2N
(1uT + u1T ) = Y + Z,

Y \succeq 0, Z \geq 0.

The dual variable w can be seen as an approximation to the Kantorovich potential
v in (29). As pointed out in the literatures of DFT [11, 12, 5], the Kantorovich
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B780 YUEHAW KHOO AND LEXING YING

potential allows the functional derivative of V SCE
ee (\cdot ) to be taken. From (32), we make

the following identification:

(33)
dV SCE

ee (\rho )

d\rho 
\approx d \^V SCE

ee (\rho )

d\rho 
= w\ast ,

where w\ast is the optimizer of (32). The equality follows from the fact that for

(34) g(x) = sup
\alpha \in \Omega 

f\alpha (x), \alpha \ast = argsup\alpha \in \Omega f\alpha (x),

where f\alpha (x), \alpha \in \Omega are convex functions, a subgradient of f\alpha \ast (x) is a subgradient of
g(x) [4]. Obtaining the approximate functional derivative of \^V SCE

ee (\cdot ) can provide a
mean to optimize (8) via self-consistent field iterations (for example, in [5]), when the
dependence of Ekd(\cdot ) on \rho is not analytically given.

3. Properties of SDP-Coulomb. The convex program SDP-Coulomb in sec-
tion 2 intends to provide an outer approximation to the 2-marginals. In this section,
we show that the extreme points of the N -representable 2-marginals are contained in
the set of the extreme points of the domain of SDP-Coulomb. We first give the proof
of Corollary 1.

Proof. It is clear in (16) that the left-hand side belongs to the right-hand side.
Now if \gamma is N -representable, then

\gamma =

m\sum 
i=1

a(i)

\biggl( 
N

N  - 1
\lambda i\lambda 

T
i  - 

1

N  - 1
diag\ast (\lambda i)

\biggr) 
, a \geq 0,(35)

aT1 = 1, \lambda i \in \{ 0, 1/N, . . . , N/N\} | X| 

for a \in \BbbR m. The constraint diag(\gamma ) = 0 gives

(36)

m\sum 
i=1

a(i)(N\lambda i \odot \lambda i  - \lambda i) = 0,

where \odot denotes pointwise product. Due to the domain of \lambda i, N\lambda i \odot \lambda i  - \lambda i \geq 0.
Then, together with a(i) \geq 0, (36) implies a(i) = 0 or N\lambda i \odot \lambda i = \lambda i for each i.
This shows that \lambda i \in \{ 0, 1/N\} | X| , implying in (16) the right-hand side belongs to the
left-hand side. Finally, it is clear that \~\Gamma 2 is the set of extreme points of conv(\~\Gamma 2),
since \~\Gamma 2 is a subset of the extreme points conv(\Gamma 2) and conv(\~\Gamma 2) \subseteq conv(\Gamma 2).

In the following theorem, we show that \~\Gamma 2 also belongs to the set of the extreme
points for the feasible set of \gamma used in problem SDP-Coulomb in (19), when the
constraint \scrA (\Lambda 1) = b is absent. This shows that our convex relaxation is rather tight.

Theorem 2. \~\Gamma 2 is a subset of the extreme points of the domain
(37)

D =

\biggl\{ 
N

N  - 1
\Lambda  - 1

N  - 1
diag\ast (\Lambda 1)

\bigm| \bigm| \bigm| \bigm| \Lambda \succeq 0, \Lambda \geq 0, 1T\Lambda 1 = 1, diag(\Lambda ) =
1

N
\Lambda 1

\biggr\} 
,

which is the feasible set of \gamma in (19) when the constraint \scrA (\Lambda 1) = b is absent.

Proof. First, \~\Gamma 2 is a subset of D. We further need to show that each

(38) \gamma ext =
N

N  - 1
\lambda ext\lambda 

T
ext  - 

1

N  - 1
diag\ast (\lambda ext), \lambda ext \in \scrB N (X)
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CONVEX RELAXATION FOR STRICTLY CORRELATED DFT B781

in \~\Gamma 2 is also an extreme point in D. To this end, we simply show for every \gamma ext, there
exists some cost B such that the unique maximizer to

(39) max
\gamma 

Tr(B\gamma ), s.t. \gamma \in D

is \gamma ext. If \gamma ext is the unique maximizer to (39), then \gamma ext \not =
\sum 

i a(i)\gamma i, where
\forall i \gamma i \in D, a(i) > 0, and

\sum 
i a(i) = 1. Otherwise, Tr(B\gamma ext) =

\sum 
i a(i)Tr(B\gamma i) <\sum 

i a(i)Tr(B\gamma ext) = Tr(B\gamma ext), where the inequality is due to the fact that \gamma ext
uniquely minimizes Tr(B\gamma ). Let

(40) B := \lambda ext\lambda 
T
ext +

1

N  - 1
1diag(\lambda ext\lambda 

T
ext)

T .

Then

Tr(B\gamma ) = Tr(\lambda ext\lambda 
T
ext\gamma ) + Tr

\biggl( 
1

N  - 1
1diag(\lambda ext\lambda 

T
ext)

T \gamma 

\biggr) 
= Tr(\lambda ext\lambda 

T
ext\gamma ) + Tr

\biggl( 
1

N  - 1
\lambda ext\lambda 

T
ext diag

\ast (\gamma 1)

\biggr) 
= Tr

\biggl( 
\lambda ext\lambda 

T
ext

\biggl( 
\gamma +

1

N  - 1
diag\ast (\gamma 1)

\biggr) \biggr) 
.(41)

Plugging in \gamma = N
N - 1\Lambda  - 

1
N - 1 diag

\ast (\Lambda 1) \in D, (39) is therefore

min
\gamma ,\Lambda 

N

N  - 1
Tr(\lambda ext\lambda 

T
ext\Lambda )(42)

s.t. \gamma =
N

N  - 1
\Lambda  - 1

N  - 1
diag\ast (\Lambda 1),

\Lambda \succeq 0, \Lambda \geq 0, 1T\Lambda 1 = 1, diag(\Lambda ) =
1

N
\Lambda 1.

