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Abstract. An efficient parallel algorithm is presented for computing selected components of A−1

where A is a structured symmetric sparse matrix. Calculations of this type are useful for several
applications, including electronic structure analysis of materials in which the diagonal elements of
the Green’s functions are needed. The algorithm proposed here is a direct method based on a block
LDLT factorization. The selected elements of A−1 we compute lie in the nonzero positions of L+LT .
We use the elimination tree associated with the block LDLT factorization to organize the parallel
algorithm, and reduce the synchronization overhead by passing the data level by level along this tree
using the technique of local buffers and relative indices. We demonstrate the efficiency of our parallel
implementation by applying it to a discretized two dimensional Hamiltonian matrix. We analyze the
performance of the parallel algorithm by examining its load balance and communication overhead,
and show that our parallel implementation exhibits an excellent weak scaling on a large-scale high
performance distributed-memory parallel machine.
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1. Introduction. In some scientific applications, we need to calculate a subset
of entries of the inverse of a sparse symmetric matrix. One important example is the
pole expansion algorithm [27, 29] for electronic structure analysis where the diagonal
and sometimes subdiagonals of the discrete Green’s function or resolvent matrices are
needed in order to compute the electron density. Other examples in which particular
entries of the Green’s functions are needed can also be found in the perturbation
analysis of impurities by solving Dyson’s equation in solid state physics [15], or the
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calculation of retarded and less-than Green’s function in electronic transport [10]. We
will call this set of problems selected inversion of a matrix. This terminology is not to
be confused with the concept of selective inversion used in [38, 39, 45] for improving
the performance of the parallel triangular substitution step of solving a large-scale
sparse symmetric linear system.

From a computational viewpoint, it is natural to ask whether one can develop
algorithms for selected inversion that are faster than inverting the whole matrix.
This is possible at least in some cases. Consider, for example, the finite difference
discretization of a Hamiltonian operator of the form

(1.1) H = −1

2
Δ + V (r).

Here Δ is the Laplacian operator and V is the external or effective potential. The
resulting matrix has certain structure, as in lattice models in statistical or quantum
mechanics with a local Hamiltonian. For such matrices, a fast but sequential algorithm
has been proposed to extract the diagonal or subdiagonal elements of its inverse
matrix [28]. The algorithm is based on the LDLT factorization of H . To extract
the diagonal of H−1, the algorithm computes (H−1)i,j for all i and j such that
Li,j �= 0. The complexity of this algorithm is O(n1.5) for two dimensional (2D)
problems and O(n2) for three dimensional (3D) problems, with n being the dimension
of H . Such complexity is much lower than the O(n3) complexity associated with the
direct inversion of the full matrix.

The present paper follows the concept in [28], and focuses on the parallel im-
plementation of a block LDLT factorization based selected inversion algorithm for a
certain class of structured matrices. We point out that the use of relative indices and
passing a local buffer array level by level along a branch of the parallel task tree is
key to reducing communication cost and achieving excellent weak scaling.

This paper is organized as follows. In section 2, we introduce briefly the main
concept of selected inversion based on LDLT factorization. The algorithmic and im-
plementation details of a parallel procedure that we have developed for selected inver-
sion are presented in section 3. The performance of such a procedure is demonstrated
and analyzed in section 4. In particular, we show that our parallel implementation
can be used to solve problems defined on a 65,535× 65,535 grid with more than four
billion degrees of freedom on 4,096 processors in less than 25 minutes. We present an
application of the algorithm to an electronic structure calculation for a quantum dot
and compare its performance with a standard approach implemented in the software
package Octopus [8].

Standard linear algebra notation is used for vectors and matrices throughout the
paper. We use Ai,j to denote the (i, j)th element of A. When describing the algo-
rithms and their implementations, we often use letters in a typewriter font such as A,
L, and D to denote matrices stored in an appropriate format using an appropriate data
structure. The letters I, J, and K are used to represent a column or row index set that
contains a number of integers as its members. Occasionally, we use a MATLAB [34]
script to describe a simple algorithm. In particular, we use the MATLAB-style no-
tation A(i:j,k:l) to denote a submatrix of A that consists of rows i through j and
columns k through l.

2. Selected inversion based on LDLT factorization: The basic idea.
There are two main steps in the LDLT factorization-based selected inversion algo-
rithm. In the first step, we simply compute a sparse block LDLT factorization of A.
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We assume here that A is nonsingular and all pivots produced in the LDLT factor-
ization are sufficiently large so that no row or column permutation is needed during
the factorization. In the second step, L and D are used to retrieve the selected el-
ements of A−1 with a computational complexity comparable to that of the sparse
block LDLT factorization. No additional storage is required at this step. The main
idea used here is very general. It dates back to [16, 44] and is related to other recent
work [7, 28, 25, 36, 43, 2]. To set the notation, it will be helpful to first review the
major operations involved including the LDLT factorization. We will use a dense
matrix for illustration first and then discuss the case for sparse matrices.

2.1. An algorithm for computing the inverse of a dense matrix. Let

(2.1) A =

(
α bT

b Â

)
,

with α �= 0. The first step of an LDLT factorization produces a decomposition of A
that can be expressed by

A =

(
1
� I

)(
α

Â− bbT /α

)(
1 �T

I

)
,

where � = b/α and S = Â − bbT /α is known as a Schur complement. The same
type of decomposition can be applied recursively to the Schur complement S until
its dimension becomes 1. The product of lower triangular matrices produced from
the recursive procedure yields the final L factor. The (1, 1) entry of each Schur
complement together with α become the diagonal entries of the D matrix.

The key observation made in [25] and [28] is that A−1 can be expressed by

(2.2) A−1 =

(
α−1 + �TS−1� −�TS−1

−S−1� S−1

)
.

This expression suggests that once α and � are known, the task of computing A−1

can be reduced to that of computing S−1.
Because a sequence of Schur complements are produced recursively in the LDLT

factorization of A, the computation of A−1 can be organized in a recursive fashion
also. Clearly, the reciprocal of the last entry ofD is the (n, n)th entry of A−1. Starting
from this entry, which is also the 1× 1 Schur complement produced in the (n− 1)th
step of the LDLT factorization procedure, we can construct the inverse of the 2× 2
Schur complement produced at the (n − 2)th step of the factorization procedure by
using the recipe given by (2.2). This 2 × 2 matrix is the trailing 2 × 2 block of A−1.
As we proceed from the lower right corner of L and D towards their upper left corner,
more and more elements of A−1 are recovered. The complete procedure can be easily
described by a MATLAB script shown in Algorithm 1. To simplify our discussion, we
assume here that all pivots produced in the LDLT factorization are sufficiently large
so that no row or column permutation (pivoting) is needed during the factorization,
and D can always be kept as a diagonal matrix. For general symmetric matrices, a
block LDLT factorization that allows 2× 2 block pivots [6, 5] or partial pivoting [19]
may be used to achieve numerical stability in the factorization. As long as such a
factorization is available, the algorithm and implementation discussed in this paper
can be used to compute selected elements of A−1 that lie in the nonzero positions
of L+ LT .
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Algorithm 1. A MATLAB script for computing the inverse of a dense matrix A
given its LDLT factorization.

