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In this paper, we propose a semigroup method for solving high-dimensional elliptic partial 
differential equations (PDEs) and the associated eigenvalue problems based on neural 
networks. For the PDE problems, we reformulate the original equations as variational 
problems with the help of semigroup operators and then solve the variational problems 
with neural network (NN) parameterization. The main advantages are that no mixed 
second-order derivative computation is needed during the stochastic gradient descent 
training and that the boundary conditions are taken into account automatically by the 
semigroup operator. Unlike popular methods like PINN [16] and Deep Ritz [5] where the 
Dirichlet boundary condition is enforced solely through penalty functions and thus changes 
the true solution, the proposed method is able to address the boundary conditions without 
penalty functions and it gives the correct true solution even when penalty functions are 
added, thanks to the semigroup operator. For eigenvalue problems, a primal-dual method 
is proposed, efficiently resolving the constraint with a simple scalar dual variable and 
resulting in a faster algorithm compared with the BSDE solver [8] in certain problems 
such as the eigenvalue problem associated with the linear Schrödinger operator. Numerical 
results are provided to demonstrate the performance of the proposed methods.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Central to the discipline of applied mathematics is the problem of numerically solving partial differential equations 
(PDEs), among which the high dimensional problems are particularly challenging due to the “curse of dimensionality”, 
a phenomenon that the computational complexity of certain algorithms increases exponentially with the dimension. A 
more challenging problem is the eigenvalue problem, which is closely related with the PDE problem and suffers from the 
curse of dimensionality as well. In this paper we limit the discussion to second-order linear PDEs and related eigenvalue 
problems.

In recent years, deep learning methods have experienced great success across a wide range of domains such as image 
recognition [9,14], natural language processing [3,7], molecular dynamics simulation [10,17], and protein structure prediction 
[1]. One reason behind this success is that neural network models are good approximators for high-dimensional functions 
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that can be trained efficiently in most cases. Leveraging on this property of the neural network, a myriad of data-driven 
methods have been proposed for solving high-dimensional PDEs and eigenvalue problems, for example, see [4,5,15,16].

In a recent paper [15], the semigroup operator of the differential operator is used to rewrite the variational form, which 
frees the algorithm from calculations of any mixed second-order derivative and automatically handles the boundary condi-
tions. In this paper, we extend this method to more general elliptic PDEs and also derive a primal-dual method for solving 
the corresponding eigenvalue problems.

1.1. Background and related work

For high-dimensional PDEs, Monte-Carlo methods using Feynman-Kac formulas can be applied to obtain the value of the 
approximate solution at a given location. However, satisfactory solutions should provide information of not only the values 
on a finite number of points, but also of the entire landscape.

Monte Carlo methods have also been widely applied to the eigenvalue problems. Among various approaches, the varia-
tional Monte Carlo method (VMC) and the diffusion Monte Carlo method (DMC) are two most well-known examples that 
have been thoroughly investigated in the context of quantum mechanics, see for example [6]. The idea of VMC is to pa-
rameterize the wave function and minimize the energy of the system with respect to the parameters, where the energy is 
expressed as an expectation with respect to the probability distribution given by the squared modulus of the wave function, 
and is numerically computed via the Monte Carlo method. DMC utilizes the imaginary-time Schrödinger equation, whose 
solution can be represented by a convolution with respect to the Green’s function and can thus be evaluated by Monte 
Carlo simulations. Since the imaginary-time Schrödinger equation is a linear differential equation, the component of the 
lowest energy eigenfunction remains and other components vanish as the time goes to infinity, and the wave function of 
the ground state can be obtained.

For neural network based approaches, the general idea is to approximate the solution with a neural network, and then 
train the neural network to minimize a loss built either from a variational form of the PDE or from a norm of the residue 
of an equivalent equation of the original PDE. Mostly related to the current work, [11,15] are concerned with the high 
dimensional PDEs describing the committor function in the transition path theory, which is a second-order elliptic equation 
with a specific kind of Dirichlet boundary conditions.

In [4], the backward stochastic differential equation (BSDE) method forms the equivalent equation using a BSDE, and the 
residue norm of the equivalent fixed-point equation is minimized. In some cases the equivalent variational problem has been 
established, and we only need to directly apply the neural network parameterization. For example, in [2], a neural network 
with one hidden layer is used to give the trial functions for the VMC method, and the gradient function needed in the 
optimization is also evaluated by Monte Carlo method. In [5], a ResNet structure is used to parameterize the approximate 
solution, and the optimization problem is obtained from the variational formulation of elliptic PDEs, which is then solved 
by stochastic gradient descent (SGD) methods.

In [8], the authors extend the BSDE approach to solve the eigenvalue problem with a second-order elliptic operator. The 
differential equation is rewritten as a fixed-point equation with the help of the corresponding semi-group operator as in 
the BSDE method. By Itô’s formula, the semi-group operator is represented by a stochastic integral. After that, the numerical 
solution is obtained by minimizing the loss defining as the L2 norm of the fixed-point equation residue. The L2 constraint 
on the eigenfunction is implemented by dividing the L2 norm in each batch during training.

Since both the proposed method and the BSDE method involves semigroups of diffusion processes, we remark that 
there are several major difference between the proposed method and the BSDE method. Since the BSDE method has many 
variants, here we take the version in [8] to avoid ambiguity. Firstly, the BSDE method usually requires two neural networks, 
one for the approximate solution and another for its gradient, while our method only needs a single neural network for the 
approximate solution. Secondly, the semigroup used in [8] is not the one that corresponds to the second-order differential 
parameter. In particular, it depends on λ, while in our method the semigroup does not depend on λ. Finally, in the method 
of [8], the eigenvalue is also a parameter that needs to be optimized, while in our method, it does not appear as a variable 
of the optimization problem but can be computed easily after solving for the eigenfunction.