To show that \gamma ext in (38) is the unique minimizer of (42), it suffices to show that \gamma ext
is the unique minimizer for

min
\gamma ,\Lambda 

N

N  - 1
Tr(\lambda ext\lambda 

T
ext\Lambda )(43)

s.t. \gamma =
N

N  - 1
\Lambda  - 1

N  - 1
diag\ast (\Lambda 1), \Lambda \succeq 0, Tr(\Lambda ) = 1/N,

since the domain of (42) is contained within (43). It is clear that the unique minimizer
to (43) is \Lambda = \lambda ext\lambda 

T
ext, implying that \gamma ext is the unique minimizer.

4. Tightening the convex relaxation. Though Theorem 2 shows that our
convex relaxation with the 2-marginals contains \~\Gamma 2 as the extreme points (hence the
relaxed domain also contains conv(\~\Gamma 2)), the relaxation may include points that are
out of conv(\~\Gamma 2). To further restrict the domain of optimization in SDP-Coulomb, one
can consider applying convex relaxation to the k-marginals. In this section, we focus
on the case of the 3-marginals. Let

(44) \=C(i, j, k) = C(i, j) + C(j, k) + C(k, i), i, j, k = 1, . . . , | X| .

Let the N -representable 3-marginal of \mu be \kappa . In terms of \=C and \kappa , the cost of (3)
becomes

(45) g(\lambda ) +
N(N  - 1)(N  - 2)

6

| X| \sum 
i,j,k=1

\=C(i, j, k)\kappa (i, j, k).

D
ow

nl
oa

de
d 

11
/0

1/
19

 to
 1

71
.6

6.
12

.2
30

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B782 YUEHAW KHOO AND LEXING YING

In the following sections, we work out the domain of \kappa in order to perform minimiza-
tion. We follow the derivation in [7] in which the set \Gamma 2 is derived.

4.1. The extreme points of the symmetric discrete distribution on \bfitX \bfitN .
Let the set of symmetric discrete N -marginal be defined as

(46) \Pi N,sym =

\left\{   \mu \in (\BbbR | X| )N | \mu is symmetric, \mu \geq 0,

| X| \sum 
i1,...,iN=1

\mu (i1, . . . , iN ) = 1

\right\}   .

Let el \in \BbbR | X| be defined as el(j) = \delta lj . For the set of probability measures on XN ,
an extreme point is

(47) ec1 \otimes . . .\otimes ecN

for some c1, . . . , cN \in \{ 1, . . . , | X| \} . Therefore, for the set of symmetric measure
\Pi N,sym, an extreme point can be obtained from symmetrizing (47), giving rise to the
set

(48) \Gamma N =

\left\{   1

N !

\sum 
\sigma \in S(N)

ec\sigma (1)
\otimes . . .\otimes ec\sigma (N)

| c1, . . . , cN \in \{ 1, . . . , | X| \} 

\right\}   ,

where S(N) is the symmetric group over N numbers. For physical measure of the
electrons, we look at a restricted set

(49) \~\Pi N,sym = \{ \mu \in \Pi N,sym | \mu (i1, . . . , iN ) = 0 if ik = il \forall k, l = 1, . . . , N\} 

which ensures two electrons cannot be in the same state. A derivation similar to
Corollary 1 reveals that

(50) conv(\~\Gamma N ) = \~\Pi N,sym,

where

\~\Gamma N =

\Biggl\{ 
1

N !

\sum 
\sigma \in S(N)

ec\sigma (1)
\otimes \cdot \cdot \cdot \otimes ec\sigma (N)

| c1, . . . , cN \in \{ 1, . . . , | X| \} ,(51)

ci \not = cj \forall i, j \in N, i \not = j

\Biggr\} 
.

4.2. Convex hull of the set of \bfitN -representable 3-marginals. To get a
description to the set of N -representable 3-marginals in order to restrict \kappa in (45),
we marginalize the measures in \~\Pi N,sym. Since \~\Pi N,sym = conv(\~\Gamma N ), it suffices to

marginalize the elements in \~\Gamma N . Picking an arbitrary element in \~\Gamma N , then its 3-
marginal is

1

N !

\sum 
\sigma \in S(N)

| X| \sum 
l4,...,lN=1

ec\sigma (1)
\otimes \cdot \cdot \cdot \otimes ec\sigma (N - 1)

(lN - 1)\otimes ec\sigma (N)
(lN )

=
1

N !

\sum 
\sigma \in S(N)

ec\sigma (1)
\otimes ec\sigma (2)

\otimes ec\sigma (3)
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=
(N  - 3)!

N !

N\sum 
i,j,k=1
i>j>k

eci \otimes ecj \otimes eck

=
1

N(N  - 1)(N  - 2)

\Biggl( 
N\sum 

i,j,k=1

eci \otimes ecj \otimes eck + 2

N\sum 
k=1

eck \otimes eck \otimes eck

 - 
N\sum 

i,j=1

eci \otimes ecj \otimes ecj  - 
N\sum 

i,j=1

ecj \otimes eci \otimes ecj  - 
N\sum 

i,j=1

eci \otimes eci \otimes ecj

\Biggr) 
.(52)

The second equality follows from the fact that there are (N  - 3)! \sigma \in S(N) such that
eci \otimes ecj \otimes eck = ec\sigma (1)

\otimes ec\sigma (2)
\otimes ec\sigma (3)

for a fixed eci \otimes ecj \otimes eck . Letting

(53) \lambda :=
1

N

N\sum 
i=1

eci ,

it follows that \lambda \in \{ 0, 1/N\} | X| , and \lambda T1 = 1, since each eci has only an entry with
value 1 and is 0 everywhere else, and ci \not = cj for all i \not = j. Moreover,
(54)

1

N

N\sum 
i=1

eci(l)eci(l)eci(l) =
1

N

N\sum 
i=1

eci(l)eci(l) =
1

N

N\sum 
i=1

eci(l) = \lambda (l), l = 1, . . . , | X| ,

and
(55)

1

N

N\sum 
i=1

eci(l)eci(j) = 0,
1

N

N\sum 
i=1

eci(l)eci(j)eci(k) = 0 if l \not = j, or j \not = k, or k \not = l.