Ainv(n,n) = 1/D(n,n); for j = n-1:-1:1

Ainv(j+1:n,j) = -Ainv(j+1:n,j+1:n)*L(j+1:n,j);

Ainv(j,j+1:n) = Ainv(j+1:n,j)’;

Ainv(j,j) = 1/D(j,j) - L(j+1:n,j)’*Ainv(j+1:n,j);

end;

For clarity, we use a separate array Ainv in Algorithm 1 to store the com-
puted A−1. In practice, A−1 can be computed in place. That is, we can overwrite
the array used to store L with the lower triangular part of A−1 incrementally.

2.2. Selected inversion for sparse matrices. It is not difficult to observe
that the complexity of Algorithm 1 is O(n3) because a matrix vector multiplication
involving a j × j dense matrix is performed at the jth iteration of this procedure,
and n − 1 iterations are required to fully recover A−1. Therefore, when A is dense,
this procedure does not offer any advantage over the standard way of computing A−1,
which simply solves the matrix equation AX = I, where I is the n×n identity matrix.
Furthermore, all elements of A−1 are needed and computed. No computation cost
can be saved if we just want to extract selected elements (for example, the diagonal
elements) of A−1.

However, when A is sparse, a tremendous amount of saving can be achieved if we
are interested only in the diagonal of A−1. If the vector � in (2.2) is sparse, computing
�TS−1� does not require all elements of S−1 to be obtained in advance. Only those
elements that appear in the rows and columns that correspond to the nonzero rows
of � are required.

Therefore, to compute selected elements A−1, and in particular the diagonal el-
ements of A−1, we can simply modify the procedure shown in Algorithm 1 so that
at each iteration we compute only selected elements of A−1 that will be needed by
subsequent iterations of this procedure (see [16], where the same property is obtained
using equations in [44]). It turns out that the elements that need to be computed are
completely determined by the nonzero structure of the lower triangular factor L. To
be more specific, at the jth step of the selected inversion process, we compute A−1

i,j

for all i such that Li,j �= 0.
To see why this type of selected inversion is sufficient, we need only examine the

nonzero structure of the kth column of L for all k < j since the nonzero structure
of these columns tells us which rows and columns of the trailing subblock of A−1 are
needed to complete the calculation of the (k, k)th entry of A−1. It is well known
in the sparse matrix factorization literature [16, 14, 18] that the nonzero structures
associated with different columns of L have a dependency relationship that can be
characterized by the notion of an elimination tree [32]. In such a tree, each node or
vertex of the tree corresponds to a column (or row) of A. Assuming A can be factored
as A = LDLT , a node p is the parent of a node j in the elimination tree if and only if

p = min{i > j|Li,j �= 0}.

If we assume the jth diagonal element of D is not in a 2× 2 block, then it follows
from (2.2) that the selected elements of A−1 required to compute the (j, j)th element
of A−1 must belong to the set {(A)−1

i,k |for i and k such that Li,j �= 0 and Lk,j �= 0}.
It is well known in the elimination tree theory (see, for example, Theorem 4.4 in [11])
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that Li,j �= 0 implies that imust be an ancestor of j in the elimination tree. Therefore,
the selected elements required to compute the (j, j)th element of A−1 must belong
to rows and columns of A−1 that are among the ancestors of j. These elements
are precisely those that have a corresponding nonzero entry in L + LT . We remark
that although we are motivated by calculating the diagonal and subdiagonal elements
of A−1, the selected inversion algorithm calculates A−1 restricted to the nonzero
pattern of L+LT . This sparse pattern is certainly larger than the set of diagonal and
subdiagonal patterns of A−1, but this is necessary in order to maintain the desired
accuracy.

2.3. A block algorithm. The selected inversion procedure described in Algo-
rithm 1 and its sparse version can be modified to allow a block of rows and columns to
be modified simultaneously. A block algorithm can be described in terms of a block
LDLT factorization of A:

A =

(
A11 BT

21

B21 A22

)
=

(
I
L21 I

)(
A11

A22 −B21A
−1
11 B

T
21

)(
I LT

21

I

)
,

(2.3)

where L21 = B21A
−1
11 and S = A22 − B21A

−1
11 B

T
21 is the Schur complement. In

particular, a block version of (2.2) can be expressed by

A−1 =

(
A−1

11 + LT
21S

−1L21 −LT
21S

−1

−S−1L21 S−1

)
.

There are at least three advantages of a block algorithm:
1. It allows us to use level 3 BLAS (basic linear algebra subroutine) to develop

an efficient implementation by exploiting memory hierarchy in modern mi-
croprocessors.

2. It reduces indirect addressing overhead in sparse matrix computation.
3. It allows 2×2 block pivots that can be used to overcome numerical instabilities

that may arise when A is indefinite.
If A is sparse, blocks can be defined in terms of what are called supernodes [13].

A supernode is a set of nodes whose corresponding columns (of its L factor) share
the same nonzero structure below the diagonal. The definition of a supernode can be
relaxed to include nodes whose corresponding columns in L are nearly identical [3].

3. Algorithmic and implementation details. In this section, we present the
algorithmic and implementation details of a parallel procedure we have developed for
selected inversion. The elements of A−1 to be calculated in the selected inversion algo-
rithm coincide with the positions of the nonzero entries of L+LT . No element of A−1

outside such pattern is calculated or stored. We assume a block LDLT factorization
is available, and make use of the elimination tree and other structure information that
can be generated during a preprocessing step that involves both matrix reordering and
symbolic factorization. For illustration purposes, we use a 2D Laplacian with nearest
neighbor interaction, where the nearest neighbor is defined in terms of a standard
five-point stencil, as an example in this section. However, the techniques we describe
here are applicable to other higher order stencils for both 2D and 3D systems and to
irregular problems obtained from, e.g., a finite element discretization. Although we
have developed an efficient parallel implementation of a supernodal LDLT factoriza-
tion for 2D problems, we will focus our discussion on the selected inversion procedure
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only. We refer readers to [30] for more detailed information about our parallel imple-
mentation of a block LDLT factorization.