1.2. Contributions and contents

The two major contributions of our approach are

• The semigroup formulation removes the need of calculating any mixed second-order derivatives, and it treats the Dirich-
let boundary conditions naturally. Compared with the method proposed in [15], the method proposed in this paper 
applies to problems with non-zero right-hand-side term. Compared with other popular neural network based PDE 
solvers such as the Deep Ritz method [5] and PINN method [16] where the Dirichlet boundary condition is treated 
solely through additive penalty functions, the proposed method is capable of addressing the Dirichlet boundary condi-
tion without penalty functions, and the ground truth remains unchanged even when penalty functions are added.

• We extend the semigroup method also to the eigenvalue problem with a primal dual algorithm, which is able to effi-
ciently enforce the constraint on the L2 norm of the approximate solution. In the numerical comparison with the BSDE 
2
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method proposed in [8], the proposed method is shown to have better performance in certain aspects. For example, 
less running time is needed to achieve the same precision in the linear Schrödinger problem.

The rest of the paper is organized as follows. Section 2 describes the semigroup approach for the second order elliptic 
PDEs. Section 3 discusses the primal-dual approach for the eigenvalue problems. Finally, numerical results are reported in 
Section 4.

2. Elliptic PDEs

Consider the following second order elliptic equation:

−∇ · (a(x)∇u(x)) = f (x), x ∈ � (1)

where the coefficient a(x) is uniformly bounded above zero. Here, we consider two types of boundary conditions: the 
Dirichlet boundary condition:

u(x) = r(x), x ∈ ∂�, (2)

and the periodic boundary condition:

u(x) = u(x + ei), x ∈ � = [0,1)d, (3)

where ei is the i-th standard basis vector in Rd . When the periodic boundary condition is used, we assume that a(x) and 
f (x) are both periodic, and we add a further constraint that 

∫
�

u(x)dx = 0, so that the solution is unique. Otherwise for any 
solution u, u + C is also a solution for an arbitrary constant C .

2.1. Semigroup formulation

We define V (x) = − log(a(x)) and let Xt be the solution to the stochastic differential equation (SDE)

dXt = −∇V (Xt)dt + √
2dWt, X0 = x, (4)

where Wt is the standard d-dimensional Brownian motion. For a fixed small time step δ > 0, we define the operator P as 
follows:

(P u)(x) := Ex (u (Xτ∧δ)) , (5)

where Ex is the expectation taken with respect to the law of the process (4), and τ = ∞ if the periodic boundary condition 
is used, and if the Dirichlet boundary condition is used, τ = τ∂� is defined as the hitting time of ∂�. By Dynkin’s formula, 
for the solution u of the equation (1) we have

P u(x) = u(x) +Ex

τ∧δ∫
0

Au (Xs)ds = u(x) −Ex

τ∧δ∫
0

f

a
(Xs)ds, ∀x ∈ �, (6)

where A = � − ∇V · ∇ is the infinitesimal generator, and thus for the solution u of the PDE (1), we have Au(x) =
− f (x)/a(x). Following [15], P u can be decomposed into two parts as follows:

(P u)(x) = Ex (u (Xτ∧δ)) = Ex (
u (Xδ)1{δ<τ }

) +Ex (
r (Xτ )1{δ≥τ }

)
. (7)

We denote the first part of (7) as

(P iu)(x) ≡Ex (
u(Xτ∧δ)1{δ<τ }

) = Ex (
u(Xδ)1{δ<τ }

)
, (8)

where the superscript i stands for the interior contribution and the second part of (7) as

(P br)(x) ≡ Ex (
r(Xτ∧δ)1{δ≥τ }

) = Ex (
r(Xτ )1{δ≥τ }

)
, (9)

where the superscript b stands for the boundary contribution. As mentioned earlier, when the periodic boundary condition 
is used, τ = ∞, so 1{δ≥τ } = 0, and thus P b becomes a zero operator. In this case, P br is a zero function for any function r. 
In order to give a uniform formulation for both types of boundary conditions, we set r(x) = 0 when the periodic boundary 
condition is used, which has no effect other than making P br well defined, and any other function can be used. With these 
operators, (6) can be rewritten succinctly as

(I − P i)u(x) − (P br)(x) − (T f )(x) = 0, (10)
3



H. Li and L. Ying Journal of Computational Physics 453 (2022) 110939
Fig. 1. An example of the neural network architecture and the corresponding loss when using the Dirichlet boundary condition.

where (T f )(x) =Ex
∫ τ∧δ

0
f
a (Xs)ds. This equation can be reformulated as the following variational problem

min
u

1

2

∫
�

u(x)
(
(I − P i)u(x)

)
ρ(x)dx −

∫
�

u(x)(P br(x) + T f (x))ρ(x)dx, (11)

where ρ(x) = a(x)/ 
(∫

�
a(x)dx

)
. In order to do this, we need a result from [15].

Theorem 1 ([15]). P i is a symmetric operator on L2
ρ(�), in other words, 〈u, P i v〉ρ = 〈P iu, v〉ρ , where 〈·, ·〉ρ denotes the inner product 

of the Hilbert space L2
ρ(�).