Writing (52) in terms of \lambda using (54) and (55), one can marginalize \~\Gamma N to obtain

\~\Gamma 3 =

\Biggl\{ 
1

N(N  - 1)(N  - 2)

\bigl( 
N3\lambda \otimes \lambda \otimes \lambda + 2N

| X| \sum 
l=1

\lambda (l)el \otimes el \otimes el(56)

 - N2

| X| \sum 
l=1

\lambda (l)\lambda \otimes el \otimes el

 - N2

| X| \sum 
l=1

\lambda (l)el \otimes \lambda \otimes el  - N2

| X| \sum 
l=1

\lambda (l)el \otimes el \otimes \lambda 
\bigr) 
| \lambda \in \scrB N (X)

\Biggr\} 
.

Since every physical N -representable 3-marginal comes from the marginalization of
an element in \~\Pi N,sym = conv(\~\Gamma N ), the following statement holds.

Proposition 1. The set of N -representable 3-marginals coming from the marginal-
ization of \~\Pi N,sym is conv(\~\Gamma 3).

With this proposition, in order to minimize (45) one can solve

min
\kappa \in \BbbR | X| \times | X| \times | X| ,

\lambda \in \BbbR | X| 

g(\lambda ) +
N(N  - 1)(N  - 2)

6

| X| \sum 
i,j,k=1

\=C(i, j, k)\kappa (i, j, k)(57)

s.t. \kappa \in conv(\~\Gamma 3),
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B784 YUEHAW KHOO AND LEXING YING

\lambda (i) =

| X| \sum 
j,k=1

\kappa (i, j, k), i = 1, . . . , | X| ,

\scrA (\lambda ) = b.

4.3. Convex relaxation to the 3-marginal problem. The variable \kappa in (57)
takes the form \kappa =

\sum m
i=1 a(i)\kappa i, \kappa i \in \~\Gamma 3 with a \geq 0 and aT1 = 1. Therefore, in order

to derive a convex relaxation to (57), one seeks a convex set that contains all the
elements in \~\Gamma 3. Such a set will certainly contain \kappa =

\sum m
i=1 a(i)\kappa i, which is a convex

combination of \kappa i \in \~\Gamma 3, i = 1, . . . ,m. For this purpose, let

(58) \Theta := \lambda \otimes \lambda \otimes \lambda , \lambda \in \scrB N (X).

Since \lambda T1 = 1,

(59) \lambda \lambda T =

| X| \sum 
k=1

\Theta (:, :, k), \lambda =

| X| \sum 
j,k=1

\Theta (:, j, k).

Then in terms of \Theta , an extreme point \kappa \in \~\Gamma 3 is

(60) \kappa = \phi (\Theta ) :=
1

N(N  - 1)(N  - 2)

\Biggl( 
N3\Theta + 2N

| X| \sum 
l=1

\Biggl( | X| \sum 
j,k=1

\Theta (l, j, k)

\Biggr) 
el \otimes el \otimes el

 - N2

| X| \sum 
l=1

\Biggl( | X| \sum 
k=1

\Theta (l, :, k)

\Biggr) 
\otimes el \otimes el  - N2

| X| \sum 
l=1

el \otimes 

\Biggl( | X| \sum 
k=1

\Theta (l, :, k)

\Biggr) 
\otimes el

 - N2

| X| \sum 
l=1

el \otimes el \otimes 

\Biggl( | X| \sum 
k=1

\Theta (l, :, k)

\Biggr) \Biggr) 
.

Next, we impose some necessary conditions on \Theta in a convex manner so that \Theta comes
from the tensor product of the quantized marginals \lambda . Clearly, the symmetry property
implies

(61) \Theta (i, j, k) = \Theta (k, i, j) = \Theta (j, k, i) = \Theta (j, i, k) = \Theta (k, j, i) = \Theta (i, k, j).

Since \lambda \in \{ 0, 1/N\} | X| ,

(62) \lambda (i)\lambda (i)\lambda (j) = \lambda (i)\lambda (j)/N \Rightarrow \Theta (i, i, j) =
1

N

| X| \sum 
k=1

\Theta (i, j, k) \forall i, j = 1, . . . , | X| .

Then the constraint that \lambda T1 = 1 gives

(63)

| X| \sum 
i=1

\lambda (i) = 1\Rightarrow 
| X| \sum 

i,j,k=1

\Theta (i, j, k) = 1.

We also have the conic constraints

(64) \Theta (:, :, i) = \lambda \lambda T\lambda (i) \succeq 0 \forall i = 1, . . . , | X| 

and

(65) \Theta \geq 0.
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Combining (61), (62), (63), (64), and (65) leads to the following optimization problem
over \Theta :

min
\Theta ,\kappa \in \BbbR | X| \times | X| \times | X| 

g

\Biggl( | X| \sum 
j,k=1

\Theta (:, j, k)

\Biggr) 
(66)

+
N(N  - 1)(N  - 2)

6

| X| \sum 
i,j,k=1

\=C(i, j, k)\kappa (i, j, k) (SDP-Coulomb2)

s.t. \kappa = \phi (\Theta )
\Theta is symmetric

\Theta (i, i, j) =
1

N

| X| \sum 
k=1

\Theta (i, j, k) \forall i, j = 1, . . . , | X| ,

| X| \sum 
i,j,k=1

\Theta (i, j, k) = 1,

\Theta (:, :, i) \succeq 0 \forall i = 1, . . . , | X| ,\Theta \geq 0,

\scrA 

\Biggl( | X| \sum 
j,k=1

\Theta (:, j, k)

\Biggr) 
= b.