We will introduce some standard notation in section 3.1 and describe a sequen-
tial block selected inversion algorithm. Our basic strategy for parallelization of the
block selected inversion procedure is to divide the computational work among differ-
ent branches of the block elimination tree, which also serves as a parallel task tree.
We will describe how this division of work is defined and how data is distributed
among different processors in section 3.2.1. The main parallel selected inversion algo-
rithm is presented in section 3.2.2. One of the key factors that affect the scalability of
parallel computation is interprocessor synchronization. We will describe where syn-
chronization is needed and discuss a technique for reducing the synchronization cost
in section 3.2.3.

3.1. The sequential algorithm. Before we present the sequential algorithms
for the selected inversion process, we need to introduce some notation and terminolo-
gies commonly used in the sparse matrix literature. We use the technique of nested
dissection [17] to reorder and partition the sparse matrix A. For 2D problems defined
on a rectangular grid, the nested dissection corresponds to a recursive partitioning
of the 2D grid into a number of subdomains with a predefined minimal size. In the
example shown in Figure 3.1(a), this minimal size is 3 × 3. The reordered matrix
has a sparsity structure similar to that shown in Figure 3.1(b). Each subdomain is
separated from other subdomains by separators that are defined in a hierarchical or re-
cursive fashion. The largest separator is defined to be a set of grid points that divides
the entire 2D grid into two subgrids of approximately equal sizes. Smaller separators
can be constructed recursively within each subgrid. These separators are represented
as rectangular oval boxes in Figure 3.1(a) and are labelled in the post order in Fig-
ure 3.2(a). The separators and minimal subdomains can be further organized in a
tree structure shown in Figure 3.2(b). This tree is sometimes called a separator tree,
which is also the elimination tree associated with a block LDLT factorization of the
reordered and partitioned matrix A. Each leaf node of the tree corresponds to a mini-
mal subdomain. Other nodes of the tree correspond to separators defined at different
levels of the partition. For general symmetric sparse matrices, separators and leaf
nodes can be obtained from the analysis of the adjacency graph associated with the
nonzero structure of A [23, 12, 9].

We will denote a set of row or column indices associated with each node in the
separator tree by an uppercase typewriter typeface letter such as I. Each of these
nodes corresponds to a diagonal block in the block diagonal matrix D produced from
the block LDLT factorization. A subset of columns in I may have a similar nonzero
structure below the diagonal block. These columns can be grouped together to form
what is known as a supernode or a relaxed supernode. (See [13] for a more precise
definition of a supernode, and [3] for the definition of a relaxed supernode.) Sparse
direct methods often take advantage of the presence of supernodes or relaxed supern-
odes in the reordered matrix A to reduce the amount of indirect addressing. Because
the nonzero matrix element within a supernode can be stored as a dense matrix, we
can take full advantage of BLAS3 when working with supernodes.

Once the separator tree and the block LDLT factorization of A become available,
we can use the pseudocode shown in Algorithm 2 to perform block selected inversion.
As we can see from this pseudocode, Ainv(J,K) is calculated if and only if L(J,K)
is a nonzero block. Such a calculation makes use of previously calculated blocks
Ainv(J,I), where both J and I are ancestors of the node K.
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(a) Nested dissection partition
and separators.

(b) The reordered and partitioned matrix
A.

Fig. 3.1. The nested dissection of a 15 × 15 grid and the elimination tree associated with a
block LDLT factorization of the 2D Laplacian defined on that grid.
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(b) The separator (or elimination) tree in
postorder.

Fig. 3.2. The nested dissection ordering of the separators and subdomains and the associated
separator tree.

The pseudocode in Algorithm 2 treats the matrix block L(J,I) as if it were a
dense matrix. As we can see from Figure 3.1(b), this is clearly not the case. In order
to carry out the matrix-matrix multiplication efficiently, we must take advantage
of these sparsity structures. In particular, we should not store the zero rows and
columns in L(I,K). Moreover, during the calculation of Ainv(J,K), selected rows and
columns of Ainv(J,I) must be extracted before the submatrix associated with these
rows and columns is multiplied with the corresponding nonzero rows and columns of
L(I,K). We place the extracted rows and columns of Ainv(J,I) in a Buffer array
in Algorithm 3. The Buffer array is then multiplied with the corresponding nonzero
columns of L(I,K). As a result, the product of the nonzero rows and columns of these
matrices will have a smaller dimension. We will call the multiplication of the nonzero
rows and columns of Buffer and L(I,K) a restricted matrix-matrix multiplication,
and denote it by ⊗. The row and column indices associated with the needed rows and
columns of Ainv(J,I) are called absolute indices. These indices can be predetermined
by a symbolic analysis procedure described in [30]. This technique is similar to those
used in [26] and [41].
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Algorithm 2. A selected inversion algorithm for a sparse symmetric matrix A given
its block LDLT factorization A = LDLT . The algorithm returns Ainv(I,J) for I

and J such that L(I,J) �= 0.

for K = {separator tree nodes arranged in reverse post order} do
for J ∈ {ancestors of K} do

Ainv(J,K) ← 0;

for I ∈ {ancestors of K} do
Ainv(J, K)← Ainv(J, K)− Ainv(J, I) ∗ L(I, K);

end for
Ainv(K, J)← Ainv(J, K)T ;

end for
Ainv(K, K) ← D(K,K)−1;

for J ∈ {ancestors of K} do
Ainv(K,K) ← Ainv(K,K)-L(J,K)T * Ainv(J,K);

end for
end for

Algorithm 3. Selected inversion of A with restricted matrix-matrix multiplication
given its block LDLT factorization.

subroutine SeqSelInverse

for K = {separator tree nodes arranged in reverse post order} do
for J ∈ {ancestors of K} do

Ainv(J,K) ← 0;

for I ∈ {ancestors of K} do
Retrieve absolute indices [JA,IA] of nonzero rows and columns of Ainv(J,I);
Buffer ← Ainv(JA, IA);
Ainv(J, K)← Ainv(J, K)− Buffer⊗ L(I, K);

end for
Ainv(K,J) ← transpose(Ainv(J,K));

end for
Ainv(K,K) ← D(K, K)−1;
for J ∈ {ancestors of K} do

Ainv(K,K) ← Ainv(K,K) - L(J,K)T⊗ Ainv(J,K);
end for

end for
return Ainv;
end subroutine

3.2. Parallelization. The sequential algorithm described above is very efficient
for problems that can be stored on a single processor. For example, we have used the
algorithm to compute the diagonal of a discretized Kohn–Sham Hamiltonian defined
on a 2,047×2,047 grid. The entire computation, which involves more than four million
degrees, took less than two minutes on an AMD Opteron processor.

For larger problems that we would like to solve in electronic structure calculation,
the limited amount of memory on a single processor makes it difficult to store the
L and D factors in-core. Furthermore, because the complexity of the computation
is O(n3/2) in 2D [28], the CPU time required to complete a calculation on a single
processor will eventually become excessively long.

