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We propose stochastic modified equations (SMEs) for modelling the asynchronous stochastic gradient
descent (ASGD) algorithms. The resulting SME of Langevin type extracts more information about the
ASGD dynamics and elucidates the relationship between different types of stochastic gradient algorithms.
We show the convergence of ASGD to the SME in the continuous time limit, as well as the SME’s precise
prediction to the trajectories of ASGD with various forcing terms. As an application, we propose an
optimal mini-batching strategy for ASGD via solving the optimal control problem of the associated SME.
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1. Introduction

In this paper, we consider the following empirical risk minimization problem commonly encountered in
machine learning:

min
x∈Rd

f (x) := 1

n

n∑
i=1

fi(x), (1.1)

where x represents the model parameters, fi(x) ≡ f (x; zi) denotes the loss function of the training sample
zi and n is the size of the training sample set. Since the training set for most applications is of large
size, stochastic gradient descent (SGD) is the most popular algorithm used in practice. In the simplest
scenario, SGD samples one random instance fi(·) uniformly at each iteration and updates the parameter
by evaluating only the gradient of the selected fi(·). The stability and convergence rate of SGD have been
studied in depth; for example, see [9,17]. However, the scalability of SGD is unfortunately restricted by
its inherent sequential nature. To overcome this issue and hence accelerate the convergence, there has
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2 J. AN ET AL.

been a line of research devoted to asynchronous parallel SGDs. In the distributed computation scenario,
an asynchronous stochastic gradient descent (ASGD) method parallelizes the computation on multiple
processing units by (1) calculating multiple gradients simultaneously at different processors and (2)
sending the results asynchronously back to the master for updating the model parameters [1,21].

1.1 Related work

There has been a vast literature on the analysis of SGD; see, for example, Bottou et al. [3] for a
comprehensive review of this subject. Some widely used methods include AdaGrad [5], which extends
SGD by adapting step sizes for different features; RMSProp [24], which resolves AdaGrad’s rapidly
diminishing learning rates issue; and Adam [11], which combines the advantages of both AdaGrad and
RMSProp with a parameter learning rates adaption based on the average of the second moments of the
gradients. On the other hand, relatively few studies are devoted to ASGDs. Most of these studies for
ASGD take an optimization perspective. Hogwild [21] assumed data sparsity in order to run parallel
SGD without locking successfully. Under various smoothness conditions on f such as f being strongly
convex and fis all Lipschitz, it showed that the convergence rate can be similar to the synchronous
case. Duchi et al. [6] extended this result by developing an asynchronous dual averaging algorithm that
allows problems to be non-smooth and non-strongly convex as well. Mitliagkas et al. [16] observed
that a standard queuing model of asynchrony correlates to the momentum, that is, asynchrony produces
momentum in SGD updates. There are also several methods using asynchrony either in parallel or in a
distributed way, such as asynchronous stochastic coordinate descent algorithms [14,15,18,22].

Recently, Li et al. [13] introduced the concept of the stochastic modified equation for SGDs (referred
as SME-SGD in this report), where in the continuous-time limit an SGD is approximated by an
appropriate (overdamped) Langevin equation. Compared to most convergence analyses that give upper
bounds for (strongly) convex objects, this new framework not only provides more precise analyses for
the leading order dynamics of SGD, but also suggests adaptive hyper-parameter strategies using optimal
control theory.

1.2 Our contributions

We give a novel derivation of SMEs for the ASGD algorithms by introducing auxiliary variables to treat
an effective memory term. With the derived SME models, we are able to characterize the dynamics of
ASGD algorithms.

In Section 2, we first derive a stochastic modified equation for the asynchronous stochastic gradient
descent, denoted shortly as SME-ASGD, for the case where each loss function fi is quadratic. The
derivation results in a Langevin equation, which by assuming its ergodicity has a unique invariant
distribution solution with a convergence rate dominated by the temperature factor. Meanwhile, for
the momentum SGD (MSGD), a similar Langevin equation denoted as SME-MSGD is derived, and
we show that the temperature factors for both derived SME agree. This comparison gives a Langevin
dynamics explanation of why an asynchronous method gives rise to similar behaviour as compared to
the momentum-based methods [16]. Then by introducing a new accumulative quantity, we derive a more
general SME-ASGD for the general case in which the gradient of the loss function can be nonlinear. We
show that the two SME-ASGDs are equivalent when the objective functions are quadratic. We remark
that the presented results make use of a few simplifying approximations that are made in a non-rigorous
and non-quantified manner, e.g., assuming the noise coefficients to be constant σ and the accumulation
of i.i.d. noise.
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STOCHASTIC MODIFIED EQUATIONS FOR THE ASYNCHRONOUS SGD 3

Section 3 provides some numerical analysis for SME-ASGD by providing a strong approximation
estimation to the ASGD algorithm. Different from the usual convergence studies, we do not assume
convexity on f or fi, but only require their gradients to be (uniformly) Lipschitz. Numerical results
including nonlinear forcing terms and non-convex objectives demonstrate that SME-ASGD provides
much more accurate predictions for the behaviour of ASGD compared to SME-SGD derived in [13].
In Section 4, we apply the optimal control theory to identify the optimal mini-batch for ASGD and the
numerical simulations there verify that the suggested strategy gives a significantly better performance.

2. SMEs

The ASGD carries out the following update at each step:

xk+1 = xk − η∇fγk
(xk−τk

), (2.1)

where η is the step size, {γk} are i.i.d. uniform random variables taking values in {1, 2, · · · , n} and xk−τk
is the delayed read of the parameter x used to update xk+1 with a random staleness τk.

Assumption 2.1 We assume that the staleness τk are independent and that the sample selection process
γk is mutually independent from the staleness process τk. ∇fis are all (uniformly) Lipschitz, that is, for
each 1 � i � n, there exists Li > 0 such that for any x, y ∈ R

d, we have |∇fi(x)−∇fi(y)| � Li|x−y|. As
a consequence, by taking L = 1

n

∑n
i=1 Li, ∇f is also (uniformly) Lipschitz: |∇f (x) − ∇f (y)| � L|x − y|.

In addition, the staleness process τk follows the geometric distribution: τk = l (i.e., xk−τk
= xk−l),

l ∈ {0, 1, 2, · · · }, with probability (1 − μ)μl for μ ∈ (0, 1).

Assumption 2.2 We assume that the equations SME-ASGD (2.5) and SME-MSGD (2.7) are ergodic.

The geometric distribution assumption here is not only made to simplify the computation, but also
can be justified by considering the canonical queuing model [25]. For example, the computation at each
processor may involve a randomized algorithm that requires each processor to do multiple independent
trials until the result is accepted, thus resulting in a geometrically distributed computation time. The
geometric staleness assumption has been used in the previous asynchrony analysis; for example, see
[16]. Our derivation of SME models can be also easily generalized to other random staleness models
if the memory kernel, i.e., the distribution of staleness in time, decays sufficiently fast for integrability
and is completely monotone when we approximate the memory kernel by a C∞(0, ∞) function κ(r).
κ(r) is completely monotone if for all for n � 0, r > 0, (−1)n dn

drn κ(r) � 0. Under that circumstance,
we can approximate the kernel accurately by

∑nk
k=1 ck e−λkr using the Bernstein’s theorem of monotone

functions [2], and each term can be embedded into one auxiliary value to derive the SME formulation.