4.4. A remark on Lassere's hierarchy. It is possible to use the Lassere hi-
erarchy (or sum-of-squares hierarchy) [1, 3] to further tighten the convex relaxation.
When applying this method to our problem, the task of determining some power of
the quantized 1-marginal \lambda \in \scrB N (X) (for example, the problem of determining the
2- and 3-marginals), is reformulated as a moment determination problem. More pre-
cisely, instead of working with the monomials \{ \lambda \alpha \} \alpha where \alpha \in \BbbN | X| is a multi-index
and \BbbN is the set of natural numbers, one performs a change of variables according to

(67) [\lambda \alpha \lambda \beta ]\alpha ,\beta \Rightarrow [\BbbE (\lambda \alpha \lambda \beta )]\alpha ,\beta .

The optimization variable, the matrix [\BbbE (\lambda \alpha \lambda \beta )]\alpha ,\beta , has size
\bigl( 

p+| X| 
p

\bigr) 
for each dimen-

sion if we consider the monomials \lambda \alpha 's and \lambda \beta 's up to degree p. Then, an equality
constraint h(\lambda ) = 0 (h is a polynomial) is changed according to

(68) h(\lambda ) = 0\Rightarrow \BbbE (h(\lambda )\lambda \alpha ) = 0 \forall \alpha ,

and an inequality constraint q(\lambda ) \geq 0 (q is a polynomial) is changed according to

(69) q(\lambda ) \geq 0\Rightarrow \BbbE (q(\lambda )s(\lambda )2) \geq 0 \forall s(\lambda ),

where s is some polynomial. The inequality constraints lead to a positive semidefinite
constraint. For example the constraint \lambda \geq 0 simply gives

(70) vT
\bigl( 
[\BbbE (\lambda \alpha \lambda \beta )]\alpha ,\beta 

\bigr) 
v \geq 0 \forall v with size

\biggl( 
p+ | X| 
p

\biggr) 
if we consider the monomials \lambda \alpha 's and \lambda \beta 's up to degree p. As can be seen, when
choosing p \geq 2, we are already faced with | X| 4 variables. Therefore, we pursue a
cheaper alternative.
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5. Rounding. The previous sections describe several convex relaxation ap-
proaches for solving the multimarginal transport problem. The general philosophy
is to enlarge the domain of optimization, therefore obtaining a lower bound for the
global minimum. To obtain an upper bound for the global minimum, we need to
project the solution back into the unrelaxed domain (conv(\~\Gamma 2) or conv(\~\Gamma 3)). We
consider two cases of practical importance:

1. When the linear constraint \scrA (\lambda ) = b is not present in (3).
2. When \scrA (\lambda ) = b \rightarrow \lambda = \rho , for example when solving the multimarginal-

optimal transport problem (6).
Section 5.1 addresses the first case. Here, we devise a scheme to round the solution
from SDP-Coulomb to the set of extreme points \~\Gamma 2 for the set of N -representable 2-
marginals. In section 5.2, we deal with the second case with the marginal constraint.
For this case, it is difficult to work with SDP-Coulomb to obtain a rounded solution
in \~\Gamma 2. Therefore, we discuss how we can use SDP-Coulomb2 for such a purpose.

5.1. Without the linear constraint \bfscrA (\bfitlambda ) = \bfitb . In the special case where the
constraint \scrA (\Lambda 1) = b is absent and g(\cdot ) is a linear functional, we simply minimize a
linear functional of \Lambda in SDP-Coulomb. In principle, if the domain of SDP-Coulomb
(without \scrA (\Lambda 1) = b) is close to the set of N -representable 2-marginals with zero
diagonal (conv(\~\Gamma 2) in Corollary 1), then SDP-Coulomb should return a solution \Lambda \ast \approx 
\lambda \ast \lambda \ast T where \lambda \ast \in \scrB N (X). This is because the extreme points of conv(\~\Gamma 2) is \~\Gamma 2

(Corollary 1), and generically, the optimizer of a linear functional over a convex set is
an extreme point of the set. We therefore propose a rounding procedure in Algorithm
1. If SDP-Coulomb returns a solution \Lambda \ast where the entries on the diagonal of \Lambda \ast are
not exactly 1/N2 or 0, letting the index of the largest entry of diag(\Lambda \ast ) be imax, we
add a linear constraint diag(\Lambda )(imax) = 1/N2 to SDP-Coulomb. This step is repeated
until a rank-1 \Lambda \ast is obtained. This is summarized in Algorithm 1.

Algorithm 1 Rounding in the absence of the linear constraint \scrA (\lambda ) = b.

1: procedure Rounding
2: \Lambda \ast \leftarrow Solution to SDP-Coulomb.
3: \scrI \leftarrow \{ \emptyset \} , R\leftarrow I
4: while rank(\Lambda \ast ) > 1 do
5: imax \leftarrow index of the largest element in R diag(\Lambda \ast ).
6: \scrI \leftarrow \scrI \cup imax, \scrI c \leftarrow \{ 1, . . . , | X| \} \setminus \scrI .
7: R\leftarrow I(\scrI c, :).
8: \Lambda \ast \leftarrow Solution to SDP-Coulomb with the extra constraint diag(\Lambda )\scrI =

1/N2.
9: end while

10: return \Lambda \ast .
11: end procedure

We remark that this procedure is crucial when there are degenerate solutions,
giving a high rank solution in SDP-Coulomb.