Thus, it is desirable to modify the sequential algorithm so that the selected in-
version process can be performed in parallel on multiple processors. The parallel
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algorithm we describe below focuses on distributed memory machines that do not
share a common pool of memory.

3.2.1. Task parallelism and data distribution. The elimination tree associ-
ated with the block LDLT factorization of the reordered A (using nested dissection)
provides natural guidance for parallelizing the factorization calculation. It can thus
be viewed also as a parallel task tree. The same task tree can be used for carrying out
selected inversion.

We divide the computational work among different branches of the tree. A branch
of the tree is defined to be a path from the root to a node K at a given level � as well
as the entire subtree rooted at K. The choice of � depends on the number of processors
available. For a perfectly balanced tree, our parallel algorithm requires the number of
processors p to be a power of two, and � is set to log2(p) + 1. Figure 3.3(a) illustrates
the parallel task tree in the case of four processors.

In terms of tree-node-to-processor mapping, each node at level � or below is as-
signed to a unique processor. Above level �, each node is shared by multiple processors.
The amount of sharing is hierarchical, and depends on the level at which the node
resides. For a perfectly balanced tree, a level-k node is shared by 2�−k processors.
We will use procmap(J) in the following discussion to denote the set of processors
assigned to node J. Each processor is labeled by an integer processor identification
(id) number between 0 and p − 1. This processor id is known to each processor as
mypid. In section 4, we show that this simple parallelization strategy leads to good
load balance for a 2D Hamiltonian defined on a rectangular domain and discretized
with a five-point stencil. For an irregular computational domain or a nonuniform
mesh partitioning strategy, more complicated task-to-processor mapping algorithms
should be used [37] to take into account the structure of the separator tree. It may
also be necessary to perform task scheduling on the fly [1].

The data distribution scheme used for selected inversion is compatible with that
used for LDLT factorization. We should emphasize that the matrix D(J,J) in our
implementation of the block LDLT factorization is not necessarily diagonal. Again,
we do not store the entire submatrix L(I,J), but only the nonzero subblock within
this submatrix as well as the starting location of the nonzero subblock.

In our parallel LDLT factorization computation, the L(I,J) and D(J,J) subma-
trices associated with any J in an aggregated leaf node are stored on a single processor
to which the aggregated leaf node is assigned. These matrices are computed using a
sequential sparse LDLT factorization algorithm on this processor. Furthermore, this
computation is done independently without that of other processors.

When J is an ancestor of an aggregated leaf node, computing L(I,J) and D(J,J)

requires the participation of all processors that are assigned to this node procmap(J).
As a result, it is natural to divide the nonzero subblock in L(I,J) and D(J,J)

into smaller submatrices, and distribute them among all processors that belong to
procmap(J). Figure 3.3(b) illustrates how the columns of the L factor are partitioned
and distributed among 4 processors.

Distributing these smaller submatrices among different processors is also nec-
essary for overcoming the memory limitation imposed by a single processor. For
example, for a 2D Hamiltonian defined on a 16,383 × 16,383 grid, the dimension of
D(J,J) is 16,383 for the root node J. This matrix is completely dense, and hence
contains 16,3832 matrix elements. If each element is stored in double precision, the
total amount of memory required to store D(J,J) alone is roughly 2.1 GB. As we will
see in section 4, the distribution scheme we use in our parallel algorithm leads to only
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(a) Parallel task tree. (b) Columns of the L factor are parti-
tioned and distributed among different
processors.

Fig. 3.3. Task parallelism expressed in terms of a parallel task tree and corresponding matrix
to processor mapping.

a mild increase of memory usage per processor as we increase the problem size and
the number of processors in proportion.

To achieve a good load balanced, we use a 2D block cyclic mapping consistent with
that used by ScaLAPACK to distribute the nonzero blocks of L(I,J) and D(J,J) for
any J that is an ancestor of an aggregated leaf node. In our parallel selected inversion
algorithm, the distributed nonzero blocks of L(I,J) and D(J,J) are overwritten by
the corresponding nonzero blocks of Ainv(I,J) and Ainv(J,J).

3.2.2. Parallel selected inversion algorithm. Once the task-to-processor
mapping and the initial data distribution are established, the parallelization of the se-
lected inversion process can be described in terms of operations performed on different
branches of the parallel task tree simultaneously by different processors. As illustrated
in the subroutine ParSelInverse in Algorithm 4, each processor moves from the root
of the task tree down towards an aggregated leaf node along a particular branch iden-
tified by mybranch. At each node K, it first computes Ainv(J,K) for ancestors J of
K that satisfy L(J, K) �= 0. This calculation is followed by the computation of the
diagonal block Ainv(K,K). These two operations are accomplished by the subroutine
ParExtract shown in the left column of Algorithm 5. All matrix-matrix multiplica-
tions in ParExtract are restricted matrix-matrix multiplications carried out in par-
allel among processors belonging to procmap(K). Communication is required in these
multiplications, and it is performed by the PBLAS subroutine pdgemm. A Buffer

array is used to hold the distributed nonzero rows and columns of Ainv(J,I). We
should note here that a single Buffer array is allocated on each processor to hold
distributed copies of Ainv blocks. The Buffer array is updated by the ParRestrict

subroutine listed in the right column of Algorithm 5 as we move down the parallel task
tree in Algorithm 4. Each update involves restricting the previously computed Ainv

data from procmap(K) to procmap(C) for all children C of K so that the already com-
puted Ainv blocks required at node C are properly redistributed among procmap(C).
Since the desired data in the Buffer array is passed level by level from a parent to its
children, we need only know the relative positions of the Ainv(J,I) subblocks needed
by a child within the Buffer array owned by its parent. These relative positions can
be described by a set of relative indices [IR, JR] precomputed during the symbolic
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analysis phase of the computation. This step is essential for reducing synchronization
overhead and will be discussed further in section 3.2.3. To simplify our description,
we use the notation Buffer(JR,IR) to represent the redistributed Ainv(J,I) block
within the updated Buffer array. After ParRestrict is called, no communication is
required between the processors assigned to different children of K. Finally, when each
processor reaches an aggregated leaf node K, it calls the sequential selected inversion
subroutine SeqSelInverse (Algorithm 3) to compute Ainv(J,I) for all descendants
I of K. No interprocessor communication is required from this point on.