2.1 Linear gradients

We first show the derivation of Langevin dynamics with the linear forcing term. Suppose that, for
each 1 � i � n, ∇fi is linear, or equivalently each fi is quadratic. While this is a fairly restrictive
assumption, the derivation in this simplified scenario offers a more transparent view towards the SME
for the asynchronous algorithm.

A key quantity for our derivation is the expected read mk defined as the expectation of xk following
Assumption 2.1:

mk = Eτ (xk−τk
) =

∑∞
l=0

xk−l(1 − μ)μl.
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4 J. AN ET AL.

Here mk is a conditional expectation conditioned on the history of x, and mk is random since xk−ls are.
Note that mk+1 = ∑∞

l=0 xk+1−l(1 − μ)μl = xk+1(1 − μ) + μmk and xk+1 = (mk+1 − μmk)/(1 − μ).
Plugging this into (2.1), we can rewrite ASGD as

mk+1 − 2mk + mk−1

η(1 − μ)
= −mk − mk−1

η
− ∇f (mk) + (∇f (mk) − ∇fγk

(xk−τk
)). (2.2)

The left-hand side and the first term on the right-hand side of (2.2) can be viewed as divided difference
approximations to various time derivatives of m. The second term on the right-hand side is the usual
gradient. The last term ∇f (mk) − ∇fγk

(xk−τk
) can be understood as the noise due to stochastic gradient

and the read delays; it has mean 0, since the expectation, conditioned on the history of updates, can be
decomposed as

Eγ ,τ

(∇f (mk) − ∇fγk
(mk) + ∇fγk

(mk) − ∇fγk
(xk−τk

)
) = 1

n

n∑
i=1

(∇f (mk) − ∇fi(mk))

+ 1

n

n∑
i=1

(
∇fi

( ∞∑
l=0

xk−l(1 − μ)μl

)
−

∞∑
m=0

(1 − μ)μm∇fi(xk−m)

)
= 0.

The covariance matrix of the noise will be denoted as

Σk = Eγ ,τ

(
(∇f (mk) − ∇fγk

(xk−τk
))(∇f (mk) − ∇fγk

(xk−τk
))T),

conditioned on {xk−l}l�0 and we also denote the square root of Σk by σk, i.e., Σk = σkσ
T
k . Σk (and thus

σk) in general depends on the previous history of the trajectory, although such dependence is omitted in
our notation.

In order to arrive at a continuous time SME from (2.2), we view mk as the evaluation of a function
m at time points tk = kΔt, where Δt is the effective time step size for the corresponding SME, and
it is chosen as Δt = √

η(1 − μ). By introducing the auxiliary variable pk = 1
Δt (mk − mk−1), we can

reformulate (2.2) as a system of (mk, pk):

pk+1 = pk − Δt
√

(1 − μ)/ηpk − Δt∇f (mk) + Δt
(∇f (mk) − ∇fγk

(xk−τk
)
)
, (2.3)

mk+1 = mk + Δt pk+1. (2.4)

To obtain an SME, we first model the random term by a Gaussian random noise, that is, Δt
(∇f (mk) −

∇fγk
(xk−τk

)
) ∼ σk(η(1 − μ))1/4ΔBt, where ΔBt = Bt+Δt − Bt is the increment of a Brownian motion

(thus, E(ΔBt) = 0 and E(ΔBtΔBT
t ) = Δt) and the coefficient is chosen to match the variance. Such

modelling is valid because the random variables γk and τk are independent to each other, and the choices
are independent at each iteration, we can approximate the i.i.d. random random term by Gaussian noise
in the weak sense. Assuming that Δt is small, we arrive at a Langevin type equation:

dPt = −∇f (Mt)dt −√(1 − μ)/ηPtdt + σ(t)(η(1 − μ))1/4dBt,

dMt = Ptdt,
(2.5)
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STOCHASTIC MODIFIED EQUATIONS FOR THE ASYNCHRONOUS SGD 5

where Σ(t) = Σ({Ms}0�s<t, {Ps}0�s<t) has the evolution equation (the derivation is deferred to
Appendix A)

dΣt = −
√

1 − μ

η
Σt dt − μ(∇f (Mt)∇f (Pt)

T + ∇f (Pt)∇f (Mt)
T) dt −

√
1 − μ

η
∇f (Mt)∇f (Mt)

Tdt

+μ
√

η(1−μ)∇f (Pt)∇f (Pt)
T dt+ 1

n

√
1 − μ

η

n∑
i=1

∇fi

(
Mt+μ

√
η

1 − μ
Pt

)

∇fi

(
Mt+μ

√
η

1 − μ
Pt

)T

dt.

When f is a smooth confining potential, that is, f satisfies lim|x|→+∞ f (x) = +∞ and e−βf (x) ∈
L1(Rd) for all β ∈ R

+ (an example for f is being a quadratic potential), the process approaches to the
minimum of the potential function, and σ(t) (as the damping term −√

(1 − μ)/ηΣt dt dominates in the
evolution equation) can be approximated by a constant matrix σ up to a first order approximation for
large time t. When this constant matrix σ is a multiple of the identity matrix, say σ = ς I, (Pt, Mt) in
the standardized model is an ergodic Markov process with stationary distribution [19]:

ρ∞(p, m) = Z−1 e−β( 1
2 |p|2+f (m)),

where Z is a normalization constant. In this case, the resulting friction is
√

(1 − μ)/η and the
temperature β−1 is 1

2ς2η. When the constant matrix σ is not a multiple of identity (but still being
constant), the stationary distribution takes a similar form in a transformed coordinate system. We
remark that though in theory proving time-inhomogeneous process (2.5) has a unique stationary
distribution is beyond the scope of this paper, the numerical observations suggest that such a constant
approximation of the noise coefficient does not change the process’s property fundamentally; in the
numerical experiments, we observe that the trajectory of SME-ASGD does not change much when we
replace the coefficient of noise by a constant matrix.

The reason why we care about the temperature parameter here is that it quantifies the variance of
the noise, and therefore gives us more information about the asymptotic behaviour of the optimization
process. With such a tool, we can better analyse the connection between different stochastic gradient
algorithms. Let us illustrate it by showing one example here: Mitliagkas et al. [16] argue that there is
some equivalence between adding asynchrony or momentum to the SGD algorithms, and they showed it
by taking expectation to a simple queuing model and finding matched coefficients. Here we investigate
such relation by looking at the corresponding Langevin dynamics, specifically the temperature for both
SMEs, thus offering a more detailed dynamical comparison.