5.2. With the marginal constraint \bfitlambda = \bfitrho . When having the constraint
\Lambda 1 = \rho in SDP-Coulomb, we cannot pursue the same strategy as in section 5.1 to
round the solution. When there exists a marginal constraint, we expect the solution
to (12) to be a convex combination of the extreme points from \~\Gamma 2, implying SDP-
Coulomb returns solution as \Lambda \ast \approx 

\sum m
i=1 a

\ast (i)\lambda \ast i \lambda 
\ast 
i
T , a\ast T1 = 1, a\ast \geq 0. However, in
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order to round, one has to first disentangle each \lambda \ast i from such a convex combination.
Since \lambda \ast i 's are not orthogonal to each other, it is not obvious how one can use matrix
factorization techniques such as an eigendecomposition to obtain the \lambda \ast i 's from \Lambda \ast .
To this end, we resort to using SDP-Coulomb2 to obtain each \lambda \ast i . Since in SDP-
Coulomb2 we expect to have the solution \Theta \ast \approx 

\sum m
i=1 a

\ast (i)\lambda \ast i \otimes \lambda \ast i \otimes \lambda \ast i , \lambda \ast i \in \scrB N (X)

(as we expect the solution to approximately lie in conv(\~\Gamma 3)), we resort to using a
CP-tensor decomposition [9] to obtain each individual \lambda \ast i approximately.

In order to use a CP-decomposition, one needs to have an idea of what m is.
The following discussion demonstrates that m = | X| . We first look at the set of the
physical symmetric probability measures on XN that have the marginal being \rho :

\~\Pi N,sym(\rho ) =

\Biggl\{ 
\mu \in \~\Pi N,sym

\bigm| \bigm| \bigm| \bigm| \bigm| 
| X| \sum 

i2,...,iN=1

\mu (:, i2, . . . , iN ) = \rho 

\Biggr\} 

= conv(\~\Gamma N ) \cap 

\Biggl\{ 
\mu \in (\BbbR | X| )N | 

| X| \sum 
i2,...,iN=1

\mu (i1, i2, . . . , iN ) = \rho (i1),

i1 = 1, . . . , | X|  - 1

\Biggr\} 
.(71)

Notice that the marginal constraint in (71) is only enforced for | X|  - 1 sites. This is
because for \mu \in conv(\~\Gamma N ),

(72)

| X| \sum 
i2,...,iN=1

\mu (| X| , i2, . . . , iN )

is completely determined by

(73)

| X| \sum 
i2,...,iN=1

\mu (i1, i2, . . . , iN ), i1 = 1, . . . , | X|  - 1,

via

(74)

| X| \sum 
i2,...,iN=1

\mu (| X| , i2 . . . , iN ) = 1 - 
| X|  - 1\sum 
i1=1

| X| \sum 
i2,...,iN=1

\mu (i1, i2 . . . , iN ).

We now appeal to the results in [6] to see what m is. The theorem in [6] implies
that for a closed and bounded convex set \scrK , an extreme point of \scrK \cap H1 \cap \cdot \cdot \cdot Hn,
where H1, . . . ,Hn are n hyperplanes can be represented as n+1 convex combination
of the extreme points of \scrK . Since \~\Pi N,sym(\rho ) in (71) is the intersection of conv(\~\Gamma N )

with | X|  - 1 hyperplanes, it follows that for an extreme point \mu \in \~\Pi N,sym(\rho ), \mu is the

convex combination of | X| elements in \~\Gamma N . After a marginalization, it follows that a
physical N -representable 3-marginal that satisfies the marginal constraint is a convex
combination of | X| elements of \~\Gamma 3, therefore m = | X| .

As \Theta \ast \approx 
\sum | X| 

i=1 a
\ast (i)\lambda \ast i \otimes \lambda \ast i \otimes \lambda \ast i , if the approximation \approx holds with an = sign,

and if \lambda \ast 1, . . . , \lambda 
\ast 
| X| are linearly independent, then \Theta \ast has a unique CP tensor decom-

position, up to ordering and magnitude of \lambda \ast i 's. This can be seen in section 5.2.1
where Jenrich's algorithm provides an explicit construction of the \lambda \ast i 's. We note that
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B788 YUEHAW KHOO AND LEXING YING

although the assumption of linearly independent \lambda \ast 1, . . . , \lambda 
\ast 
| X| is required for the suc-

cess of Jenrich's algorithm, it is not a necessary condition to ensure the uniqueness of
the CP-decomposition (see, for example, the theorem of Kruskal [10]). In the situa-
tion where the linearly independence assumption is violated, one may use a different
algorithm such as the alternating least-squares (ALS) for recovering the tensor com-
ponents. Therefore, our rounding algorithm has three phases. We first use Jenrich's
algorithm to obtain an initialization for \lambda \ast i , i = 1, . . . , | X| . Then a procedure based
on ALS is used to refine the solution from Jenrich's algorithm and also enlarge the

set \{ \lambda \ast i \} 
| X| 
i=1 to \{ \lambda \ast i \} 

p
i=1. Last, we solve a regression problem to determine the convex

combination of \{ \lambda \ast i \} 
p
i=1 that approximate \Theta \ast while satisfying the marginal constraint.

The algorithm is summarized in Algorithm 2.

Algorithm 2 Algorithm for rounding in the presence of the marginal constraint.

1: procedure Rounding2(\delta , \rho )
2: \Theta \ast \leftarrow Solution to SDP-Coulomb2.
3: \{ \lambda \ast i \} 

| X| 
i=1 \leftarrow JENRICH(\Theta \ast ) (section 5.2.1).

4: \{ \lambda \ast i \} 
p
i=1 \leftarrow ALS(\Theta \ast , \{ \lambda \ast i \} 

| X| 
i=1, \delta ) (section 5.2.2).

5: a\ast \leftarrow argmin
a\in \BbbR p

\| \Theta \ast  - 
\sum p

i=1 a(i)\lambda 
\ast 
i\otimes \lambda \ast i\otimes \lambda \ast i \| 2F s.t. a \geq 0, aT1 = 1,

\sum p
i=1 a(i)\lambda 

\ast 
i =

\rho .
6: \Theta \ast \leftarrow 

\sum p
i=1 a

\ast (i)\lambda \ast i \otimes \lambda \ast i \otimes \lambda \ast i ,
7: return \Theta \ast 

8: end procedure

Algorithm 3 Jenrich's algorithm.