One can show using Theorem 1 that the solution to (11) is the same as the solution to (10) in the following way. Assume 
that u∗ is the solution to (11) and η is continuous in � with compact support. By plugging u(x, ε) = u∗(x) + εη(x) into (11)
and taking derivative with respect to ε , we obtain

0 = ∂

∂ε

⎛
⎝1

2

∫
�

u(x, ε)
(
(I − P i)u(x, ε)

)
ρ(x)dx −

∫
�

u(x, ε)(P br(x) + T f (x))ρ(x)dx

⎞
⎠

∣∣∣∣∣∣
ε=0

=
∫
�

η(x)
(
(I − P i)u∗(x)

)
ρ(x)dx −

∫
�

η(x)(P br(x) + T f (x))ρ(x)dx

=
∫
�

η(x)
(
(I − P i)u∗(x) − P br(x) − T f (x)

)
ρ(x)dx,

(12)

and thus (I − P i)u∗(x) − P br(x) − T f (x) = 0 since this is true for any η that is continuous in � with compact support.

2.2. Neural network approximation

In order to address the curse of dimensionality, the function u in (11) is parameterized with a neural network uθ , and 
the optimization problem becomes

min
θ

1

2

∫
�

uθ (x)
(
(I − P i)uθ (x)

)
ρ(x)dx −

∫
�

uθ (x)(P br(x) + T f (x))ρ(x)dx. (13)

When the Dirichlet boundary condition (2) is used, we solve the following penalized problem to better address the boundary 
condition, which is not necessary but is shown to be able to improve the performance of the algorithm.

min
θ

∫
�

uθ (x)

(
1

2
(I − P i)uθ (x) − P br(x) − T f (x)

)
ρ(x)dx + c

∫
∂�

(uθ (x) − r(x))2dμ(x), (14)

where μ(x) is a probability measure supported on ∂�.
The architecture of the neural network used in this situation is depicted in Fig. 1. We adopt a three layer fully connected 

neural network with ReLU activation. Compared with [15], we do not have the singularity layer here since we do not have a 
temperature parameter and the singularities that appear in the situation of extremely high and extremely low temperatures 
no longer exist.
4
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Fig. 2. An example of the neural network architecture and the corresponding loss when using the periodic boundary condition.

When the periodic boundary condition (3) is used, we adopt the following neural network architecture to address the 
boundary condition with the help of the trigonometric basis, where m is a hyperparameter of the neural network. Since the 
boundary condition is already treated by the neural network architecture, we do not need the penalty term in this situation.

In the implementation of the optimization algorithm, we also need the derivative of the integrals in (13). By the sym-
metry of P i in L2

ρ(�), the derivative is∫
�

∇θ uθ (x)
(
(I − P i)uθ (x)

)
ρ(x)dx −

∫
�

∇θ uθ (x)(P br(x) + T f (x))ρ(x)dx. (15)

With the help of a random variable X ∼ ρ , the derivative can be further transformed into:

EX∼ρ∇θ uθ (X)
(
(I − P i)uθ (X) − (P br(X) + T f (X))

)
. (16)

An unbiased estimator for (16) is thus

∇θ uθ (X)

⎛
⎝uθ (X) − uθ (Xδ)1{δ<τ } − r(Xτ )1{δ≥τ } −

τ∧δ∫
0

f

a
(Xs)ds

⎞
⎠ , (17)

where Xs is the solution of (4) at time s with the initial condition given by X0 = X . Xδ and Xτ are obtained by evaluating 
Xs at δ and the stopping time τ , respectively. The derivative of the penalty term is

2c

∫
∂�

∇θ uθ (x)(uθ (x) − r(x))dμ(x) (18)

and an unbiased estimator for the derivative is

2c∇uθ (X)(uθ (X) − r(X)), (19)

where X ∼ μ. Notice that there is no mixed second-order derivative in (17) and (19), unlike [11] or [5], where mixed 
second-order derivatives ∂2

∂θ∂xi
, 1 ≤ i ≤ d are needed in the training process.

The optimization problem (13) and the penalized problem (14) can be solved by applying SGD-type optimization, for 
example the Adam method in [12]. In the numerical implementation, the integral 

∫ τ∧δ

0
f
a (Xs) ds can be approximated for 

example by the Euler-Maruyama scheme (see for example [13]). For other implementation details such as the determination 
of 1{δ≥τ } , we follow the method in [15]. The complete algorithm is summarized in Algorithm 1.

3. Primal-dual formulation for eigenvalue problems

In this section we extend the semigroup method described in Section 2 to a primal-dual algorithm for eigenvalue prob-
lems. For the eigenvalue problems, a major difference is that the corresponding variational problem has a constraint ‖u‖ = 1. 
In [8], the authors divide the neural network approximate solution by a normalization factor when calculating the training 
loss, which is similar with the Batch Normalization technique, except that the normalization factor is computed with an 
auxiliary batch rather than the original batch. Here we propose a primal-dual method that handles the constraint via a 
scalar Lagrange multiplier. As a result, the time complexity of solving the eigenvalue problem is only marginally higher than 
that of solving the corresponding PDE.
5
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Algorithm 1 Semigroup method for the elliptic PDE (1).

Require: batch size B and B̃ , total number of iterations T iter , time step δ, learning rate ηt , the penalty coefficient c used in the Dirichlet case, the level m
of trigonometric bases used in the periodic case.

1: Initialize the neural network uθ .
2: for t = 1, .., T iter do
3: Sample a batch of data from the distribution ρ with size B:

X1, X2, . . . , XB ∼ ρ.