Stochastic gradient descent with momentum (MSGD) introduced by [20] utilizes the velocity vector
from the past updates to accelerate the gradient descent [23]:

vk+1 = μ′ vk − η′∇fγk
(xk),

xk+1 = xk + vk+1,
(2.6)
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6 J. AN ET AL.

with a momentum parameter μ′ ∈ (0, 1). (2.6) can be also viewed as a discretization of a second-order
stochastic differential equation (SDE). Our derivation here is slightly different from [13], since we use
a more natural time scale Δt = √

η′ in order to obtain an SDE with bounded coefficients. By taking
p to be v/

√
η′ (see Appendix A), we end up with the following SME for MSGD (denoted in short as

SME-MSGD):

dPt = −∇f (Xt) dt − 1 − μ′
√

η′ Pt dt + σ(Xt)(η
′)

1
4 dBt,

dXt = Pt dt,

(2.7)

where the friction is 1−μ′√
η′ . Note that (2.7) is time homogeneous with a multiplicative noise, such that

the invariant measure usually does not have an explicit expression in general. We further postulate that
when the noise is small, the coefficient σ(Xt) can be approximated by a constant multiple of the identity

matrix. In this case, the temperature β ′−1 = ς2η′
2(1−μ′) dictates the convergence rate to the stationary

solution. If we further assume that the noise coefficients σ in SME-ASGD (2.5) and in SME-MSGD
(2.7) are the same constant, comparing (2.5) with (2.7) results in the following interesting observation.

Proposition 2.3 If we assume that the noise coefficients σ in SME-ASGD (2.5) and in SME-MSGD
(2.7) are the same constant, if μ′ = μ and η′ = η(1 − μ), then (2.5) and (2.7) have the same stationary
distribution.

In Theorems 3 and 5 in Mitliagkas et al.’s paper [16], the staleness’ geometric distribution parameter
μ is taken to be μ′ = 1 − 1

M , where M is the number of mutually independent workers and μ′ is the
momentum parameter. With these assumptions, when looking at (2.5) and (2.7) under the same time

scale with η′ = η(1 − μ), we can see that β ′−1 = ς2η′
2(1−μ′) = ς2η

2 = β−1. Since the corresponding
temperature for the asynchronous method and momentum method are equal, we conclude that the
perspective of SME given above explains the observation in [16] that the momentum method has certain
equivalent performance as the asynchronous method.

2.2 Nonlinear gradients

We now consider the general case in which the gradient ∇fi can be nonlinear. One can still write the
ASGD into a stochastic modified equation. For this, let us define a new auxiliary variable yk which is
proportional to the expected gradient:

yk = −αEτ (∇f (xk−τk
)) = −α

∑∞
l=0

∇f (xk−l)(1 − μ)μl, (2.8)

where α > 0 is to be determined. Again yk is random and a conditional expectation conditioned on the
history of x. Directly following the definition, yk satisfies the difference equation

yk+1 − yk

α(1 − μ)
= −yk

α
− ∇f (xk+1). (2.9)

Moreover, we can rewrite the ASGD (2.1) as

xk+1 − xk

η/α
= yk + α

(
− yk

α
− ∇fγk

(xk−τk
)
)

. (2.10)
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STOCHASTIC MODIFIED EQUATIONS FOR THE ASYNCHRONOUS SGD 7

The reason for us arranging terms in this way is to formulate a Langevin-type equation, but with the
noise term moved from the momentum side (Y) to the position side (X). Notice that on the right-hand
side of (2.10), − yk

α
− ∇fγk

(xk−τk
) can be viewed as a noise with mean 0

Eγ ,τ

(
− yk

α
− ∇fγk

(xk−τk
)
)

= 1

n

n∑
i=1

Eτ

( ∞∑
l=0

∇f (xk−l)(1 − μ)μl − ∇fi(xk−τk
)

)

= Eτ

( ∞∑
l=0

∇f (xk−l)(1 − μ)μl − ∇f (xk−τk
)

)

=
∞∑

m=0

(1 − μ)μm

( ∞∑
l=0

∇f (xk−l)(1 − μ)μl − ∇f (xk−m)

)

=
∞∑

l=0

∇f (xk−l)(1 − μ)μl −
∞∑

m=0

∇f (xk−m)(1 − μ)μm = 0.

Moreover, the covariance matrix conditioned on xk−l, l = 0, 1, 2, · · · is given by

Σk = 1

n

n∑
i=1

E

((
−yk

α
− ∇fi(xk−τk

)
) (

−yk

α
− ∇fi(xk−τk

)
)T
)

= 1

n

n∑
i=1

E

⎛
⎝( ∞∑

l=0

∇f (xk−l)(1 − μ)μl − ∇fi(xk−τk
)

)( ∞∑
l=0

∇f (xk−l)(1 − μ)μl − ∇fi(xk−τk
)

)T
⎞
⎠ .

In order to view (2.9) and (2.10) as a time discretization of a coupled system with the same time step size,
we match α(1 − μ) with η/α by choosing α = √

η/(1−μ). Setting the step size Δt = α(1 − μ) = η/α =√
η(1 − μ) and taking a Gaussian approximation to the noise η

(− yk
α

−∇fγk
(xk−τk

)
) ∼ √Σk

η3/4

(1−μ)1/4 ΔBt,
we arrive at the stochastic modified equation for the nonlinear case

dYt = −∇f (Xt) dt −
√

1 − μ

η
Yt dt

dXt = Yt dt +√Σ(t)
η3/4

(1 − μ)1/4 dBt.

(2.11)

Here Σ(t) = Σ({Xs}0�s<t, {Ys}0�s<t). In order to close the system of equations, we derive an explicit
evolution equation for Σ :

dΣt = −
√

1 − μ

η
Σt dt +

√
1 − μ

η

(
1

n

n∑
i=1

∇fi(Xt)∇fi(Xt)
T + 1 − μ

μ
∇f (Xt)∇f (Xt)

T

)
dt

+ 1 − μ

ημ

(√
1 − μ

η
YtY

T
t + ∇f (Xt)Y

T
t + Yt∇f (Xt)

T

)
dt. (2.12)
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8 J. AN ET AL.

The derivation of (2.12) is shown in Appendix A. The combined system (2.11)–(2.12) will be referred
as SME-ASGD (the SMEs for asynchronous SGD) for the general nonlinear-gradient case. We should
point it out that, unlike the linear-gradient case (2.5), (2.11) has no known explicit formula for invariant
measure even when Σ(t) converging to a constant matrix. Nevertheless, the ergodicity of (2.11) and
(2.12) will be an interesting future direction to explore.

We would like to point out that when the gradient ∇f is linear (2.9) and (2.10) can be easily
transformed back to (2.3) and (2.4). As a consequence, (2.5) and (2.11) are equivalent. To see this,

yk = −α∇f

( ∞∑
l=0

xk−l(1 − μ)μl

)
= −α∇f (mk).