1: procedure Jenrich(\Theta )
2: Get w1, w2 \in \BbbR | X| , w1(i), w2(i) \sim uniform[0, 1], i = 1, . . . , | X| .
3: W1 \leftarrow 

\sum | X| 
k=1 w1(k)\Theta (:, :, k), W2 \leftarrow 

\sum | X| 
k=1 w2(k)\Theta (:, :, k).

4: Eigendecompose W1W
\dagger 
2 = U\Sigma U\dagger , where \Sigma is a diagonal matrix.

5: \lambda i \leftarrow U(:, i), i = 1, . . . , | X| .
6: \lambda i \leftarrow \lambda i\surd 

N\| \lambda i\| 2
, i = 1, . . . , | X| .

7: return \{ \lambda \} | X| 
i=1.

8: end procedure

5.2.1. Jenrich's algorithm. In this section, we provide the details for Jenrich's
algorithm in Algorithm 3 for the sake of completeness. The key idea of Algorithm 3

is that if \Theta =
\sum | X| 

i=1 a(i)\lambda i \otimes \lambda i \otimes \lambda i, then

(75) W1 =

| X| \sum 
i=1

(a(i)wT
1 \lambda i)\lambda i\lambda 

T
i , W2 =

| X| \sum 
i=1

(a(i)wT
2 \lambda i)\lambda i\lambda 

T
i .

Thus
(76)

W1W
\dagger 
2 = USU\dagger , U = [\lambda 1 \cdot \cdot \cdot \lambda | X| ], \Sigma = diag\ast 

\biggl( \biggl[ 
a(1)wT

1 \lambda 1
a(1)wT

2 \lambda 1
, . . . ,

a(| X| )wT
1 \lambda | X| 

a(| X| )wT
2 \lambda | X| 

\biggr] \biggr) 
.

So the eigenvectors of W1W
\dagger 
2 give \lambda 1, . . . , \lambda | X| . The last step in Algorithm 3 is a

normalization step to ensure \| \lambda i\| = 1/
\surd 
N for all i, since in principle \lambda i \in \scrB N (X).
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CONVEX RELAXATION FOR STRICTLY CORRELATED DFT B789

As we see, if in (76) \lambda 1, . . . , \lambda | X| are linearly independent, Jenrich's algorithm gives
a unique decomposition since diag(\Sigma ) is nondegenerate generically (except for the
entries correspond to a(i) = 0).

5.2.2. Alternating least-squares. To further refine the solution from Jenrich's
algorithm to approximate a given tensor \Theta , we propose using a variant of the ALS

that is similar to a projected gradient descent. Ideally, if \Theta =
\sum | X| 

i=1 a(i)\lambda i \otimes \lambda i \otimes \lambda i,
one can try to solve

min
a\in \BbbR | X| ,

P,Q,R\in \BbbR | X| \times | X| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
| X| \sum 
i=1

P (:, i)\otimes Q(:, i)\otimes R(:, i) - \Theta 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

F

(77)

s.t. Q = R,P = R diag\ast (a),
a \geq 0, aT1 = 1,
R(:, i) \in \scrB N (X),

using a local optimization algorithm and identify the \lambda i's with the R(:, i)'s, provided
Jenrich's algorithm gives a good initialization. There is, however, a caveat. Al-

though
\sum | X| 

i=1 P (:, i)\otimes Q(:, i)\otimes R(:, i) provides an approximation to the 3-marginal \Theta ,\sum | X| 
k,j=1

\sum | X| 
i=1 P (:, i) \otimes Q(k, i) \otimes R(j, i) \not = \rho in general, hence the marginal constraint

can be violated. To deal with such an issue, we want to identify a set of \lambda i's in
\scrB N (X), \{ \lambda i\} pi=1, where p > | X| . With a more generous selection of the \lambda i's, some
convex combination of \{ \lambda i\} pi=1 should give the correct marginal while approximating
\Theta from SDP-Coulomb2 (66).

To this end, the following problem with a less stringent constraint is solved in-
stead:

min
P,Q,R\in \BbbR | X| \times | X| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
| X| \sum 
i=1

P (:, i)\otimes Q(:, i)\otimes R(:, i) - \Theta 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

F

(78)

s.t. \| Q(:, i)\| 2 = 1/
\surd 
N,

N entries of | R(:, i)| are 1/N i = 1, . . . , | X| .

Notice that each of the R(:, i)'s is not required to have only N nonzero entries, unlike
in (77) where R(:, i)'s belong to \scrB N (X). To solve (78), we use an ALS procedure
detailed in Algorithm 4. The outer-loop of this procedure controls the number of the
entries of R(:, i) that have magnitude 1/N . At every step of Algorithm 4, each column
of Q is normalized to 1/

\surd 
N after solving the least-squares concerning Q. To enforce

the constraint on R(:, i) in (78), after solving the least-squares concerning R, for each
R(:, i), k entries with the largest magnitude are picked out and have their magnitude
being set to 1/N . When the iteration converges, we then enforce k+1 entries of each
R(:, i), i = 1, . . . , | X| to have magnitude 1/N in the ALS. These steps are repeated
until k = N . We expect each R(:, i), i = 1, . . . , | X| to have N or slightly greater than
N entries that are large in magnitude. Using the large magnitude entries in each
column of R, we exhaustively enumerate the candidate \{ \lambda i\} pi=1 where \lambda i \in \scrB N (X).
The number p is controlled via the parameter \delta .

6. Numerical simulations. In this section, we demonstrate the effectiveness
of our approach using a few numerical examples. The energy is computed using

(79) E(\gamma ) =

| X| \sum 
i,j=1

Tr(C(i, j)\gamma (i, j)),
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B790 YUEHAW KHOO AND LEXING YING

Algorithm 4 Modified ALS.

1: procedure ALS(\Theta , \{ \lambda i\} | X| 
i=1,\delta )

2: Initialize Q = [\lambda 1, . . . , \lambda | X| ], R = [\lambda 1, . . . , \lambda | X| ].
3: for k from 1 to N do
4: while not converge do

5: P \leftarrow argmin \~P\in \BbbR | X| \times | X| \| 
\sum | X| 

i=1
\~P (:, i)\otimes Q(:, i)\otimes R(:, i) - \Theta \| 2F .