Algorithm 4. Parallel algorithm attained by extracting selected elements of the
inverse of a symmetric matrix A.

subroutine ParSelInverse

K ← root;
while (K is not an aggregated leaf node) do

Update Ainv(K, K) and Ainv(J,K) for all J ∈ {ancestors of K} such that L(J,K) �= 0 by
calling ParExtract(K);

Update Buffer by calling ParRestrict(K);

K ← child(K) along mybranch;
end while
Call SeqSelInverse within the subtree rooted at K to obtain Ainv(J,I) for all subtree
nodes I and J ∈ {ancestors of I} such that L(J,I) �= 0.
return Ainv;
end subroutine

3.2.3. Avoiding synchronization bottleneck. Avoiding synchronization bot-
tleneck is the key to achieving scalable performance in selected inversion. Synchro-
nization is needed in selected inversion as each processor proceeds from the root of the
parallel task tree to an aggregated leaf node because the submatrix L(I,K) required
at a particular node K of the parallel task tree is distributed in a block cyclic fash-
ion among a larger group of processors that are mapped to the ancestors of K. Some
of these processors will not participate in the computation of Ainv(K,K). Therefore,
data redistribution is required to move the required matrix elements from this larger
group of processors to the set of processors in procmap(K).

We use the ScaLAPACK subroutine PDGEMR2D to perform such a data redistribution.
When PDGEMR2D is called to redistribute data from a larger processor group A to a
smaller processor group B that is contained in A, all processors in A are blocked,
meaning that no processor in A can proceed with its own computational work until
the data redistribution initiated by processors inB is completed. This blocking feature
of PDGEMR2D, while necessary for ensuring data redistribution is done in a coherent
fashion, creates a potential synchronization bottleneck.

To be specific, when the selected nonzero rows and columns in Ainv(J,I) (Algo-
rithm 5) are to be extracted from a large number of processors in procmap(I) and
redistributed among a subset of processors in procmap(K), a direct extraction and
redistribution via the use of PDGEMR2D will block all processors in procmap(I). If K is
several levels away from I, a communication bottleneck that involves all processors
in procmap(I) is created. This bottleneck makes the computation of Ainv(J,K) a
sequential process for all descendants K of I that are at the same level.

The strategy we use to overcome this synchronization bottleneck is to place se-
lected nonzero elements of Ainv(J,I) that would be needed for subsequent calcula-
tions in a Buffer array. Here the indices I, J, and K refer to general block row or
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Algorithm 5. Selected inversion calculation subroutine ParExtract and data redis-
tribution subroutine ParRestrict in the parallel implementation of selected inversion
algorithm.

subroutine ParExtract(K)

for J ∈ {ancestors of K} do
Ainv(J,K) ← 0;
for I ∈ {ancestors of K} do
• Retrieve the relative indices
[JR,IR] associated with the
distributed Ainv(J,I) block in
Buffer;
• Ainv(J, K)← Ainv(J, K)−

Buffer(JR,IR) ⊗ L(I,K);
(requires communication within
procmap(K))

end for
Ainv(K,J) ← Ainv(J,K)T ;

end for
Ainv(K,K) ← D(K,K);

for J ∈ {ancestors of K} do
Ainv(K, K)← Ainv(K, K)−
L(J, K)T ⊗ Ainv(J, K);

(requires communication within
procmap(K))

end for
return Ainv(J,K) for all J ∈
{ancestors of K} such that L(J,K) �= 0;
end subroutine

subroutine ParRestrict(K)

for all I ∈ {ancestors of K}∪{K} do
Update Buffer by including Ainv(I,K)

calculated from ParExtract(K);
end for
for all I,J ∈ {ancestors of K}∪{K} do

for C ∈ {children of K} do
if (L(J, C) �= 0 and L(I, C) �= 0), then
• Retrieve the relative indices [JR,IR]
of the Ainv(J,I) block in Buffer;
• Update Buffer by redistributing
Buffer(JR, IR) within procmap(C);
(requires communication within
procmap(K))

end if
end for

end for
return Buffer;
end subroutine

column indices for tree nodes. Selected subblocks of the Buffer array will be passed
further to the descendants as each processor moves down the parallel task tree. The
task of extracting necessary data and placing it in Buffer is performed by the sub-
routine ParRestrict shown in Algorithm 5. At a particular node K, the subroutine
ParRestrict is called simultaneously by all processors in procmap(K), and the Buffer
array is redistributed among processors assigned to each child node C of K so that the
subsequent multiplication of the nonzero blocks of Ainv(J,I) and L(J,C) can be
carried out in parallel (by pdgemm). Because this distributed Buffer array contains
all information that would be needed by descendants of K, no more direct reference to
Ainv(J,I) is required. As a result, no communication is performed between proces-
sors that are assigned to different children of K once ParRestrict is called at node K.

As each processor moves down the parallel task tree within the while loop of
the subroutine ParSelInverse in Algorithm 4, the amount of data extracted from
the Buffer array by the ParRestrict subroutine becomes smaller and smaller. The
newly extracted data are distributed among a smaller number of processors also. Each
call to ParRestrict(K) requires a synchronization of all processors in procmap(K),
hence incurring some synchronization overhead. This overhead becomes smaller as
each processor gets closer to an aggregated leaf node because each ParRestrict call is
then performed within a small group of processors. When an aggregated leaf node is
reached, all selected nonzero rows and columns of Ainv(J,I) required in subsequent
computation are available in the Buffer array allocated on each processor. As a
result, no communication is required among different processors from this point on.
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The use of a Buffer array in our parallel selected inversion algorithm introduces a
modest amount of memory overhead. Our selected inversion algorithm computes
elements of A−1 that lie in the nonzero positions of L + LT , and all matrices are
distributed among all processors. The size of the Buffer array is the maximum size
of distributed Ainv restricted to the longest critical path on the parallel task tree.
This size is generally smaller than the size of distributed L. It does not grow rapidly
as the number of processors increases. This is demonstrated in section 4 where we
show the total amount of memory usage per processor increases logarithmically with
respect to the matrix size in our implementation. We also remark that the size of the
buffer array may increase in the more general scenario where the elimination tree is
far from a binary tree.

4. Performance. In this section, we report the performance of our implementa-
tion of the selected inversion algorithm for a discretized 2D Kohn–Sham Hamiltonian
H using a five-point stencil with a zero shift, which we will refer to as PSelInv in the
following. All elements of H−1 restricted to the nonzero pattern of L+LT are calcu-
lated. The nested dissection procedure stops when the dimension of the subdomain
is 3 × 3. We analyze the performance statistics by examining several aspects of the
implementation that affect the efficiency of the computation and communication. Our
performance analysis is carried out on the Franklin system maintained at the National
Energy Research Scientific Computing (NERSC) Center. Franklin is a distributed-
memory parallel system with 9,660 compute nodes. Each compute node consists of
a 2.3 GHz single socket quad-core AMD Opteron processor (Budapest) with a theo-
retical peak performance of 9.2 gigaflops (Gflops) per second per core. Each compute
node has 8 GB of memory (2 GB per core). Each compute node is connected to a
dedicated SeaStar2 router through Hypertransport with a 3D torus topology that en-
sures high performance, low-latency communication for the message passing interface
(MPI). The floating point calculation is done in 64-bit double precision. We use 32-bit
integers to keep index and size information.