4: For each Xk (1 ≤ k ≤ B), sample Xk,δ according to the SDE (4):

Xk,δ = Xk − ∇V (Xk)δ + √
2Wδ ,

and when the periodic boundary condition is used, move Xk,δ into � by translating an integer multiple of the period.
5: For each Xk , decide the value of 1{δ<τ } by

1{δ<τ } = 1 if Xk,δ ∈ �.

6: For each Xk such that 1{δ<τ } = 0, let Xτ be the intersection of ∂� and the line segment Xk Xk,δ .
7: Compute the gradient in (17).

8: If the Dirichlet boundary condition is used, sample a batch of data { X̃ j}B̃
j=1 from the distribution μ, and compute the gradient of the penalty term 

by (18).
9: Update the neural network parameters θ via the Adam method with learning rate ηt (other hyper-parameters in the Adam method are set as the 

default values).
10: end for
11: If the periodic boundary condition is used, then sample a batch of data { X̃ j}B̃

j=1 from the uniform distribution on �, and subtract 1
B̃

∑B̃
j=1 uθ ( X̃ j) from 

uθ .

Consider � = [0, 1)d and define C∞
per as the space of smooth functions on � satisfying the periodic boundary condition 

(3). Consider a symmetric elliptic operator L = − 
∑d

i, j=1
∂

∂x j

(
Aij

∂
∂xi

)
+ V , where V ∈ C∞

per(�), Aij ∈ C∞
per(�), 1 ≤ i, j ≤ d and 

Aij = A ji , 1 ≤ i, j ≤ d. We also assume that A is uniformly elliptic, i.e., 
∑d

i, j=1 Aij(x)ξiξ j ≥ α‖ξ‖2 for some constant α > 0
and any x, ξ ∈ �. By variational principle we know that for the first eigenpair (u, λ), the eigenvalue problem

Lu = λu, ‖u‖L2 = 1, (20)

with the periodic boundary condition (3) is equivalent to the variational form:

u = argmin
u∈H1

per(�),‖u‖L2 =1

1

2

∫
�

u(x)Lu(x)dx, (21)

where H1
per(�) consists of the functions satisfying the periodic boundary condition (3) in H1(�). For simplicity of the 

notations, we omit the function space when there is no ambiguity.

3.1. Resolving the constraint

The main obstacle in implementing the formulation (21) lies in the constraint ‖u‖ = 1. We propose to handle the 
constraint with a multiplier term, and reconstruct (21) as the minimax formulation:

min
u

max
g

1

2

∫
�

u(x)Lu(x)dx + g

2
(‖u‖2

L2 − 1), (22)

where g is the Lagrange multiplier. The equivalence between (21) and (22) can be seen by maximizing over g in (22) and 
thus we have removed the explicit constraint in (21). We adopt the neural network parameterization as in Section 2 and 
obtain the following optimization problem:

min
θ

max
g

1

2

∫
�

uθ (x)Luθ (x)dx + g

2
(‖uθ‖2

L2 − 1). (23)

Let us define

E(θ, g) = 1

2

∫
�

uθ (x)Luθ (x)dx + g

2
(‖uθ‖2

L2 − 1). (24)

Taking derivatives with respect to θ and g gives
6
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∂ E

∂θ
=

∫
�

∇θ uθ (x)(L + g)uθ (x)dx,

∂ E

∂ g
= 1

2
(‖uθ‖2

L2 − 1),

(25)

where we have utilized the symmetry of L.

3.2. Scaling the Lagrange multiplier

In the optimization problem (23), it is important that the Lagrange multiplier has an appropriate scale, since otherwise 
the problem would be ill-conditioned. If we introduce a scaling parameter c for the dual variable g , then the optimization 
problem becomes

min
θ

max
g

1

2

∫
�

uθ (x)Luθ (x)dx + cg

2
(‖uθ‖2

L2 − 1), (26)

or equivalently,

E = 1

2

∫
�

uθ (x)Luθ (x)dx + cg

2
(‖uθ‖2

L2 − 1), (27)

and the derivatives are scaled accordingly:

∂ E

∂θ
=

∫
�

∇θ uθ (x)(L + cg)uθ (x)dx,

∂ E

∂ g
= c

2
(‖uθ‖2

L2 − 1).

(28)

If c is too large, then in the optimization process the first term in E is neglected by the neural network. If c is too small, 
then the constraint is not well-enforced. Therefore in the implementation, c should be properly chosen such that the two 
terms in E are balanced.

Based on (28), we arrive at the primal-dual scheme

θ̇ = −
∫
�

∇θ uθ (x)(L + cg)uθ (x)dx,

ġ = c

2
(‖uθ‖2

L2 − 1).

(29)

In what follows, we focus on the Schrödinger operator L = −� + V and consider the problem of finding the first eigenpair 
(which corresponds to the ground state) with periodic boundary conditions. The minimax formulation (26) becomes

min
u

max
g

1

2

∫
�

|∇u(x)|2dx + 1

2

∫
�

V (x)|u(x)|2dx + cg

2
(‖u‖2

L2 − 1). (30)

Two stochastic schemes for implementing (29) are discussed below.

3.3. Scheme I

By replacing the operator �
2 with the semigroup approximation, we can reformulate (30) as

min
u

max
g

1

δ

∫
�

u(x)(u(x) −E(u(x + Wδ)))dx + 1

2

∫
�

V (x)|u(x)|2dx + cg

2
(‖u‖2 − 1), (31)

where Wδ is the standard Brownian motion. This replacement can be justified as follows. By Dynkin’s formula, we have

1

δ
(u(x) −Eu(x + Wδ)) = E

1

δ

δ∫
0

−1

2
�u(x + W s)ds.