6: Q\leftarrow argmin \~Q\in \BbbR | X| \times | X| \| 
\sum | X| 

i=1 P (:, i)\otimes \~Q(:, i)\otimes R(:, i) - \Theta \| 2F .
7: Q(:, i)\leftarrow Q(:,i)\surd 

N\| Q(:,i)\| 2
, i = 1, . . . , N .

8: R\leftarrow argmin \~R\in \BbbR | X| \times | X| \| 
\sum | X| 

i=1 P (:, i)\otimes Q(:, i)\otimes \~R(:, i) - \Theta \| 2F .
9: Set k entries of R(:, i), i = 1, . . . , | X| with the largest magnitude to have

magnitude 1/N .
10: end while
11: end for
12: for i from 1 to | X| do
13: \scrI i \leftarrow \{ j | | C(j, i)| > \delta /N\} .
14: Form \xi 

(i)
l \in \scrB N (X), l = 1, . . . ,

\bigl( | \scrI i| 
N

\bigr) 
. The nonzero entries of \xi 

(i)
l for each l

are indexed by
15: a subset of \scrI i with N elements.
16: pi \leftarrow 

\bigl( | \scrI i| 
N

\bigr) 
.

17: end for
18: \{ \lambda i\} pi=1 \leftarrow \cup 

| X| 
i=1\{ \xi 

(i)
l \} 

pi

l=1

19: return \{ \lambda i\} pi=1.
20: end procedure

where \gamma is the 2-marginal, obtained either via SDP-Coulomb or SDP-Coulomb2 (or
their rounded versions). We denote the solution to SDP-Coulomb and SDP-Coulomb2
\gamma  - 1 , \gamma 

 - 
2 , and their rounded solutions \gamma +1 , \gamma 

+
2 . The superscripts are used to indicate

whether we are using the solutions for the purpose of obtaining a lower bound or an
upper bound for the energy. We always choose C such that C(x, y) = 1

\| x - y\| 2
, x, y \in 

X,. In all cases, we choose a box [ - 2, 2]d where d is the dimension of the space where
the electrons reside. A uniform discretization is then applied to [ - 2, 2]d to get the
discrete domain X. We use

(80) Egapi =
E(\gamma +i ) - E(\gamma  - i )

E(\gamma  - i )
, i = 1, 2,

to provide an idea on how close we are to the true energy. SDP-Coulomb and SDP-
Coulomb2 are implemented using the large scale SDP solver SDPNAL+[15].

6.1. Optimizing a linear functional over the 2-marginal. In this section,
we let g(\lambda ) in (3) be an arbitrary linear functional cT\lambda . This can be seen as an
external potential vext in (9). Then SDP-Coulomb is solved to obtain the 2-marginals.
Since one can already devise a rounding scheme (section 5.1) based on the solution
of SDP-Coulomb, we only present the energy gap derived from \gamma  - 1 and \gamma +1 . Unlike
SDP-Coulomb2, SDP-Coulomb only involves a matrix with size | X| \times | X| , therefore
we can apply it to grids with larger size. The model for the vector c considered is

(81) c = \sigma 
\Bigl( 
min
i,j

C(i, j)
\Bigr) 
\scrN (0, 1).
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In Tables 1 and 2, we present Egap1 for d = 2, 3, with N = 5, 9, 13. When d = 2, we
use a grid with size | X| = 202. When d = 3, we let | X| = 93.

Table 1
Egap1 for electrons in two dimensions (2D). Here | X| = 20d, d = 2. The energy gap is averaged

over 12 realizations of c. The negative gap between the upper and lower bounds when \sigma = 0, N = 13
is due to the accuracy limitation of the optimization package.

\sigma = 0 \sigma = 0.25 \sigma = 0.5

n = 5 3.3e-03 7.6e-03 1.3e-02
n = 9 3.8e-03 3.0e-03 3.6e-03
n = 13 -2.0e-05 3.1e-03 3.4e-03

Table 2
Egap1 for electrons in 3D. Here | X| = 9d, d = 3. The energy gap is averaged over 12 realizations

of c.

\sigma = 0 \sigma = 0.25 \sigma = 0.5

n = 5 3.7e-02 8.1e-03 5e-03
n = 9 7.9e-03 5.1e-03 3.5e-03
n = 13 3.2e-03 2.8e-03 3.1e-03

6.2. Multimarginal optimal transport. In this section, we present numerical
results for different instances of problem (6). Both SDP-Coulomb and SDP-Coulomb2
are tested. Due to the size of the variable in SDP-Coulomb2, we can only afford a
smaller grid size. The point of the simulation is to demonstrate how an upper bound
of the energy can be extracted using SDP-Coulomb2, through the method presented
in section 5.2.

In the case of one dimension, we use three different marginals:

(82) \rho 1(x) \propto 1, \rho 2(x) \propto exp( - x2/
\surd 
\pi ), \rho 3(x) \propto sin(4x) + 1.5,

where \rho 1, \rho 2, \rho 3 are appropriately normalized. Using the combination of SDP-Coulomb2
and Algorithm 2, an upper-bound can be obtained. We present the results with
| X| = 64 and N = 8 in Figures 2, 3, and 4. In all examples, we obtained an en-
ergy gap from the order of 1e-04 to 1e-02. The running times for SDP-Coulomb and
SDP-Coulomb2 are about 7s and 249s on average. In general, we observe a fuzzier
2-marginal in SDP-Coulomb, especially when the marginal is \rho 3. We note that the
marginals chosen are bounded away from 0. This is because if there are sites where
the marginal is close to zero, due to the approximation error of SDP-Coulomb2, \Theta \ast 

may be inaccurate on these sites, making rounding difficult. Qualitatively, we observe
that when fixing a slice (a horizontal index) of the 2-marginal, the 2-marginals concen-
trates at N  - 1 locations. This behavior indicates the existence of Monge solution for
the multimarginal optimal transport problem in the one-dimensional (1D) problem, a
fact that is shown analytically in [14]. For the two-dimensional (2D) case, we tested
it on a Gaussian distribution