Replacing yk+1 and yk with the above formula and also xk+1 with mk+1−μmk
1−μ

, we can rewrite (2.9) as

−∇f (mk+1) − ∇f (mk)

1 − μ
= ∇f (mk) − ∇f

(
mk+1 − μmk

1 − μ

)
= − 1

1 − μ
∇f (mk+1 − mk).

Since pk+1 = (mk+1 − mk)/
√

η(1 − μ), we have

∇f (mk+1 − mk) = ∇f (pk+1

√
η(1 − μ)),

which implies (2.4). To show (2.3), we first notice that

xk+1 − xk

η/α
= mk+1 − (μ + 1)mk + μmk−1

(1 − μ)η/α
= mk+1 − 2mk + mk−1

(1 − μ)η/α
+ mk − mk−1

η/α

= pk+1 − pk

1 − μ
+ pk = −α∇f (mk) + α(∇f (mk) − ∇fγk

(vk))

= −
√

η

1 − μ
∇f (mk) +

√
η

1 − μ
(∇f (mk) − ∇fγk

(vk))

by plugging in α in terms of μ, η. It is clear now that this gives (2.3).

3. Approximation error of the SME

The difference between the time-discrete ASGD and the time-continuous SME-ASGD can be rigorously
quantified as follows.

Theorem 3.1 Assume that Assumption 2.1 holds and that the variance from the asynchronous gradients
is uniformly bounded (i.e., there exists c > 0 such that ||σ(t)|| � c). Suppose also that all the iterates
updated from the ASGD stay bounded and that the solutions for SME-ASGD and ASGD before time
0 agree (i.e., XlΔt = xl, l � 0, with Δt = √

η(1 − μ) as given previously). Then the SME-ASGD
approximates the ASGD in the sense that there exists constant KT > 0 depending only on T such that

sup
nΔt�T

E
{|XnΔt − xn|

}
� KT

Δt

1 − μ
(3.1)
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STOCHASTIC MODIFIED EQUATIONS FOR THE ASYNCHRONOUS SGD 9

for Δt sufficiently small. Here XnΔt ≡ X(nΔt) is the solution of (2.12) at time nΔt and xn is from
ASGD (2.1).

The assumption σ = √
Σ = O(1) can be justified from (2.12) as Σ is approximated by a constant

matrix for t large. This is because when the iterate approaches to the minimizer, the gradients are close
to 0, and Yt converges to be a constant vector. Since we investigate the error approximation in finite
time T and finite step size Δt, there are only a finite number of iterations. In each iteration, the iterate
updated from the ASGD stays bounded by a sufficient large constant with high probability. Therefore,
the assumption that all iterates stay bounded by a sufficient large constant holds with high probability.

The proof of the Theorem (3.1) follows from viewing the ASGD as a discretization of SME-ASGD
and using the analysis of strong convergence for numerical schemes for SDEs.

Proof of the Theorem (3.1) We look at the one step approximation in the first step, and the global
approximation can be done by induction. Using the variation of constant formula, we know that the
solution of

dYt = −∇f (Xt) dt −
√

1 − μ

η
Yt dt

is given by

Yt = e
−
√

1−μ
η

t
Y0 −

∫ t

0
e
−
√

1−μ
η

(t−s)∇f (Xs) ds,

where Y0 = −
√

η
1−μ

∑∞
l=0 ∇f (x−l)(1 − μ)μl as defined in (2.8). Plugging Yt into the integral form of

XΔt gives rise to

XΔt = x0 +
∫ Δt

0

(
e
−
√

1−μ
η

s
Y0 −

∫ s

0
e
−
√

1−μ
η

(s−u)∇f (Xu) du

)
ds + η3/4

(1 − μ)1/4

∫ Δt

0
σ(s) dBs. (3.2)

Denote vk := xk−τk
for notation convenience. By splitting η∇fγ0

(v0) into η∇fγ0
(v0) − η

∑∞
l=0 ∇f (x−l)

(1 − μ)μl and η
∑∞

l=0 ∇f (x−l)(1 − μ)μl, we can make the following estimate:

E
{|XΔt − x1|

}
�
∣∣∣∣
∫ Δt

0
e
−
√

1−μ
η

s
Y0 ds + η

∞∑
l=0

∇f (x−l)(1 − μ)μl
∣∣∣∣

+ E

{∫ Δt

0

(∫ s

0
e
−
√

1−μ
η

(s−u)∣∣∇f (Xu) − ∇f (x1)
∣∣ du

)
ds

}
+|∇f (x1)|

∫ Δt

0

∫ s

0
e
−
√

1−μ
η

(s−u)
du ds

+ η3/4

(1 − μ)1/4

(
E

{(∫ Δt

0
σ(s) dBs

)2
})1/2

+ E

{∣∣∣∣∣η∇fγ0
(v0) − η

∞∑
l=0

∇f (x−l)(1 − μ)μl

∣∣∣∣∣
}

� I + II + III + η3/4

(1 − μ)1/4

(
E

{∫ Δt

0
σ(s)2 ds

})1/2

+ cη � I + II + III + 2c
Δt2

1 − μ
,
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10 J. AN ET AL.

where I, II and III are the first three terms appearing in the right-hand side of the first inequality. In the
above derivation, we have applied the Ito isometry to the fourth term and used

η3/4

(1 − μ)1/4

(
E

{∫ Δt

0
σ(s)2 ds

})1/2

� c
Δt2

1 − μ
,

since Δt = √
η(1 − μ). The fifth term, after an application of the Cauchy–Schwarz inequality, is shown

to be a discrete version of the covariance matrix

E

{∣∣∣∣∣η∇fγ0
(v0) − η

∞∑
l=0

∇f (x−l)(1 − μ)μl

∣∣∣∣∣
}

� η
√

Σ0 � cη.

Let us now treat the first three terms

I =
∣∣∣∣
∫ Δt

0
e
−
√

1−μ
η

s
Y0 ds + η

∞∑
l=0

∇f (x−l)(1 − μ)μl
∣∣∣∣

=
∣∣∣∣
√

η

1 − μ

(
e
−
√

1−μ
η

Δt − 1

)√
η

1 − μ

∞∑
l=0

∇f (x−l)(1 − μ)μl + η

∞∑
l=0

∇f (x−l)(1 − μ)μl
∣∣∣∣

=
∣∣∣∣−
√

η

1 − μ

∞∑
l=0

∇f (x−l)(1 − μ)μlΔt + η

∞∑
l=0

∇f (x−l)(1 − μ)μl + O(Δt2)

∣∣∣∣ = O(Δt2),

since the first two terms cancel. Because ∇f is Lipschitz and e
−
√

1−μ
η

(s−u) � 1 for u � s, the second
term can be estimated with

II � LΔt
∫ Δt

0
E
{|Xu − x1|

}
du.

Since x1 stays in a bounded domain, the third term can be bounded by

III � |∇f (x1)|
∫ Δt

0
s ds = |∇f (x1)|Δt2/2 = O(Δt2).

With these estimates available, we can choose a sufficiently large constant C (depending on c and the
size of the domain containing the iterates from ASGD) such that

E
{|XΔt − x1|

}
� C

Δt2

1 − μ
+ LΔt

∫ Δt

0
E
{|Xu − x1|

}
du.