Our implementation of the selected inversion achieves very high single processor
performance which we described in detail in [30]. In particular, when the grid size
reaches 2,047, we are able to reach 67% (6.16/9.2) of the peak performance of a single
Franklin core.

In this section, we will mainly focus on the parallel performance of our algorithm
and implementation. Our objective for developing a parallel selected inversion algo-
rithm is to enable us and other researchers to study the electronic structure of large
quantum mechanical systems when a vast amount of computational resource are avail-
able. Therefore, our parallelization is aimed at achieving a good weak scaling. Weak
scaling refers to a performance model similar to that used by Gustafson [20]. In such
a model, performance is measured by how quickly the wall clock time increases as
both the problem size and the number of processors involved in the computation in-
crease. Because the complexity of the factorization and selected inversion procedures
is O(n3/2), where n = m2 is the matrix dimension and m is the number of grid points
in one dimension, we will simply call m the grid size in the following. We also expect
that, in an ideal scenario, the wall clock time should increase by a factor of two when
the grid size doubles and the number of processor quadruples.

In addition to using MPI Wtime() calls to measure the wall-clock time consumed
by different components of our code, we also use the integrated performance monitor-
ing (IPM) tool [42], the CrayPat performance analysis tool [22], as well as PAPI [35]
to measure various performance characteristics of our implementation.
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4.1. Parallel scalability. In this section, we report the performance of our
implementation when it is executed on multiple processors. Our primary interest is
in the weak scaling of the parallel computation with respect to an increasing problem
size and an increasing number of processors. The strong scaling of our implementation
for a problem of fixed size is described in [30].

In terms of weak scaling, PSelInv performs quite well with up to 4,096 processors
for problems defined on a 65,535× 65,535 grid (with corresponding matrix dimension
around 4.3 billion). In Table 4.1, we report the wall clock time recorded for several
runs on problems defined on square grids of different sizes. To measure weak scaling,
we start with a problem defined on a 1,023 × 1,023 grid, which is solved on a single
processor. When we double the grid size, we increase the number of processors by
a factor of 4. In an ideal scenario in which communication overhead is small, we
should expect to see a factor of two increase in wall clock time every time we double
the grid size and quadruple the number of processors used in the computation. Such
prediction is based on the O(m3) complexity of the computation. In practice, the
presence of communication overhead will lead to a larger amount of increase in total
wall clock time. Hence, if we use t(m,np) to denote the total wall clock time used in
an np-processor calculation for a problem defined on a square grid with grid size m,
we expect the weak scaling ratio defined by τ(m,np) = t(m/2, np/4)/t(m,np), which
we show in the second to the last column of Table 4.1, to be larger than two. However,
as we can see from this table, deviation of τ(m,np) from the ideal ratio of two is quite
modest even when the number of processors used in the computation reaches 4,096.

A closer examination of the performance associated with different components of
our implementation reveals that our parallel symbolic analysis takes a nearly constant
amount of time that is a tiny fraction of the overall wall clock time for all configurations
of problem size and the number of processors. This highly scalable performance
is primarily due to the fact that most of the symbolic analysis performed by each
processor is carried out within an aggregated leaf node that is completely independent
from other leaf nodes.

Table 4.1 shows that the performance of our block selected inversion subroutine
achieves nearly ideal weak scaling up to 4,096 processors. The scaling of flops and wall
clock time can be better viewed in Figure 4.1, where the code performance is compared
to ideal performance using a log-log plot. We should point out that the performance of
our implementation of the parallel LDLT factorization is comparable to that achieved
by state-of-the-art sparse matrix software packages such as MUMPS [1] on a relatively
small 2D problem used in our experiment, even though our factorization includes the

Table 4.1

The scalability of parallel computation used to obtain A−1 for A for increasing system sizes.
The largest grid size is 65,535×65,535, and the corresponding matrix size is approximately 4.3 billion.

Grid size np Symbolic Factorization Inversion Total Weak scaling % comm
time time time time ratio

1,023 1 0.92 7.29 6.77 14.99 – 0.0%
2,047 4 1.77 14.44 13.82 30.04 2.00 2.5%
4,095 16 1.82 34.26 25.39 61.82 2.05 11.4%
8,191 64 1.91 86.35 47.07 135.34 2.18 20.4%
16,383 256 1.98 207.51 89.91 299.41 2.21 28.4%
32,767 1024 2.08 474.94 174.57 651.59 2.17 34.5%
65,535 4096 2.40 1109.09 348.13 1459.62 2.24 40.8%
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Fig. 4.1. Log-log plot of total wall clock time and total Gflops with respect to the number of
processors, compared with ideal scaling. The grid size starts from 1023 × 1023, and is proportional
to the number of processors.

additional computation of using the ScaLAPACK subroutines pdgetri to invert the
diagonal blocks of D. (We have not been able to use MUMPS to factor problems
that are discretized with 8,191× 8,191 or more grid points.) From Table 4.1, we can
also see that the selected inversion time is significantly less than that associated with
factorization when the problem size becomes sufficiently large. This is due primarily
to the fact that selected inversion involves a smaller amount of indirect addressing,
and almost all float point operations involved in block selected inversion are dense
matrix-matrix multiplications.

4.2. Load balance. To have a better understanding of the parallel performance
of our code, let us now examine how well the computational load is balanced among
different processors. Although we try to maintain a good load balance by distributing
the nonzero elements in L(I,J) and D(J,J) as evenly as possible among processors in
procmap(J), such a data distribution strategy alone is not enough to achieve perfect
load balance as we will see below.

One way to measure load balance is to examine the flops performed by each pro-
cessor. We collected such statistics by using PAPI [35]. Figure 4.2 shows the overall
flop counts measured on each processor for a 16-processor run of the selected inversion
for A defined on a 4,095 × 4,095 grid. There is clearly some variation in operation
counts among the 16 processors. Such variation contributes to idle time that shows up
in the communication profile of the run, which we will report in the next subsection.
Such variation can be explained by the different ways the separator tree nodes can be
ordered and the tree’s relationship with the 2D grid topology [30]. We should note
that, in general, a better matrix ordering scheme can improve the load balance of
selected inversion calculation.

4.3. Communication overhead. A comprehensive measurement of the com-
munication cost can be collected using the IPM tool. Table 4.1 shows that the overall
communication cost increases moderately as we double the problem size and quadru-
ple the number of processors at the same time.

As we discussed earlier, the communication cost can be attributed to the following
three factors:

1. Idle wait time. This is the amount of time a processor spends waiting for other
processors to complete their work before proceeding beyond a synchronization
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Fig. 4.2. The number of flops performed on each processor for the selected inversion of A−1

defined on a 4,095 × 4,095 grid.

point.
2. Communication volume. This is the amount of data transferred among dif-

ferent processors.
3. Communication latency. This factor pertains to the startup cost for sending

a single message. The latency cost is proportional to the total number of
messages communicated among different processors.

