
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 2, pp. B379–B404
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Abstract. This paper presents an efficient preconditioner for the Lippmann–Schwinger equation
that combines the ideas of the sparsifying and the sweeping preconditioners. Following first the idea
of the sparsifying preconditioner, this new preconditioner starts by transforming the dense linear
system of the Lippmann–Schwinger equation into a nearly sparse system. The key novelty is a
newly designed perfectly matched layer (PML) stencil for the boundary degrees of freedoms. The
resulting sparse system gives rise to fairly accurate solutions and hence can be viewed as an accurate
discretization of the Helmholtz equation. This new PML stencil also paves the way for applying the
moving PML sweeping preconditioner to invert the resulting sparse system approximately. When
combined with the standard GMRES solver, this new preconditioner for the Lippmann–Schwinger
equation takes only a few iterations to converge for both two-dimensional and three-dimensional (3D)
problems, where the iteration numbers are almost independent of the frequency. To the best of our
knowledge, this is the first method that achieves near-linear cost to solve the 3D Lippmann–Schwinger
equation in high-frequency cases.
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1. Introduction. This paper concerns the time-harmonic scattering problem
(
−∆− ω2

c(x)2

)
(u(x) + uI(x)) = 0, x ∈ Rd,

lim
r→∞

r(d−1)/2

(
∂

∂r
− iω

)
u(x) = 0,

(1)

where uI(x) is the given incoming wave, u(x) is the scattered field to solve, ω is the
angular frequency, and c(x) = Θ(1) is the velocity field such that c(x) = 1 outside
some bounded region Ω. See Figure 1 for an example. The incoming wave uI(x)
satisfies the homogeneous Helmholtz equation

(−∆− ω2)uI(x) = 0, x ∈ Ω.(2)

Let m(x) = 1− 1/c(x)2 be the perturbation field. Rewriting (1) in terms of m(x)
we have

(−∆− ω2 + ω2m(x))u(x) = −ω2m(x)uI(x), x ∈ Rd.(3)

Let G(x) be Green’s function of the free space Helmholtz equation
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B380 FEI LIU AND LEXING YING

Fig. 1. An example of the incoming wave uI(x) and the scattered field u(x).

G(x) =


i

4
H

(1)
0 (ω|x|), d = 2,

exp( iω|x|)
4π|x|

, d = 3.

Convolving both sides of (3) with G(x) gives

u(x) + ω2

∫
Ω

G(x− y)m(y)u(y) dy = −ω2

∫
Ω

G(x− y)m(y)uI(y) dy,(4)

which is known as the Lippmann–Schwinger equation written in terms of the scattered
field u(x).

Solving the integral equation (4) has several advantages compared to solving (1).
First, since m(x) is compactly supported, we only need to solve (4) in Ω. The scattered
field u(x) for x ∈ Ωc is explicitly given by (4) once u(x) in Ω is known. More
importantly, the resulting wave field u(x) in Rd automatically satisfies the Sommerfeld
radiation condition. On the contrary, for (3) one has to truncate the domain Rd to
some bounded region and impose appropriate boundary conditions to simulate the
radiation condition. Second, most local discretizations of (3) suffer from the pollution
effect [4] due to inaccurate dispersion relations. Equation (4) avoids this problem by
leveraging Green’s function explicitly in the equation.

However, discretizing (4) also raises several issues. First, the resulting linear
system is dense. By the Nyquist theorem, a constant number of points per wavelength
is needed to capture the oscillations; thus, the number of degrees of freedom N is at
least Θ(ωd). In high-frequency cases, N can be rather large where it is impractical
to solve general dense linear systems with the direct method. Second, the discretized
system can have a very large condition number for nonnegligible perturbations m(x)
due to multiple scattering when ω is large. As a result, most standard iterative solvers
require a large number of iterations to converge.