An application of Gronwall’s inequality shows that

E
{|XΔt − x1|

}
� C

Δt2

1 − μ
eLΔt2 = C

Δt2

1 − μ
+ O(Δt4) � C

Δt2

1 − μ
.
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STOCHASTIC MODIFIED EQUATIONS FOR THE ASYNCHRONOUS SGD 11

This concludes the estimate for the first step at time 0.
The induction step is similar. We have

X(k+1)Δt = XkΔt +
∫ (k+1)Δt

kΔt

(
e
−
√

1−μ
η

(s−kΔt)
YkΔt −

∫ s

kΔt
e
−
√

1−μ
η

(s−u)∇f (Xu) du

)
ds

+ η3/4

(1 − μ)1/4

∫ (k+1)Δt

kΔt
σ(s) dBs.

For the discrete update step xk+1 = xk − η∇fγk
(vk), we split η∇fγk

(vk) as before. With the assumption

E
{|XkΔt − xk|

}
� Ck Δt2

1−μ
, we have the following estimate:

E
{|X(k+1)Δt − xk+1|

}
� E

{|XkΔt − xk|
}+

∫ (k+1)Δt

kΔt
e
−
√

1−μ
η

(s−kΔt)∣∣YkΔt − yk

∣∣ ds

+
∣∣∣∣
∫ (k+1)Δt

kΔt
e
−
√

1−μ
η

(s−kΔt)
yk ds + η

∞∑
l=0

∇f (xk−l)(1 − μ)μl
∣∣∣∣

+ E

{∫ (k+1)Δt

kΔt

(∫ s

kΔt
e
−
√

1−μ
η

(s−u)∣∣∇f (Xu) − ∇f (xk+1)
∣∣ du

)
ds

}

+ |∇f (xk+1)|
∫ (k+1)Δt

kΔt

∫ s

kΔt
e
−
√

1−μ
η

(s−u)
du ds

+ η3/4

(1 − μ)1/4

⎛
⎝E
⎧⎨
⎩
(∫ (k+1)Δt

kΔt
σ(s) dBs

)2
⎫⎬
⎭
⎞
⎠

1/2

+ E

{∣∣∣∣∣η∇fγk
(vk) − η

∞∑
l=0

∇f (xk−l)(1 − μ)μl

∣∣∣∣∣
}

.

Here the only difference compared to the first step is the term YkΔt, which is not given, but generated
from SME. Note that

yk = −
√

η

1 − μ

∞∑
l=0

∇f (xk−l)(1 − μ)μl.

From (2.9), we observe that yk is indeed an approximation of Yt by applying the Euler discretization
to the ordinary differential equation part of the SME. Because the global truncation error for the Euler
method in ODE is O(Δt), we have

∫ (k+1)Δt

kΔt
e
−
√

1−μ
η

(s−kΔt)∣∣YkΔt − yk

∣∣ ds = O(Δt2).
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12 J. AN ET AL.

Fig. 1. Apply the SME-ASGD to minimize the quadratic function f (x) = x2 in different μs, with two components f1(x) =
(x − 1)2 − 1, and f2(x) = (x + 1)2 − 1, x0 = 1 and η = 1e − 2. SME-ASGD achieves more accurate approximations compared
to SME-SGD (3.3), especially when μ becomes large. However, one can also observe that when μ increases the error of the
SME-ASGD approximation increases as well.

The third term has the estimate

∣∣∣∣
∫ (k+1)Δt

kΔt
e
−
√

1−μ
η

(s−kΔt)
yk ds + η

∞∑
l=0

∇f (xk−l)(1 − μ)μl
∣∣∣∣

=
∣∣∣∣−
√

η

1 − μ

(
e
−
√

η
1−μ

Δt − 1

)
yk + η

∞∑
l=0

∇f (xk−l)(1 − μ)μl
∣∣∣∣

=
∣∣∣∣−
√

η

1 − μ

∞∑
l=0

∇f (xk−l)(1 − μ)μlΔt + η

∞∑
l=0

∇f (xk−l)(1 − μ)μl + O(Δt2)

∣∣∣∣ = O(Δt2)

as before. All other terms have the same estimates as in the base case. Applying the Gronwall’s
inequality again and letting Δt be sufficiently small gives the estimate

E
{∣∣X(k+1)Δt − xk+1

∣∣} � Ck
Δt2

1 − μ
.

As nΔt � T for all n, one can conclude that there exists KT > 0 such that

E
{∣∣XnΔt − xn

∣∣} � KT
Δt

1 − μ
.

�
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STOCHASTIC MODIFIED EQUATIONS FOR THE ASYNCHRONOUS SGD 13

Fig. 2. (Left) Apply the SME-ASGD to minimize the convex function f (x) = x4 +6x2 with two components f1(x) = (x−1)4 −1,
and f2(x) = (x + 1)4 − 1. Notice that the gradients are Lipschitz locally. Here we choose x0 = 1, and a smaller step size

η = 1e − 3. (Right) Apply the SME-ASGD to minimize the double well potential f (x) = 1 − e−(x−1)2 − e−(x+1)2
. Here

f1 = 1 − 2 e−(x−1)2
, f2 = 1 − 2 e−(x+1)2

and both have Lipschitz gradients. We choose η = 1e − 2, x0 = 0.1. Note that
arg minf (x) ≈ ±0.9575. In our case, due to the initial data x0, 90.34% of ASGD path samples converge to 0.9575, while 90.50%
of SME-ASGD and 88.54% of SME-SGD converge to the same minimizer. For both columns of numerical tests, we choose
μ = 0.95.

One interesting observation is that, contrary to the standard Euler–Maruyama method for SDEs
having strong order of convergence 1/2 [12], the above result indicates that ASGD, viewed as a
discretization of SME-ASGD, has strong order 1. This is because the coefficient of the noise term
in the SME-ASGD has η3/4/(1−μ)1/4, which is of order o(1). The SME model proposed in [13] has the
same feature: the coefficient of the noise term there is of order

√
η. When η ≈ 1 −μ, the two orders are

the same.
Here we provide some numerical evidences for Theorem 3.1 with various loss functions f . The

results are shown in Figs 1 (for linear forcing) and 2 (for general forcing). For each example, through
averaging over 5000 samples, we compare the results of ASGD with the predictions from both SME-
ASGD (2.11) and the second-order weak convergent SME-SGD proposed in Li et al.’s paper [13]

dXt = −∇
(

f (Xt) + η

4
|∇f (Xt)|2

)
dt + (ηΣ(Xt))

1/2 dBt. (3.3)

When μ is close to 0 (i.e., the expected delay is short), SME-SGD (3.3) serves as a good approximation
to ASGD as expected. However, when μ is large, Figs 1 and 2 demonstrate that it is no longer the case:
as μ gets closer to 1, the trajectories obtained from SME-SGD are way off, whereas our proposed SME-
ASGD model demonstrate accurate path approximations for both the first and the second moments.
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14 J. AN ET AL.