Let ϕ = − 1 �u. If ϕ is bounded and sufficiently smooth, then by Fubini’s theorem,
2

7
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E
1

δ

δ∫
0

ϕ(x + W s)ds = 1

δ

δ∫
0

Eϕ(x + W s)ds = 1

δ

δ∫
0

E
[
ϕ(x) + ∇ϕ(x) · W s + O (‖W s‖2)

]
ds

= 1

δ

δ∫
0

[
ϕ(x) + O (s)

]
ds = ϕ(x) + O (δ),

which shows that 1
δ
(u(x) − Eu(x + Wδ)) = − 1

2 �u(x) + O (δ) and justifies the replacement in (31). Consider a uniform 
random variable X on �, the problem (31) can be written as

min
u

max
g

1

δ
Eu(X)(u(X) − u(X + Wδ)) + 1

2
EV (X)|u(X)|2 + cg

2
(‖u‖2 − 1). (32)

Since X is uniform on �, the process X + Wδ is reversible and

〈u, P̃ v〉 = 〈 P̃ u, v〉, (33)

where 〈u, v〉 =Eu(X)v(X) and P̃ u(x) =Eu(x + Wδ). By this symmetry, a gradient descent scheme similar with (29) can be 
derived

θ̇ = −E∇θ uθ (X)

(
1

δ
(uθ (X) − uθ (X + Wδ)) + cguθ (X)

)
,

ġ = c

2
E(uθ (X)2 − 1).

(34)

Unbiased estimators for the expectations in (34) are therefore

∇θ uθ (X)(
1

δ
(uθ (X) − uθ (X + Wδ)) + cguθ (X)), (35)

and

c

2
(uθ (X)2 − 1), (36)

where X is uniform in �.

3.4. Scheme II

In (32), we have used 1
δ
(u(x) − Eu(x + Wδ)) to approximate −�

2 u(x). The effectiveness of this approximation relies 
on the spatial symmetry of Wδ , which is only true in distribution. In other words, after using the unbiased estimators 
given in (35) with samples of X and Wδ , the symmetry can be impacted. This problem can be addressed by starting by 
approximating the first term of (30) with

1

2

∫
�

|∇u(x)|2dx = 1

2δ

⎛
⎝∫

�

E|u(x) − u(x + Wδ)|2dx + o(δ)

⎞
⎠ . (37)

The formulation above can be obtained, for example, by plugging u(x + Wδ) = u(x) + ∇u(x) · Wδ + O (‖Wδ‖2) into the 
expectation, which gives

E|u(x) − u(x + Wδ)|2 = E|∇u(x) · Wδ|2 + o(δ) =E(W �
δ ∇u(x)(∇u(x))�Wδ) + o(δ)

= E(tr(W �
δ ∇u(x)(∇u(x))�Wδ)) + o(δ) = E(tr(∇u(x)(∇u(x))�Wδ W �

δ )) + o(δ)

= tr(∇u(x)(∇u(x))�E(Wδ W �
δ )) + o(δ) = δ tr(∇u(x)(∇u(x))�) + o(δ)

= δ|∇u(x)|2 + o(δ).

(38)

Notice that compared with the first term in (31), the right hand side of (37) has an extra factor 1/2. The appearance of this 
factor is natural since

1

2
E|u(x) − u(x + Wδ)|2 = u(x)(u(x) −Eu(x + Wδ)) + 1

2
(Eu(x + Wδ)

2 − u(x)2),

so the additional factor 1/2 here can be viewed as a result of replacing 1 u(x)2 with 1Eu(x + Wδ)
2 in (31).
2 2

8
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With this approximation and the uniform random variable X on �, (30) can be written as

min
u

max
g

E

(
1

2δ
|u(X) − u(X + Wδ)|2 + 1

2
V (X)|u(X)|2 + cg

2
(u(X)2 − 1)

)
. (39)

For this problem, the gradient descent scheme is

θ̇ = −E

[
1

δ
(∇θ uθ (X) − ∇θ uθ (X + Wδ))(uθ (X) − uθ (X + Wδ))

+ ∇θ uθ (X)(V (X)uθ (X) + cguθ (X))

]
,

ġ = c

2
E(uθ (X)2 − 1).

(40)

Unbiased estimators for the expectations are therefore

1

δ
(∇θ uθ (X) − ∇θ uθ (X + Wδ))(uθ (X) − uθ (X + Wδ)) + ∇θ uθ (X)(V (X)uθ (X) + cguθ (X)) (41)

and

c

2
(uθ (X)2 − 1). (42)

It is clear that even after replacing the expectation with the unbiased estimators, the problem is still symmetric.

Algorithm 2 Semigroup methods for the eigenvalue problem.

Require: default value of the dual variable gdefault , batch size B and B̃ , total number of iterations T iter , time step δ, learning rate ηt , ̃ηt , scaling factor c, 
the level m of trigonometric bases used.

1: Initialize the neural network uθ .
2: for t = 1, .., T iter do
3: Sample a batch of data {Xk}B

k=1 uniformly in �.
4: Compute the gradient in (35) or (41).

5: Sample a batch of data { X̃ j}B̃
j=1 uniformly in �.

6: Compute εt = max
(

1
B̃

∑
j uθ ( X̃ j)

2 − 1,1
)

.