The communication profile provided by IPM shows that MPI Barrier calls are
the largest contributor to the communication overhead. An example of such a profile
obtained from a 16-processor run on a 4,095× 4,095 grid is shown in Figure 4.3. In
this particular case, MPI Barrier represents more than 50% of all communication
cost. The amount of idle time the code spent in this MPI function is roughly 6.3% of
the overall wall clock time.

The MPI Barrier and BLACS Barrier (which shows up in the performance profile
as MPI Barrier) functions are used in several places in our code. In particular, the
barrier functions are used in the selected inversion process to ensure relative indices are
properly computed by each processor before selected rows and columns of the matrix
block associated with a higher level node are redistributed to its descendants. The idle
wait time spent in these barrier function calls is due to the variation of computational
loads discussed in section 4.2. Using the call graph provided by CrayPat, we examined
the total amount of wall clock time spent in these MPI Barrier calls. For the 16-
processor run (on the 4,095× 4,095 grid), this measured time is roughly 2.6 seconds,
or 56% of all idle time spent in MPI Barrier calls. The rest of the MPI Barrier calls
are made in ScaLAPACK matrix-matrix multiplication routine pdgemm, and dense
matrix factorization and inversion routines in pdgetrf and pdgetri, respectively.

Figure 4.4(a) shows that the percentage of wall clock time spent in MPI Barrier

increases moderately as more processors are used to solve larger problems. Such an
increase is due primarily to the increase in the length of the critical path in both
the elimination tree and in the dense linear algebra calculations performed on each
separator.

In addition to the idle wait time spent in MPI Barrier, communication overhead
is also affected by the volume of data transfered among different processors and how
frequent these transfers occur. It is not difficult to show that the total volume of
communication should be proportional to the number of nonzeros in L and indepen-
dent from the number of processors used. Figure 4.3 shows that the total amount of
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[name] [time] [calls] <%mpi> <%wall>

MPI_Barrier 67.7351 960 52.21 6.32

MPI_Recv 30.4719 55599 23.49 2.84

MPI_Reduce 16.6104 18260 12.80 1.55

MPI_Send 7.86273 25865 6.06 0.73

MPI_Bcast 5.86476 100408 4.52 0.55

MPI_Allreduce 0.842473 320 0.65 0.08

MPI_Isend 0.261145 29734 0.20 0.02

MPI_Testall 0.0563367 33515 0.04 0.01

MPI_Sendrecv 0.0225533 1808 0.02 0.00

MPI_Allgather 0.00237397 16 0.00 0.00

MPI_Comm_rank 8.93647e-05 656 0.00 0.00

MPI_Comm_size 1.33585e-05 32 0.00 0.00

Fig. 4.3. Communication profile for a 16-processor run on a 4,095× 4,095 grid.

(a) The percentage of time spent in
MPI Barrier as a function of np (and
the corresponding grid size m).

(b) The average memory usage per processor
as a function of np and m.

Fig. 4.4. Communication overhead and memory usage profile.

wall clock time spent in MPI data transfer functions MPI Send, MPI Recv, MPI ISend,
MPI Reduce, MPI Bcast, and MPI Allreduce etc. is less than 5% of the overall wall
clock time for a 16-processor run on a 4,095× 4,095 grid. Some of the time spent in
MPI Recv and collective communication functions such as MPI Reduce and MPI Bcast

corresponds to idle wait time that is not accounted for in MPI Barrier. Thus, the
actual amount of time spent in data transfer is much less than 5% of the total wall
clock time. This observation provides an indirect measurement of the relatively low
communication volume produced in our calculation.

In terms of the latency cost, we can see from Figure 4.3 that the total number
of MPI related function calls made by all processors is roughly 258,000 (obtained by
adding up the call numbers in the third column). Therefore, the total number of
messages sent and received per processor is roughly 16,125. The latency for sending
one message on Franklin is roughly 8 microsecond. Hence, the total latency cost
for this particular run is estimated to be roughly 0.13 seconds, a tiny fraction of the
overall wall clock time. Therefore, latency does not contribute much to communication
overhead.
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4.4. Memory consumption. In addition to maintaining good load balance
among different processors, the data-to-processor mapping scheme discussed in sec-
tion 3.2.1 also ensures that the memory usage per core only increases logarithmically
with respect to the matrix dimension in the context of weak scaling. This estimation
is based on the observation that when the grid size is increased by a factor of two, the
dimensions of the extra blocks associated with L and D are proportional to the grid
size, and the total amount of extra memory requirement is proportional to the square
of the grid size. Since the number of processors is increased by a factor of four, the
extra memory requirement stays fixed regardless of the grid size. This logarithmic
dependence is clear from Figure 4.4(b), where the average memory cost per core with
respect to number of processors is shown. The x-axis is plotted in logarithmic scale.

5. Application to electronic structure calculation of 2D rectangular
quantum dots. In this section, we show how the algorithm and implementation we
described in section 3 can be used to speed up electronic structure calculations within
the density functional theory (DFT) framework [21, 24]. The example we use here is
a 2D electron quantum dot confined in a rectangular domain, a model investigated
in [40]. This model is also provided in the test suite of the Octopus software [8], which
we use for comparison.

The most time-consuming part of a DFT electronic structure calculation is the
evaluation of the electron density

(5.1) ρ = diag(fβ,μ(H)),

where fβ,μ(t) = 2/(1 + eβ(t−μ)) is the Fermi–Dirac distribution function with β a pa-
rameter that is proportional to the reciprocal of the temperature and μ the chemical
potential. The symmetric matrix H in (5.1) is a discretized Kohn–Sham Hamilto-
nian [33] defined as

(5.2) H = −1

2
Δ+ VH(r) + Vxc(r) + Vext,

where Δ is the Laplacian, VH is the Hartree potential, Vxc is a 2D exchange-correlation
potential constructed via the local density approximation (LDA) theory [33, 4], and
Vext is an external potential that describes an infinite hard-wall confinement in the
xy plane, i.e.,

(5.3) Vext(x, y) =

{
0, 0 ≤ x ≤ L, 0 ≤ y ≤ L,

∞ elsewhere.

To simplify our experiment, we do not consider spin-polarization.
The standard approach for evaluating (5.1) is to compute the invariant subspace

associated with a few smallest eigenvalues of H . This approach is used in Octopus [8],
which is a real space electronic structure calculation software package.

An alternative way to evaluate (5.1) is to use a recently developed pole expansion
technique [27, 29] to approximate fβ,μ. The pole expansion technique expresses the
electron density ρ as a linear combination of the diagonal of (H − (μ+ zi)I)

−1, i.e.,

(5.4) ρ ≈
P∑
i=1

Im

(
diag

ωi

H − (μ+ zi)I

)
.