Fig. 3. Apply the SME-ASGD to minimize the quadratic function f (x) = ∑100
i=1 cix

2
i /2, x ∈ R

100 with μ = 0.90 and two

components f1(x) = ∑100
i=1 cix

2
i /2 − x, and f2(x) = ∑100

i=1 cix
2
i /2 + x. The initial condition x0 = (0.5, 0.5, · · · , 0.5) ∈ R

100

and the step size is η = 1e − 2. The plots are done after 1000 iterations. The corresponding coefficients in the plots are c1 =
4.2593, c2 = 4.9013, c29 = 0.1980, c81 = 4.3968, c37 = 3.9978, c74 = 1.9527.

Fig. 4. Apply the SME-ASGD to minimize the convex function f (x) = ∑100
i=1 ci(x

4
i + 6x2

i )/2, x ∈ R
100 with μ = 0.90 and two

components f1(x) =∑100
i=1 ci(xi −1)4/2−1 and f2(x) =∑100

i=1 ci(xi +1)4/2+1. The initial condition x0 = (0.5, 0.5, · · · , 0.5) ∈
R

100 and the step size is η = 1e − 3. The plots are done after 1000 iterations. The corresponding coefficients in the plots are
c1 = 3.9212, c2 = 1.9370, c27 = 1.2093, c100 = 1.5661, c16 = 0.3353, c78 = 4.5502.

A few remarks regarding the numerical results are in order here. (i) In Fig. 1, the path oscillations
happen to both ASGD and SME-ASGD due to a longer expected delay, but not to SME-SGD, even
though we include staleness when computing Σ(Xt) by the covariance matrix formula for both models.
That is because our SME-ASGD model contains μ in the forcing term, while the forcing term in SME-
SGD is μ-independent. (ii) The convex function f (x) = x4 + 6x2 (with gradient ∇f (x) = 4x3 + 12x)
in Fig. 2 does not satisfy the general Ito conditions; however, by having good initial data and choosing
smaller time step sizes, we can still obtain the minimizer without blowing up. (iii) For the non-convex
example (the double-well function in Fig. 2), the SME-ASGD model gives a better prediction about
which minimizer that a trajectory with given initial data will fall into: the percentage of path samples
that converge to a local minimum in SME-ASGD is very close to that of the ASGD case. (iv) For
all cases, SME-SGD underestimates the variance because the variance from the delayed reads is not
taken into account by SME-SGD. (v) In higher dimensions, unlike the Monte Carlo sampling driven by
Langevin dynamics that has the curse of dimensionality issue, our numerical simulations for both linear
and nonlinear gradients have good approximation regardless of the dimensionality as the Figs 3 and 4
show. Here, we assign the coefficients ci uniformly randomly in [0, 5]. We make plots by arbitrarily
choosing any two dimensions as projected subspace. Although after 1000 time steps, some projected
subspace have convergence and some (with significant coefficient differences) do not yet, we can see
that the trajectories from the algorithm and modified equation are close.
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STOCHASTIC MODIFIED EQUATIONS FOR THE ASYNCHRONOUS SGD 15

Fig. 5. A comparison of performance in terms of l2 error. We apply mini-batching over n = 100 components fi(x) = 1
2 (x −

ci)
2, ci = −1/2 + i/(2n). Here we choose the step size η = 0.02 and the initial data x0 = 1. The batch size for the uniform

mini-batching case is 5. For the optimal mini-batching strategy, the transition happens at k = (T − t∗)/η ≈ 699, and the optimized
batch size at time T is 42. In practice, we can apply a more aggressive mini-batching strategy by starting to increase the batch size
earlier in the flat region, and it will result in a larger batch size at T .

4. Optimal mini-batch size of ASGD

With much better understanding of dynamics of the ASGD algorithm using SME-ASGD, we are able
to tune multiple hyper-parameters of ASGD using the predictions obtained from applying the stochastic
optimal control theory to SME-ASGD. Here we demonstrate one such application: the optimal time-
dependent mini-batch size for ASGD. By denoting the time-dependent batch size as 1 + uk with uk � 0,
one can write the iteration as

xk+1 = xk − η
1

1 + uk

1+uk∑
j=1

∇fγj
(xk−τk

). (4.1)

We argue that it is reasonable to assume that the choice of mini-batch size is independent from γj and
the staleness τk. This is because, even though changing the batch size will simultaneously change the
‘clocks’ of all the processors, the staleness would not be changed as all the processors are impacted
equally. Following the argument given in Section 2, we can derive a corresponding SME

dYt = −∇f (Xt) dt −
√

1 − μ

η
Yt dt

dXt = Yt dt + σ(t)η3/4

(1 + u(t))1/2(1 − μ)1/4 dBt.

(4.2)

The derivation here is not much different from the one of SME-ASGD (2.11), except for identifying the
right coefficient in front of the noise term dBt. The correct coefficient (denoted by c in the discussion
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16 J. AN ET AL.

below) is constrained by the following constraints on the variance:

E

⎧⎪⎨
⎪⎩

η2

(1 + uk)
2

⎛
⎝1+uk∑

j=1

(
−yk

α
− ∇fγj

(xk−τk
)
)⎞⎠
⎛
⎝1+uk∑

j=1

(
−yk

α
− ∇fγj

(xk−τk
)
)⎞⎠

T
⎫⎪⎬
⎪⎭

= η2

(1 + uk)
2

1+uk∑
j=1

E

{(
−yk

α
− ∇fγj

(xk−τk
)
) (

−yk

α
− ∇fγj

(xk−τk
)
)T
}

= η2

1 + uk
Σk ∼ c2Δt,

where the cross terms vanish under the expectation. Plugging in Δt = √
η(1 − μ) shows that the

coefficient for the noise is

c = σ(t)η3/4

(1 + u(t))1/2(1 − μ)1/4

as shown in (4.2).
We would like to explore the dynamics of SME to find the dominating eigenvalue for later use. To

simplify the discussion, let us consider for example the quadratic loss objective f (x) = x2. By applying
the Ito’s formula to this SME, one obtains the following evaluation system for the second moments:

d

dt

⎡
⎣ E(X2

t )

E(Y2
t )

E(XtYt)

⎤
⎦ = −

⎡
⎣0 0 −2

0 2
√

(1 − μ)/η 4
2 −1

√
(1 − μ)/η

⎤
⎦
⎡
⎣ E(X2

t )

E(Y2
t )

E(XtYt)

⎤
⎦+

⎡
⎢⎣

Σ(t)η3/2

(1+u(t))(1−μ)1/2

0
0

⎤
⎥⎦ . (4.3)

A similar derivation is shown in Appendix B, and we just replace all Σ by Σ/(1 + u(t)) in the mini-
batching case. Here we make a simplifying but practical assumption that u(t) varies slowly. Now by
freezing u(t) to a constant u, (4.3) is a linear system with constant coefficients, its asymptotic behaviour
is determined by the eigenvalue of the coefficient matrix. An easy calculation shows that the eigenvalue
with largest real part is given by λ = −√