Recently, progress has been made to solve the Lippmann–Schwinger equation
[2, 7, 8, 1, 28, 18, 24, 27, 31, 33]. [28] proposes a numerical scheme that has spectral
accuracy for smooth media by truncating the interactions on the physical domain. [1]
presents an adaptive method for the Lippmann–Schwinger equation in two dimensions
(2D). [8] solves the 2D Lippmann–Schwinger equation with a technique which is now
often referred to as recursive interpolative factorization or recursive skeletonization,
where the setup cost is O(N3/2) and the solve cost is O(N logN). [31] approximates
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SPARSIFY AND SWEEP B381

the discretized dense system by a sparse system and applies the nested dissection
factorization [15] to the sparse system as a preconditioner to the original dense system.
The costs are dominated by merely the nested dissection solver, which are O(N3/2)
and O(N logN) for setup and solve in 2D, O(N2) and O(N4/3) for setup and solve in
three dimensions (3D), respectively. [33] combines the sparsifying preconditioner [31]
with the method of polarized traces [32] to design a preconditioner for the Lippmann–
Schwinger equation in 2D, which achieves O(N) setup and O(N logN) solve costs.
As far as we know, [33] is the first to achieve near-linear cost in 2D high-frequency
cases.

Meanwhile, a series of domain decomposition methods were developed to solve
the Helmholtz equation with Sommerfeld radiation condition [13, 14, 25, 9, 10, 32,
29, 19]. The idea is to divide the domain into slices and impose suitable transmission
conditions between these slices. These methods reduce the computational costs to
O(N) for setup and O(N) for solve in 2D and O(N4/3) for setup and O(N logN) for
solve in 3D, which is a notable improvement over the nested dissection method. A
recursive technique [20] further reduces both the setup and the solve costs in 3D to
O(N).

This work combines the sparsifying preconditioner in [31] with the sweeping
preconditioner in [14] to develop a new preconditioner which solves the Lippmann–
Schwinger equation in near-linear cost. The sketch of the method is as follows. We
first construct two types of compact stencil schemes to approximate the discretized
dense system by a sparse system and then apply the sweeping factorization to the
sparse system. The solving process of the sweeping factorization induces an approxi-
mating solution, which defines a preconditioner to the original system. The setup and
application costs are O(N) and O(N) in 2D and O(N4/3) and O(N logN) in 3D, re-
spectively. Furthermore, the costs in 3D can be reduced to O(N) for setup and O(N)
for application by a recursive sweep similar to [20]. When combined with the standard
GMRES solver, the preconditioner only needs a few iterations to converge, where the
iteration number is almost independent of the angular frequency ω as shown by the
numerical results. To the best of our knowledge, this is the first algorithm to solve
the Lippmann–Schwinger equation in near-linear cost in 3D high-frequency cases.

Another highlight of this work is the newly designed compact stencil introduced
for the preconditioner. The design approach focuses on fitting the stencils to the
wave data given by the analytic expressions, such as Green’s function. This approach
is quite different from the state-of-the-art methods [26, 17, 3, 5] to design compact
stencils, which focus more on the analytic property of the underlying differential oper-
ator. Numerical results show that, when used as a method for solving the Helmholtz
equation, this scheme is comparably as accurate as the quasi-stabilized finite element
method (QSFEM) method in [5] in terms of the phase error.

The rest of the paper is organized as follows. Sections 2 and 3 present the pre-
conditioners and the numerical results in 2D and 3D, respectively, where the detailed
approach is explained in section 2 for the 2D case, and section 3 generalizes it to
3D with necessary modifications. Section 4 presents numerical results to show the
validity of the compact stencil sparsifying scheme presented in this work when used
as a direct method. Conclusions and future work are given in section 5.

2. Preconditioner in 2D. This section describes the preconditioner for the
2D Lippmann–Schwinger equation. Starting by formalizing the dense linear system
obtained from discretization, we transform it into an approximately sparse one by
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B382 FEI LIU AND LEXING YING

introducing two types of compact stencils. After that, the sweeping factorization is
used to solve the truncated sparse system approximately. The whole process can then
be treated as a preconditioner for the original dense system of the Lippmann–Schwinger
equation.

2.1. Problem formulation. Without loss of generality, we assume that Ω =
(0, 1)2 and that m(x) is supported in Ω. The task is to discretize the Lippmann–
Schwinger equation (4) and solve for u(x) in Ω.

The domain Ω is discretized by a uniform Cartesian grid, which allows for the
rapid evaluation of the convolution in (4) by fast Fourier transform. Let n be the
number of grid points per unit length, h := 1/(n + 1) be the step size, and N := n2

be the number of degrees of freedom.
Denote i as the 2D index point and pi as the grid point with step size h by

i := (i1, i2), pi := ih = (i1h, i2h), i1, i2 ∈ Z.