7: if t = 1 or εtεt−1 < 0 then
8: Set g = sign(εt )gdefault .
9: else

10: Update the dual variable by g ← g + η̃t
cεt
2 .

11: end if
12: Update the neural network parameters by the Adam method with learning rate ηt (other hyper-parameters in the Adam method are set as the 

default values).
13: end for

3.5. Implementation of the multiplier term

Intuitively, the dual variable should be able to give the correct preference for uθ . Specifically, when ‖uθ‖ > 1, g should be 
positive, and when ‖uθ‖ < 1, g should be negative. In the implementation, this is enforced in each step of the (stochastic) 
gradient update. More specifically, in step t we estimate ‖uθ‖ −1 using a batch of data with size B̃ , and denote the estimator 
as εt . If εtεt−1 < 0, then we reset the multiplier g as sign(εt)gdefault, where gdefault > 0 is a hyperparameter. In this way, 
g will be positive when ‖uθ‖ − 1 changes from negative to positive, and negative when ‖uθ‖ − 1 changes from positive to 
negative, which leads ‖uθ‖ towards the correct update direction.

We also set the estimation of the gradient of g to be c/2 if it is larger than c/2. This is because c
2 E(uθ (X)2 − 1) is 

lower bounded by −c/2 but it has no upper bound. In practice setting a symmetric upper bound usually gives a better 
performance. We summarize the implementation details in Algorithm 2, where we adopt the neural network architecture 
in Fig. 2.

4. Numerical experiments

4.1. Elliptic PDEs

In this section, we verify the effectiveness of Algorithm 1. We measure the error of the numerical solutions by E0 =
‖uθ − u∗‖L2

ρ(�)/‖u∗‖L2
ρ(�) , where u∗ is the ground truth. In the numerical examples, E0 is estimated on a test set of size 

1 × 104.
9
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Fig. 3. The convergence of the error E0 and the comparison of the NN solution with the true solution. (a): The error ‖uθ − u∗‖L2
ρ (�)/‖u∗‖L2

ρ (�) every 
50 epochs during the training process. (b): Comparison of the NN solution with the true solution on a randomly chosen coordinate axis. Blue: The true 
solution; Red: The NN solution. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

In the first numerical example, we set a(x) = e−2‖x‖2
and f (x) = −4d in (1), and assume the Dirichlet boundary condition 

(2) with r(x) = e2 on the boundary of the domain � = B(0, 1), the unit ball in Rd . In other words, we consider the following 
problem:

�u + 4x · ∇u = −4de2‖x‖2
, x ∈ B(0,1),

u = e2, x ∈ ∂ B(0,1).

In this problem, the unique solution is u∗(x) = e2‖x‖2
, which can be obtained by direct calculations. Numerical experiment 

is implemented for the 10-dimensional case. We use 4.0 × 106 samples to train the model, which is a three-layer fully-
connected network with 120 neurons in each layer. We set δ = 0.0001, c = 0.8, and train the model for 3000 epochs using 
the Adam algorithm in [12] with learning rate 0.001 and 70000 samples in each batch. The final error is E0 = 0.060, which 
is computed on a test set with size 1.0 × 105. The result is visualized in Fig. 3. In Fig. 3(a), the error is recorded every 50
epochs, from which we can see that the error converges through the training process. Since the true solution is a radial 
function, we can visualize the difference between the NN solution and the true solution on a randomly chosen coordinate 
axis. In Fig. 3(b), it can be seen that the NN solution shows good accordance with the ground truth on the positive x4 axis. 
From this numerical test, we have verified that the proposed method is effective when the right-hand-side term is non-zero, 
which is a case not covered in [15].

In the second numerical example, we consider a problem with the periodic boundary condition (3). The parameters are

a(x) = exp

(
−

d∑
i=1

cos(2πxi)

)
,

f (x) = 2π2 exp

(
−

d∑
i=1

cos(2πxi)

)(
d∑

i=1

(2 sin(2πxi) − sin(4πxi))

)
.

(43)

By direct calculation, we see that the exact solution is

u(x) =
d∑

i=1

sin(2πxi). (44)

Numerical experiment is carried out for d = 10. The neural network structure is described in Fig. 2, in which we take m = 1
and set the width of the network as 12. We take δ = 0.0001, B̃ = 2 × 105. In the implementation of the Adam algorithm, 
the batchsize is set as B = 70000 and the learning rate is set as η = 0.001. A training set with 1.0 × 107 samples to 
train the model. After a training process of 500 epochs, the final error ‖uθ − u∗‖L2

ρ(�)/‖u∗‖L2
ρ(�) is 0.024. The evolution of 

the precision of the approximate solution is demonstrated in Fig. 4(a), which shows a rapid convergence of the numerical 
solution. In order to compare the numerical solution with the ground truth, we plot the two functions along a randomly 
chosen axis in Fig. 4(b), from which we can see that the NN solution shows good accordance with the true solution.