(1−μ)/η + √
(1−μ−8η)/η with a negative real part and therefore

the second moment of Xt decays exponentially. Moreover, (4.3) provides us with the stationary solution
for X2:

z∞ := E(X2∞) = Ση

2(1 + u(t))

( η

1 − μ
+ 1

2

)
. (4.4)

For a slowly varying u(t), z∞ = z∞(u(t)) is a function of u(t). Based on this simplication, rather
than applying the optimal control subject to the full second moment equation, we shall work with a
simpler evolution equation that asymptotically approximates the dynamics (imposed as a constraint).
More specifically, we pose the following optimal control problem for the time-dependent mini-batch
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STOCHASTIC MODIFIED EQUATIONS FOR THE ASYNCHRONOUS SGD 17

size:

min
u∈A

{
z(T) + γ

η

∫ T

0
u(s) ds

}
subject to (4.5)

d

dt
z(t) = Re(λ)(z(t) − z∞(u(t))) with z(0) = x2

0,

where z(t) models E(X2
t )—the quantity to minimize, A = {u(t) � 0} is an admissible control set as the

mini-batch size is greater than 1, and γ > 0 is a constant measuring the unit cost for introducing extra
gradient samples throughout the time. Below we show how to solve the optimal control problem (4.5).
The value function can be defined as

V(z, t) = min
u∈A

{
z(T) + γ

η

∫ T

t
u(s) ds

∣∣∣∣ d

dt
z(t) = F(u(t), z(t)), z(t) = z

}
, (4.6)

where F(u(t), z(t)) = Re(λ)(z(t) − z∞(u(t))) = Re(λ)
(
z(t) − Ση

2(1+u(t))

( η
1−μ

+ 1
2

))
. The corresponding

Hamilton–Jacobi–Bellman equation is

Vt + min
u∈A

{
F(u, z)Vz + γ

η
u

}
= 0 (4.7)

with V(0, t) = 0, V(z, T) = z.

Since minu∈A

{
F(u, z)Vz + γ

η
u
} = minu∈A

{−VzRe(λ)Ση
2(1+u)

( η
1−μ

+ 1
2

)+ γ
η

u
}
, Vz � 0, and Re(λ) < 0, the

minimum could be obtained by solving the following equation:

VzRe(λ)Ση

2(1 + u)2

(
η

1 − μ
+ 1

2

)
+ γ

η
= 0

with the derivative of the value function Vz to be determined later. Therefore, the optimal batch size u∗
as a function of Vz is

u∗(Vz) =
{√−VzRe(λ)Ση2

2γ

( η
1−μ

+ 1
2

)− 1 if −VzRe(λ)Ση2

2γ

( η
1−μ

+ 1
2

)
> 1,

0 otherwise.
(4.8)

The next step is to solve V to get an explicit formula for u∗. Placing u∗(Vz) back into the minimization
bracket, we obtain

min
u∈A

{
F(u, z)Vz + γ

η
u

}
=
{

Re(λ)zVz − γ
η

if −VzRe(λ)Ση2

2γ

( η
1−μ

+ 1
2

)
> 1,

Re(λ)
(
z − Ση

2

( η
1−μ

+ 1
2

))
Vz otherwise.

(4.9)
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This gives the Hamilton–Jacobi equation and we can solve it by using the method of characteristics.

Letting γ ∗ = −Re(λ)Ση2

2

( η
1−μ

+ 1
2

)
for notation convenience, we obtain the solution for V:

V(z, t) =

⎧⎪⎨
⎪⎩

Ση
2

( η
1−μ

+ 1
2

)+ (z − Ση
2

( η
1−μ

+ 1
2

))
eRe(λ)(T−t) if γ > γ ∗(

z − Ση
2

( η
1−μ

+ 1
2

))
eRe(λ)(T−t) − γ

η

(
t∗ + 1

Re(λ)

)
if γ � γ ∗, 0 � t � T − t∗

z eRe(λ)(T−t) − γ
η
(T − t) if γ � γ ∗, T − t∗ < t � T ,

(4.10)

where t∗ = 1
Re(λ)

log(
γ
γ ∗ ). For all cases, Vz = eRe(λ)(T−t). With this inserted back into (4.8), we conclude

that

u∗(t) =
{

0 if γ > γ ∗or 0 � t � T − t∗√
γ ∗
γ

eRe(λ)(T−t)/2 − 1 if γ � γ ∗, T − t∗ < t � T .
(4.11)

In particular, (4.11) tells that we should use a small mini-batch size (even size 1) during the early
time (for k � k∗ = (T − t∗)/η), since during this period the gradient flow dominates the dynamics.
After the transition time k∗ at which the noise starts to dominate, one shall apply mini-batch with size
exponentially increasing in k to reduce the variance. Figure 5 demonstrates that our proposed mini-
batching strategy outperforms the ASGD with a constant batch size (for example, applied in [4,7]).
Note that such strategy of increasing the batch size in later stage of training has been also suggested and
used in recent works in training large neural networks, e.g., [8,10].

5. Conclusion

In this paper, we have developed SMEs to model the ASGD algorithms in the continuous-time limit. For
quadratic loss functions, the resulting SME can be put into a Langevin equation with a solution known
to converge to the unique invariant measure with a convergence rate dictated by the corresponding
temperature. We utilize such information to compare with the momentum SGD and prove the
‘asynchrony begets momentum’ phenomenon. For the general case, though the resulting SME does not
have an explicitly known invariant measure, it still provides rather precise trajectory predictions for the
discrete ASGD dynamics. Moreover, with SME available, we are able to find optimal hyper-parameters
for ASGD algorithms by performing a moment analysis and leveraging the optimal control theory.
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Appendix A: miscellaneous computations in SMEs

In this section, we provide the missing computations in Section 2.

A.1 Evolution equation of Σ for nonlinear gradients

First, we have

Σk = E

((
−yk

α
− ∇fγk

(xk−τk
)
) (

−yk

α
− ∇fγk

(xk−τk
)
)T
)

.

By expanding the terms in the expectation and treating them individually, we arrive at the following:

Σk = 1

α2
ykyT

k + yk

α
E{∇fγk

(xk−τk
)T} + E{∇fγk

(xk−τk
)}yT

k

α
+ E{∇fγk

(vk)∇fγk
(xk−τk

)T}

= E{∇fγk
(xk−τk

)∇fγk
(xk−τk

)T} − 1

α2 ykyT
k

= μ

∞∑
m=0

E{∇fγk−1
(xk−1−m)∇fγk−1

(xk−1−m)T}(1 − μ)μm

+ (1 − μ)E{∇fγk
(xk)∇fγk

(xk)
T} − 1

α2 ykyT
k

= μ

(
Σk−1 + 1

α2 yk−1yT
k−1

)
+ (1 − μ)E{∇fγk

(xk)∇fγk
(xk)

T} − 1

α2 ykyT
k

= μ

(
Σk−1 + 1

α2
yk−1yT

k−1

)
+ 1 − μ

n

n∑
i=1

∇fi(xk)∇fi(xk)
T − 1

α2
ykyT

k . (A.1)

Notice that yk = μyk−1 − α(1 − μ)∇f (xk), and thus we have

yk−1yT
k−1 = 1

μ2

(
yk + α(1 − μ)∇f (xk)

)(
yk + α(1 − μ)∇f (xk)

)T
= 1

μ2

(
ykyT

k + α(1 − μ)yk∇f (xk)
T + α(1 − μ)∇f (xk)y

T
k + α2(1 − μ)2∇f (xk)∇f (xk)

T
)

.