Let I be the index set of the grid points in Ω and D be the set of the corresponding
grid points given by

I := {i = (i1, i2) : 1 ≤ i1, i2 ≤ n}, D := {pi : i ∈ I}.

We also introduce Ī as the index set for Ω̄ and ∂I as the boundary index set by

Ī := {i = (i1, i2) : 0 ≤ i1, i2 ≤ n+ 1}, ∂I := Ī \ I,

and correspondingly we have D̄ and ∂D as

D̄ := {pi : i ∈ Ī}, ∂D := {pi : i ∈ ∂I}.

Let ui be the numerical solution of (4) at pi for i ∈ I. To compute the integral
in (4), we use the Nyström method∫

Ω

G(pi − y)m(y)u(y) dy ≈
∑
j∈I

ki−jmjuj ,

where

mi := m(pi), i ∈ I, ki := G(pi)h
2, i 6= (0, 0),

and k(0,0) is the weight given by a quadrature correction at the singular point of G(x)
at x = 0, which achieves O(h4 log(1/h)2) accuracy when m(x) is smooth [12]. This
gives the discretized equation

ui + ω2
∑
j∈I

ki−jmjuj = gi, i ∈ I,(5)

where

gi := −ω2
∑
j∈I

ki−jmj [uI ]j , i ∈ I,

and [uI ]j := uI(pj) is the discrete value of the incoming wave. Higher-order quadra-
ture can be achieved by using more extended local quadrature correction [12].
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SPARSIFY AND SWEEP B383

With a slight abuse of the notations, we extend the discrete vectors m and g to
the whole 2D grid by zero padding:

mi := 0, gi := 0, i ∈ Z2 \ I.

Introducing matrix K with Ki,j := ki−j , (5) can be written into a more compact form
as

(I + ω2KM)u = g,(6)

where M := diag(m).
A subtle difference between (5) and (6) is that (5) is a set of equations for the

unknowns with indices i ∈ I, while (6) can be regarded as an equation set defined on
the infinite index set Z2, where the unknown vector u is also extended to the whole
2D grid with the extension value determined by the equation implicitly. We have two
observations for (6):
• The solution of (6) agrees with the one of (5) in I. To get the numerical

solution of (4) in Ω, we can solve (6) and then restrict the solution to I instead
of solving (5).

• The solution of (6) does not match the numerical solution of (4) outside Ω
since the zero padding of g differs from the discretized value of the right-hand
side of (4) in Ωc. Nonetheless, this is not an issue, as we only care about the
solution of (4) in Ω.

One may ask, why do we extend the discrete domain to the infinite grid and
consider a problem with infinite size? Moreover, the zero padding pattern of g seems
rather irrational, as it creates discontinuities at ∂D. The answer is that we are not
going to actually solve the Z2-size problem. The purpose of extending the unknown
to a larger domain is to introduce the wave attenuation by a perfectly matched layer
(PML) on the extended grid to simulate the Sommerfeld radiation condition as we
shall see in subsection 2.2.2. The zero padding of g is to ensure that there is no source
outside Ω such that the PML approximation holds.

The reader may notice that, if we just use the discretized value of the right-hand
side of (4) defined on the whole plane, the solution will also satisfy the Sommerfeld
condition, so it seems meaningless to introduce the zero padding. It is true that the
right-hand side of (4) on the whole plane will induce a solution satisfying the radiation
condition. However, in some cases, when solving (5), we are only given g defined in I
without knowing the actual incoming wave uI , and it is computationally impractical
to get the extension of g determined by (4). This is especially true when we develop
preconditioners where the input only involves the right-hand side in the domain of
interest.

With the extended problem (6), we are now ready to build a sparse system to
approximate (5).

2.2. Sparsification. In this section, we adopt the idea of the sparsifying pre-
conditioner [31] to build a sparse system which serves as an approximation to (5).
The sparse system to be constructed has the same sparsity pattern as a compact
stencil scheme; i.e., each equation only involves the unknowns at one grid point and
its neighbor points, unlike (5), where each equation is dense in I.

To be specific, we define µi as the neighborhood for the index i:

µi := {j : ‖j − i‖∞ ≤ 1}.
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B384 FEI LIU AND LEXING YING

Now the task is to build for each point i a local stencil supported only in µi. We shall
build two types of stencils in what follows. The first type is for the interior points,
while the second type is for the points near the boundary which are inside what we
call “the PML region.”