4.2. Eigenvalue problem - Schrödinger operator

In this section, we consider the eigenvalue problem associated with the Schrödinger operator

L = −� + V , (45)
10



Fig. 4. The convergence of the error E0 and the comparison of the NN solution with the true solution. (a): The error ‖uθ − u∗‖L2
ρ (�)/‖u∗‖L2

ρ (�) every 
50 epochs during the training process. (b): Comparison of the NN solution with the true solution on a randomly chosen coordinate axis. Blue: The true 
solution; Red: The NN solution.

and the periodic boundary condition (3). Here V is a potential function

V (x) = 4π2
d∑

i=1

ci cos (2πxi) , (46)

where ci ∈ [0, 0.2] for 1 ≤ i ≤ d. We adopt the same parameters as in [8]. The reference solution u∗ and the corresponding 
eigenvalue λ∗ are obtained by the spectral method described in [8], and we measure the error of the numerical solutions 
by E0 = ‖uθ − u∗‖L2

ρ(�)/‖u∗‖L2
ρ(�) and the error of the eigenvalue by E1 = |λ − λ∗|/|λ∗|, where λ is obtained via:

1

‖u∗‖2
L2
ρ(�)

⎛
⎝2

δ

∫
�

uθ (x)(uθ (x) −E(uθ (x + Wδ)))dx +
∫
�

V (x)|uθ (x)|2dx

⎞
⎠ ,

if scheme I is used, and via

1

‖u∗‖2
L2
ρ(�)

⎛
⎝1

δ

∫
�

|uθ (x) −E(uθ (x + Wδ))|2dx +
∫
�

V (x)|uθ (x)|2dx

⎞
⎠ .

Numerical tests are performed when d = 5, 10. In the numerical results, E0 is estimated on a test set of size 1 × 104, and 
E1 is estimated by averaging 10 estimations on test sets of size 1 × 105. The level m of trigonometric bases used is set as 5.

4.2.1. Scheme I
When adopting the semigroup formulation (31) to solve the 5-dimensional case, 1.2 × 107 samples are used to train 

the neural network with width 300, with 1.0 × 105 samples used in each iteration. Throughout the training process, the 
learning rates η̃t = ηt = 0.0003. The hyper-parameters gdefault, c and δ are set to be 1, 70 and 0.0001, respectively. After 
400 iterations of training, the final errors of the eigenfunction and eigenvalue are E0 = 0.036 and E1 = 0.11, respectively. 
The decay of errors is presented in Fig. 5(a), from which we can see that the numerical solutions converge to the reference 
solution.

For the 10-dimensional problem, we also use 1.2 × 107 samples. A neural network with width 600 is trained learning 
rates η̃t = ηt = 0.0005. In each iteration, 7.0 × 104 samples are randomly chosen from the training set. We set the hyper-
parameters gdefault, c and δ as 4, 40 and 0.0001, respectively. After 400 iterations, the final errors of the eigenfunction and 
eigenvalue are E0 = 0.058 and E1 = 0.07, respectively. The convergence of the numerical solutions to the reference solution 
is shown in Fig. 6(a). In both 5d and 10d problems, the constraint ‖uθ ‖ = 1 is well-enforced at the end of the training 
process, as shown in Fig. 5(b) and Fig. 6(b).

Since it is difficult to visualize functions in high dimensions, we compare the probability density function of uθ (Z) and 
u(Z), where Z is a uniform random variable on �. The probability density function is obtained by performing kernel density 
estimation on a sample set of size 10000. The comparison of the probability density functions is given in Fig. 7, from which 
we can conclude that the numerical solutions obtained are in good accordance with the ground truths.

4.2.2. Scheme II
When adopting the semigroup formulation (39), 4.0 × 106 samples are used to train the neural network with width 300

for the 5-dimensional case and 600 for the 10-dimensional case, and 2000 iterations of training are implemented. In each 
H. Li and L. Ying Journal of Computational Physics 453 (2022) 110939
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Fig. 5. The convergence of the error of the eigenfunction and eigenvalue and the residue of the constraint ‖uθ‖2 − 1 in the training process of the 5-
dimensional problem with scheme I. Blue curve in (a): Convergence of the error of the approximate eigenvalue; Orange curve in (a): Convergence of the 
error of the NN eigenfunction.

Fig. 6. The convergence of the error of the eigenfunction and eigenvalue and the residue of the constraint ‖uθ‖2 − 1 in the training process of the 10-
dimensional problem with scheme I. Blue curve in (a): Convergence of the error of the approximate eigenvalue; Orange curve in (a): Convergence of the 
error of the NN eigenfunction.

Fig. 7. Comparisons between the NN represented solutions and the ground truths using semigroup scheme I. (a): The 5-dimensional case. (b): The 10-
dimensional case.
12
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Fig. 8. The convergence of the error of the eigenfunction and eigenvalue and the residue of the constraint ‖uθ‖2 − 1 in the training process of the 5-
dimensional problem with scheme II. Blue curve in (a): Convergence of the error of the approximate eigenvalue; Orange curve in (a): Convergence of the 
error of the NN eigenfunction.

Fig. 9. The convergence of the error of the eigenfunction and eigenvalue and the residue of the constraint ‖uθ‖2 − 1 in the training process of the 10-
dimensional problem with scheme II. Blue curve in (a): Convergence of the error of the approximate eigenvalue; Orange curve in (a): Convergence of the 
error of the NN eigenfunction.

iteration, 1.0 × 104 samples are chosen randomly from the training set. In this problem, the hyper-parameter δ and c are 
set to be 0.001 and 10 respectively, and gdefault is set to be 4 for the 5-dimensional case and 1 for the 10-dimensional case. 
The learning rate for the dual variable η̃t is set as 0.1 while the learning rate for the primal variable ηt is set as 0.0008 for 
the first half of the training process and 0.0003 for the second half of the training process.