(83) \rho 4(x, y) \propto exp( - (x2 + y2)/
\surd 
12\pi )

with | X| = 102 and N = 6. The results are presented in Figure 5 and the running
times for SDP-Coulomb and SDP-Coulomb2 are 4.7s and 731s, respectively. Again,
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B792 YUEHAW KHOO AND LEXING YING

the difference between the quality of the solutions from SDP-Coulomb and SDP-
Coulomb2 is rather small. We use a rather small grid size in this case since we need
to deal with a 100\times 100\times 100 3-tensor when solving for SDP-Coulomb2. In order to
further evaluate the solution qualitatively, SDP-Coulomb is solved using | X| = 552

in Figure 6. For a slice of the 2-marginal, instead of seeing the support of the 2-
marginals concentrated at N  - 1 site, we see a distribution of electrons. This suggests
that Monge solution may not exist for 2D or three-dimensional multimarginal optimal
transport problems with Coulomb cost.

-2 2

-2

2

(a) SDP-Coulomb.

-2 2

-2

2

(b) SDP-Coulomb2.

Fig. 2. 2-marginal from solving the multimarginal transport problem with the marginal \rho 1(x),
where N = 8, | X| = 64, d = 1. (a): Solution from SDP-Coulomb. Egap1 = 4.9e - 04. (b): Solution
from SDP-Coulomb2. Egap2 =  - 1.0e  - 06. The negative sign for the energy gap is due to the
limitation of numerical accuracy.

-2 2

-2

2

(a) SDP-Coulomb.

-2 2

-2

2

(b) SDP-Coulomb2.

Fig. 3. 2-marginal from solving the multimarginal transport problem with the marginal \rho 2(x)
where N = 8, | X| = 64, d = 1. (a): Solution from SDP-Coulomb. Egap1 = 1.8e - 03. (b): Solution
from SDP-Coulomb2. Egap2 = 1.5e - 03.

6.3. Approximating the Kantorovich potential. As mentioned previously,
the dual problem (32) can also be used to approximate the Kantorovich problem
(29). The 1D cases admit semianalytic solutions for the dual potential [13]. First, the
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-2 2

-2

2

(a) SDP-Coulomb.

-2 2

-2

2

(b) SDP-Coulomb2.

Fig. 4. 2-marginal from solving the multimarginal optimal transport problem with the marginal
\rho 3(x) where N = 8, | X| = 64, d = 1. (a): Solution from SDP-Coulomb. Egap1 = 4.2e  - 02. (b):
Solution from SDP-Coulomb2. Egap2 = 3.9e - 02.

(a) SDP-Coulomb. (b) SDP-Coulomb2.

Fig. 5. Solution to the multimarginal optimal transport problem with the marginal \rho 4(x, y)
where N = 6, | X| = 102, d = 2. The 2D domain X is vectorized in order to present the 2-marginal.
(a): Solution from SDP-Coulomb. Egap1 = 3.8e - 02. (b): Solution from SDP-Coulomb2. Egap2 =
3.5e - 02.

comotion function is defined as

(84) fi(x) =

\Biggl\{ 
N - 1

e (Ne(x) + i - 1), x \leq N - 1
e (N + 1 - i),

N - 1
e (Ne(x) + i - 1 - N), x > N - 1

e (N + 1 - i)

for i = 1, . . . , N , where

(85) Ne := N

\int x

 - \infty 
\rho (x)dx.

Then the Kantorovich potential v\ast (x) is defined via

(86) \nabla v\ast (x) =  - 
N\sum 
i \not =1

x - fi(x)
\| x - fi(x)\| 32

.
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B794 YUEHAW KHOO AND LEXING YING

Fig. 6. Solution to the multimarginal transport problem with the marginal \rho 4(x) where N = 6,
| X| = 552, d = 2. Two slices of the 2-marginals solved by SDP-Coulomb are presented.

-2 0 2
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Ground truth

SDP-Coulomb

(a) \rho 1(x).
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SDP-Coulomb

(b) \rho 2(x).
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50

100
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200
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350

400

Ground truth

SDP-Coulomb

(c) \rho 3(x).

Fig. 7. Solution to the dual problem (29), where N = 8, | X| = 200, d = 1. The ground truth is
given by (86), and the approximation is given by the solution to the dual problem of SDP-Coulomb
(32). (a): With marginal \rho 1(x). Errorv = 4.5e - 03. (b): With marginal \rho 2(x). Errorv = 1.4e - 03.
(c): With marginal \rho 3(x). Errorv = 1.2e - 02.

We compare the dual potential w\ast obtained from solving (32) to the ground truth
Kantorovich potential (86). We let | X| = 200 and the marginals being \rho 1(x), \rho 2(x),
and \rho 3(x). The error is reported using the metric

(87) Errorv =
\| v\ast  - w\ast \| 2
\| v\ast \| 2

.
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In these cases, we obtain errors of the order of 10 - 3 to 10 - 2. The results are presented
in Figure 7.

7. Conclusion. We propose methods based on convex relaxation for solving the
multimarginal transport type problems in the context of DFT. By convexly relaxing
the domain of 2- and 3-marginals, the resulting convex optimization problems have
computational complexities independent of the number of electrons. For the numerical
simulations presented here, directly applying linear programming or Sinkhorn scaling
based algorithm [2] to problem (3) would have led to a tensor with number of entries
between 1014 to 1025, for the choice of N and | X| used here.

Furthermore, a key feature of the proposed methods is that they provide both
upper and lower bounds on the energy. From an algorithmic point of view, it is crucial
to develop faster customized optimizer in order to address large-scale applications in
the future. From a theoretical point of view, it is important to study theoretically
how well SDP-Coulomb and SDP-Coulomb2 approximate problem (3).
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