The PML [6, 16, 11] is a technique to attenuate the waves exponentially near
the boundary of the domain so that the zero Dirichlet boundary conditions can be
imposed directly to simulate the radiation boundary condition without bringing in
too much error. We will explain the PML usage during the construction of the second
type of the stencils.

Let us start with extending our domain Ω. Denote Ωh as Ω with an h-size exten-
sion and Ωh+η as the PML extension of Ωh with width η given by

Ωh := (−h, 1 + h)2, Ωh+η := (−h− η, 1 + h+ η)2.

Here η = bh is the PML width, where b = O(1) is the number of discrete layers in
each side of the PML region. η is typically around one wavelength. The PML region
Ωh+η \Ωh is where we will attenuate the scattered field u(x) in subsection 2.2.2. Note
that there is a small h-distance between the domain of interest Ω and the PML region
Ωh+η \Ωh. This small distance is introduced on purpose, and the reason will be clear
later.

The corresponding index sets in these regions are

Ih := {i : 0 ≤ i1, i2 ≤ n+ 1}, Ih+η := {i : −b ≤ i1, i2 ≤ n+ 1 + b}.

Similar to the notations Ī, ∂I,D, ∂D, and D̄, we introduce Īh, ∂Ih,Dh,Dh+η, ∂Dh,
etc. as the corresponding grid point sets, boundary sets, closures, and so on. The
meanings are straightforward, and we omit the formal definitions. See Figure 2 for
an illustration.

We now describe how to design two types of stencils for the unknowns indexed
by Ih+η: first for the ones in Ih and then for the ones in Ih+η \ Ih. At the end, we
assemble them together to form our sparse system.

2.2.1. Stencils for the interior points in Ih. Following the approach in [31],
we design the first type of the stencils for the neighborhood µi, where i ∈ Ih (see
Figure 2, the 3 × 3 green grids). Taking out the equations in (6) indexed by µi we
have

ui + ω2
∑
j∈I

Ki,jmjuj = gi, i ∈ µi,(7)

which can be written as

uµi
+ ω2(Kµi,µi

[mu]µi
+Kµi,µc

i
[mu]µc

i
) = gµi

.(8)

Here are some explanations for the notations in (8):
• The subscript µi stands for the corresponding vector restricted to the index set
µi; for example, [mu]µi

is the vector of the elementwise multiplication of m and
u restricted to µi.

• µci := I \ µi, which is the complement of µi with respect to I.
• Kµi,µc

i
is the submatrix of K with row index set µi and column index set µci .

Let us consider a linear combination of the equations in (8). Suppose α is a
column vector supported on µi. Multiplying both sides of (8) by α∗ gives

α∗uµi
+ ω2(α∗Kµi,µi

[mu]µi
+ α∗Kµi,µc

i
[mu]µc

i
) = α∗gµi

,(9)

where α∗ is the conjugate transpose of α.
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SPARSIFY AND SWEEP B385

x1

x2

x1 = 1

x2 = 1

Fig. 2. This figure is an illustration of Ω,Ωh,Ωh+η ,D,Dh, etc., where n = 18, b = 4. The
inner green box is the boundary of Ω, the outer green box (with blue points on it) is the boundary
of Ωh, and the big blue box (with gray points on it) is the boundary of Ωh+η. The set of the all
the green points is Dh, and the set of all the blue points is Dh+η \ Dh. D is the set of all the
green points strictly inside the inner green box, while ∂D consists of the points exactly located on
the inner green box. The gray points form ∂Dh+η, where we will impose the zero Dirichlet boundary
conditions after wave attenuation. Each of the 3 × 3 green grids corresponds to a neighborhood µi
for some i ∈ Ih, where we construct stencils of the first type. Correspondingly, the 3× 3 blue grids
are for µi, with i ∈ Ih+η \ Ih, where we build stencils of the second type.

To design a local stencil, we hope that the resulting equation (9) only involves
unknowns indexed by µi. Observing the left-hand side of (9), we found if α∗Kµi,µc

i
≈ 0,

then we can truncate the terms involving uµc
i
, and the resulting equation will be local.