Here Im (A) stands for the imaginary part of A. The parameters zi and ωi are
the complex shift and weight associated with the ith pole, respectively. They can
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be chosen so that the total number of poles P is minimized for a given accuracy
requirement. At room temperature, the number of poles required in (5.4) is relatively
small (less than 100). In addition to the temperature, the pole expansion (5.4) also
requires an explicit knowledge of the chemical potential μ, which must be chosen so
that the condition

(5.5) trace(fβ,μ(H)) = ne

is satisfied. This can be accomplished by solving (5.5) using the standard Newton’s
method.

In order to use (5.4), we need to compute the diagonal of the inverse of a number
of complex symmetric (non-Hermitian) matrices H − (zi + μ)I (i = 1, 2, . . . , P ). The
implementation of the parallel selected inversion algorithm described in section 3 can
be used to perform this calculation efficiently, as the following example shows.

In this example, the Laplacian operator Δ is discretized using a five-point stencil.
A room temperature of 300K (which defines the value of β) is used in our calculation.
The area of the quantum dot is L2. In a two-electron dot, setting L = 1.66Å and
discretizing the 2D domain with 31 × 31 grid points yields a total energy error that
is less than 0.002Ha. When the number of electrons becomes larger, we increase the
area of the dot in proportion so that the average electron density is fixed. A typical
density profile with 32 electrons is shown in Figure 5.1. In this case, the quantum dot
behaves like a metallic system with a tiny energy gap around 0.08eV.

Fig. 5.1. A contour plot of the density profile of a quantum dot with 32 electrons.

We compare the density evaluation (5.1) performed by both Octopus and the
pole expansion technique. In Octopus, the invariant subspace associated with the
smallest ne/2 + nh eigenvalues of H is computed using a conjugate gradient (CG)
like algorithm, where ne is the number of electrons in the quantum dot and nh is the
number of extra states for finite temperature calculation. The value of nh depends
on the system size and temperature. For example, in the case of 32 electrons, 4 extra
states are necessary for the electronic structure calculation at 300K. In the pole
expansion approach, we use 80 poles in (5.4), which, in general, could give a relative
error in electron density on the order of 10−7 (in L1 norm) [29].

In addition to using the parallel algorithm presented in section 3 to evaluate each
term in (5.4), an extra level of coarse grained parallelism can be achieved by assigning
each pole to a different group of processors.

In Table 5.1, we compare the efficiency of the pole expansion technique for the
quantum dot density calculation performed with the standard eigenvalue calculation
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Table 5.1

Timing comparison of electron density evaluation between Octopus and PCSelInv for systems
of different sizes. The multiplication by 80 in the last column accounts for the use of 80 pole in (5.4).

ne(#Electrons) Grid #proc Octopus time(s) PCSelInv time(s)
2 31 1 < 0.01 0.01× 80
8 63 1 0.03 0.06× 80
32 127 1 0.78 0.03× 80

128 255
1 26.32 1.72× 80
4 10.79 0.59× 80

512 511
1 1091.04 9.76× 80
4 529.30 3.16× 80
16 131.96 1.16× 80

2048 1023
1 out of memory 60.08× 80
4 out of memory 19.04× 80
16 7167.98 5.60× 80
64 1819.39 2.84× 80

approach implemented in Octopus. The maximum number of CG iterations for com-
puting each eigenvalue in Octopus is set to the default value of 25. We label the pole
expansion-based approach that uses the algorithm and implementation discussed in
section 3 as PCSelInv, where the letter C stands for complex. The factor 80 in the
last column of Table 5.1 accounts for 80 poles used in (5.4). When a massive number
of processors are available, this pole number factor will easily result in a factor of
80 reduction in wall clock time for the PCSelInv calculation, whereas such a perfect
reduction in wall clock time cannot easily be obtained in Octopus.

We observe that for quantum dots that contain a few electrons, the standard
density evaluation approach implemented in Octopus is faster than the pole expan-
sion approach. However, when the number of electrons becomes sufficiently large, the
advantage of the pole expansion approach using the algorithms presented in section 3
to compute diag[H − (zi + μ)I]−1 becomes quite evident. This is because the com-
putation cost associated with the eigenvalue calculation in Octopus is dominated by
the computation performed to maintain mutual orthogonality among different eigen-
vectors when the number of electrons in the quantum dot is large. The complexity
of this computation alone is O(n3), whereas the overall complexity of the pole-based
approach is O(n3/2). The crossover point in our experiment appears to be 512 elec-
trons. For a quantum dot that contains 2,048 electrons, PCSelInv is eight times faster
than Octopus.

6. Concluding remarks. We have presented an efficient parallel selected inver-
sion algorithm for structured sparse matrices. This algorithm can be used in the large
scale electronic structure analysis when it is combined with the recently developed
pole-expansion techniques [27, 29]. Our algorithm computes the selected components,
and, in particular, the diagonal elements of A−1 in parallel. Our algorithm requires
necessary symbolic information from the elimination tree and the L and D factor from
a block LDLT factorization. The symbolic analysis can be done in parallel relatively
easily for 2D Hamiltonians discretized on a rectangular domain by a finite difference.
For problems that are defined on irregular grids (e.g., problems that are discretized
by finite elements or some other techniques) and for 3D problems, the tasks of parallel
symbolic factorization and relative index calculation are generally more complicated.
We have developed a sequential selected inversion algorithm SelInv, which calculates
the elements of A−1 corresponding to the nonzero pattern of L+LT for general sym-
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metric matrix A [31]. However, we remark that a parallel implementation for general
symmetric matrix is still not straightforward and will be studied in the future.

We use the elimination tree associated with the LDLT factorization to divide the
computational load and distribute the data allocated to hold the L and D factors,
these distributed matrices are overwritten by the selected components of A−1.

We also use the techniques of local buffering and relative indexing to ensure that
the synchronization cost associated with the parallel selected inversion is minimized. A
level-by-level restriction scheme is utilized to overcome the synchronization bottleneck
and to achieve high performance.

We have demonstrated that our implementation of the LDLT factorization and
selected inversion calculation is very efficient. We have used our code to solve problems
defined on a 65,535 × 65,535 grid with more than four billion degrees of freedom on
4,096 processors. The code exhibits an excellent weak scaling property.

When compared with the standard approach for evaluating the diagonal of a
Fermi–Dirac function of a Kohn–Sham Hamiltonian associated with a 2D electron
quantum dot, the new pole-expansion technique that uses our algorithm to compute
the diagonal of (H − ziI)

−1 for a small number of poles zi is much faster, especially
when the quantum dot contains many electrons.
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