Substituting it in (A.1), we obtain

Σk − Σk−1

α(1 − μ)
= − 1

α
Σk−1 + 1

α3μ
ykyT

k + 1

α2μ
yk∇f (xk)

T + 1

α2μ
∇f (xk)y

T
k

+ 1 − μ

αμ
∇f (xk)∇f (xk)

T + 1

αn

n∑
i=1

∇fi(xk)∇fi(xk)
T .

Using this and Δt = α(1 − μ), α =
√

η
1−μ

, we obtain the evolution equation (2.12).
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A.2 Evolution equation of Σ for linear gradients

Similar to Section 5.1, we have

Σk = E
(
(∇f (mk) − ∇fγk

(xk−τk
))(∇f (mk) − ∇fγk

(xk−τk
))T)

= μ(Σk−1 + ∇f (mk−1)∇f (mk−1)
T) + (1 − μ)E(∇fγk

(xk)∇fγk
(xk)

T) − ∇f (mk)∇f (mk)
T . (A.2)

We then subtract both sides by Σk−1 and divide by Δt = √
η(1 − μ). Moreover, we use the relation

xk = mk − μmk−1

1 − μ
= mk − μ(mk − pkΔt)

1 − μ
= mk + μ

√
η

1 − μ
pk

to replace xk in (A.2), and replace mk−1 by mk − pkΔt. Then, since the gradient of f is linear, rearrange
the terms we get

Σk − Σk−1√
η(1 − μ)

= −
√

1 − μ

η
Σk−1 −

√
1 − μ

η
∇f (mk)∇f (mk)

T + μ
√

η(1 − μ)∇f (pk)∇f (pk)
T

−μ(∇f (mk)∇f (pk)
T + ∇f (pk)∇f (mk)

T)

+ 1

n

√
1 − μ

η

n∑
i=1

∇fi

(
mk + μ

√
η

1 − μ
pk

)
∇fi

(
mk+μ

√
η

1 − μ
pk

)T

.

A.3 SME for SGD with momentum

Recall the iteration for the SGD with a constant momentum parameter is

vk+1 = μ′vk − η′∇fγk
(xk)

xk+1 = xk + vk+1,

which can be viewed as a second-order difference equation. To ensure the final equation with all terms
of order O(1), one needs η′ = (Δt)2. We can rewrite (2.6) as

vk+1√
η′ = vk√

η′ +√η′
(

− 1 − μ′

η′ vk − ∇f (xk)

)
+√η′(∇f (xk) − ∇fγk

(xk))

xk+1 = xk + vk+1√
η′
√

η′. (A.3)

Let us introduce p = v/
√

η′. In order to have
√

η′(∇f (xk) − ∇γk
f (xk)) ∼ cΔBt, we choose c ∼

σ(η′)1/4. Therefore, we obtain the first order weak approximation, which can also be viewed as the
Euler–Maruyama discretization of the following SDE:

dPt = −∇f (Xt) dt − 1 − μ′
√

η′ Pt dt + σ(Xt)(η
′)

1
4 dBt

dXt = Pt dt.
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Appendix B: dynamics of SME-ASGD (2.11)

We consider the one dimensional case with f (x) = 1
2 ax2. The goal here is to give an analysis of the

dynamics of first and second moment of X and Y under (2.11). Taking expectation, we obtain

d

[
E(Yt)

E(Xt)

]
=
[
−
√

1−μ
η

−a

1 0

][
E(Yt)

E(Xt)

]
dt = A(μ, η)

[
E(Yt)

E(Xt)

]
dt.

One observes that the eigenvalues of A(μ, η) are λ1,2(A) = 1
2

(
−
√

1−μ
η

±
√

1−μ
η

− 4a

)
, the real parts

of both are negative as long as a > 0. From this, we conclude that, when a > 0, the expectation of Xt
decays exponentially. The corresponding stationary solutions are given by

E(X∞) = E(Y∞) = 0.

For the second moment, we end up with the following equations by using the Ito’s formula:

dE(X2
t ) = 2E(XtYt) dt + Σ(t)

η3/2

(1 − μ)1/2 dt

dE(Y2
t ) = −2aE(XtYt) dt − 2

√
1 − μ

η
E(Y2

t ) dt

dE(XtYt) = −aE(X2
t ) dt + E(Y2

t ) dt −
√

1 − μ

η
E(XtYt) dt. (B.1)

In order to study the behaviour of the second moments, we can rewrite (B.1) as

d

⎡
⎣ E(X2

t )

E(Y2
t )

E(XtYt)

⎤
⎦ =

⎡
⎢⎢⎣

0 0 2

0 −2
√

1−μ
η

−2a

−a 1 −
√

1−μ
η

⎤
⎥⎥⎦
⎡
⎣ E(X2

t )

E(Y2
t )

E(XtYt)

⎤
⎦ dt +

⎡
⎢⎣Σ(t) η3/2

(1−μ)1/2

0
0

⎤
⎥⎦ dt. (B2)

The corresponding stationary solutions are

E(X∞Y∞) = −Ση3/2

2(1 − μ)1/2 , E(Y2∞) = aΣη2

2(1 − μ)
, and E(X2∞) = Ση2

2(1 − μ)
+ Ση

2a
.

Let us introduce

B(μ, η) =

⎡
⎢⎢⎣

0 0 2

0 −2
√

1−μ
η

−2a

−a 1 −
√

1−μ
η

⎤
⎥⎥⎦ .

The eigenvalues of B(μ, η) are

λ1 = −
√

1 − μ

η
, λ2,3 = λ± = −

√
1 − μ

η
±
√

1 − μ

η
− 4a.

We can see that the real parts of all roots are negative as long as a > 0. Moreover, the second moment
of Xt decays exponentially, with the rate given by Re(λ+) since λ+ is the eigenvalue with the largest
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(negative) real part. We obtain the largest descent rate Re(λ+) when the second part
√

1−μ
η

− 4a in λ+
is purely imaginary, i.e., when μ takes

μopt = max{1 − 4aη, 0}. (B.3)

We note that (B.3) also gives a suggestion to choose optimal step size η: when μ is given, the maximal
step size we can choose is ηopt = 1−μ

4a . Any step size beyond that will cause oscillations in the SME and
the corresponding ASGD.
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