For the 5-dimensional case and the 10-dimensional case, the final errors of the eigenfunction are 0.0086 and 0.013, 
respectively, and the final errors of the eigenvalue are 0.052 and 0.035, respectively. The training processes are depicted 
in Fig. 8 and Fig. 9, respectively. As illustrated in Fig. 8(a) and Fig. 9(a), the numerical solutions of the eigenfunction and 
eigenvalue converge to the corresponding reference solutions. Compared with the training process using Scheme I, the final 
errors are much lower and the size of the training set is much smaller, although it takes more iterations to reach the final 
precision. This can also be verified by comparing Fig. 7 and Fig. 10, since the estimated probability density functions for the 
numerical solutions are closer to the probability density functions for the reference solutions in Fig. 10. We check that the 
constraint ‖uθ‖ = 1 is well-enforced at the end of the training process in Fig. 8(b) and Fig. 9(b).

Comparison with the method used in [8]. In this part, we briefly compare our numerical results obtained by scheme II 
with those in [8]. The linear Schrödinger problem in their paper is only different with the problem here by a 2π factor. 
Specifically, they consider the operator

L = −� + V ,

and the periodic boundary condition (3), with the domain replaced by [0, 2π ]d , and V replaced by
13
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Fig. 10. Comparisons between the NN represented solutions and the ground truths using Scheme II. (a): The 5-dimensional case. (b): The 10-dimensional 
case.

V (x) =
d∑

i=1

ci cos (xi) ,

where the coefficients {ci}d
i=1 are the same with the coefficients used here. The L2 error reported in [8] is calculated after 

normalizing the solutions with 
∫
�

u2(x)dx = |�|, which is also satisfied by the solutions here since the volume of [0, 1]d

is 1 and we assume ‖u∗‖L2(ρ) = 1. Since the L2 error reported in their paper is invariant under scaling, it is reasonable to 
compare the numerical results obtained there with the results in this paper. In the following, we divide the errors of the 
eigenvalue reported in their paper by the true eigenvalues in order to be consistent with the measurement used here.

We test the method in [8] using the source code provided by the authors of [8] and the hyperparameters in [8] on the 
same machine as we used to test our methods, which is a machine with 4 N1 virtual CPUs on the Google Cloud platform 
with altogether 26 GB memory and a Tesla K80 GPU. In both the 5-dimensional and 10-dimensional cases, the model 
is trained for 80000 iterations with 1024 samples used in each iteration. For the 5-dimensional case, the final errors for 
the eigenvalue and eigenfunction are 0.016 and 0.0098, respectively. For the 10-dimensional case, the final errors for the 
eigenvalue and eigenfunction are 0.017 and 0.012, respectively. It can be seen that the precision of the eigenfunction is 
comparable with the precision of eigenfunction in scheme II, while the errors of the eigenvalue are smaller but of the same 
magnitude as our results.

On the other hand, due to the simplicity of our method, our method enjoys a shorter computation time and requires 
fewer samples. For the method in [8], the computation time used in the 5-dimensional and 10-dimensional problems are 
1.5 × 104 seconds (4.2 hours) and 4.3 × 104 seconds (12 hours), respectively, and altogether 8.0 × 107 samples are used, 
while for scheme II proposed in this paper the computation time used are 3.0 × 102 seconds (5.0 minutes) and 5.7 × 102

seconds (9.5 minutes), and 4.0 × 106 samples are used. If we consider the numerical solutions obtained by the first 11000
iterations of the method in [8], the errors of the eigenvalue and eigenfunction are 0.087 and 0.035 for the 5d case and 
0.097 and 0.059 for the 10d case, which is larger than those in our method, but the time used is still 2.1 × 103 seconds (35
minutes) and 5.9 × 103 seconds (98 minutes) for the 5d and 10d case, respectively, and the number of samples used is still 
1.1 × 107, which is much larger than our method. Finally, we mention that other problems such as the problem of finding 
the second eigenpair are addressed in [8], which is not covered in our paper.

5. Conclusion

In this paper, we present a semigroup method solving high dimensional PDE problems and eigenvalue problems effec-
tively. We have shown numerically the efficiency of the proposed method in problems that have non-zero right-hand-side 
term with Dirichlet boundary conditions and periodic boundary conditions. In comparison with popular deep PDE solvers 
such as the Deep Ritz method [5] and PINN method [16], where penalty function is used to enforce the Dirichlet bound-
ary condition and thus changes the solution, the proposed semigroup method addresses the Dirichlet boundary condition 
without penalty functions, and even when penalty functions are used, the true solution remains the same. Two semigroup 
schemes are proposed for the eigenvalue problems. With a scalar Lagrange multiplier, these schemes are able to handle the 
constraint in the eigenvalue problem and obtain accurate solutions. In comparison with established solvers such as the BSDE 
method [8], the proposed method uses much less computation time to achieve the same precision for certain problem such 
as the linear Schrödinger problem.

The numerical schemes adopted here are generally first-order schemes. For future work, higher order schemes can be 
applied to improve the precision. Moreover, importance sampling techniques can be integrated with the proposed method 
14
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to facilitate the generation of a training set with high quality. For the PDE problems, we have extended the method in [15]
to the case with non-zero right-hand-side term and more general boundary conditions. We point out that it is possible 
to further generalize the semigroup method to other types of elliptic PDEs. One possible way to proceed is to replace the 
second-order derivatives using the semigroup operator in, for example, the PINN method ([16]). In this way, it is possible 
to avoid the calculation of mixed third-order derivatives needed there and to integrate the boundary conditions naturally 
through the semigroup operator instead of enforcing it solely through a penalty function. We can possibly accelerate the 
training of the model and alleviate the difficulty in tuning the penalty coefficient by this replacement.
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