But does there exist an α such that α∗Kµi,µc
i
≈ 0? The answer is yes. The reason is

that the elements of K are defined by Green’s function G(x), which satisfies

(−∆− ω2)G(x) = 0, x ∈ R2 \ {(0, 0)}.(10)

Each column of the matrix Kµi,µc
i

can be treated as Green’s function centered at some
grid point indexed by j ∈ µci and evaluated at the points indexed by the neighborhood
µi, which does not involve the singular point of G(x) at x = 0. Thus, it is reasonable
to expect some local stencil α, which can be thought of as a discretization of the
local operator (−∆− ω2) such that α∗Kµi,µc

i
≈ 0. By the translational invariance of

Green’s function, to find such α, it suffices to require that α∗Kµ,µc ≈ 0, where

µ := µ0 = {j : ‖j‖∞ ≤ 1}, µc := {i : −n ≤ i1, i2 ≤ n} \ µ,

which means that we can translate the index i to the origin and consider an equivalent
problem. Here the complement of µ is taken with respect to a larger index set. The
reason is that, when we translate different indices i to the origin, the corresponding
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B386 FEI LIU AND LEXING YING

complement µci will also be translated. The larger set is taken as the union of all those
translated complements to ensure that the condition is sufficient.

To minimize α∗Kµ,µc , we consider the optimization problem

min
α:‖α‖2

‖α∗Kµ,µc‖2.(11)

The solution is the left singular vector corresponding to the smallest singular value of
Kµ,µc , which can be solved in O(N).

Once we have α, we compute β by setting

β∗ := α∗Kµ,µ.(12)

Then (9) can be approximated as

α∗uµi
+ ω2β∗[mu]µi

≈ α∗gµi
.(13)

This defines the local stencil for each i ∈ Ih.
Note that, if we do the same thing for i /∈ Ih, the right-hand side α∗gµi

will
be 0 due to the zero padding of g. If we build the stencils for all i ∈ Z2 \ Ih and
combine them with the Sommerfeld radiation condition at infinity, it will induce a
discrete DtN map at ∂Ih. This linear map, though existing in theory, is dense and
expensive to compute. Subsection 2.2.2 circumvents this issue by exploiting PML on
the extended domain and introducing the second type of stencils to approximate this
dense map efficiently.

Now why do we introduce the h-size padded domain Ωh and build the first type of
stencils for i ∈ Ih rather than just for I? The reason is that, for i ∈ ∂I, α∗gµi is not
necessarily zero; thus, we cannot assign ∂I to the second type where the corresponding
right-hand side is zero. So we enlarge Ω by h-size and build stencils of the first type
for Ih = Ī. Figure 3 shows this subtlety in one dimension (1D) as an illustration.

2.2.2. Stencils for the PML points in Ih+η \ Ih. Next, we design the
stencils for i ∈ Ih+η \ Ih (see Figure 2, the 3 × 3 blue grids). Define the auxiliary
function

x1

Support of g

Support of f

Ω

Ωh

Ωh+η

h0−h−h− η 1 1 + h+ η

PMLPML

Fig. 3. This figure is an illustration of the supports of the discrete vectors g and f in 1D,
where n = 18, b = 4, and fi := α∗gµi . We see that by introducing the stencil α, the support of g is
enlarged to the support of f by one grid point on each side.
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σ(x) :=


−C
ω

(
x+ h

η

)2

, if − h− η < x ≤ −h,

0, if − h < x < 1 + h,

C

ω

(
x− 1− h

η

)2

, if 1 + h ≤ x < 1 + h+ η,

where C ∼ Θ(1) is some positive constant. We attenuate the scattered field u(x) in
the PML region Ωh+η \ Ωh by introducing the complex stretching

xσ := (xσ1 , x
σ
2 ) = (x1 + iσ(x1), x2 + iσ(x2)),

uσ(x) := u(xσ) = u(x1 + iσ(x1), x2 + iσ(x2)),

uσi := uσ(pi) = u(pσi ).

By changing variable from x to xσ, we know that the function uσ(x) satisfies the
modified Helmholtz equation in the PML region:

(
−

2∑
d=1

(
∂d

1 + iσ′(xd)

)2

− ω2

)
uσ(x) = 0, x ∈ Ωh+η \ Ωh.(14)

A simple way to build local stencils for Ih+η \ Ih is to discretize (14) explicitly
with some local scheme, such as the central difference scheme. Unfortunately, it turns
out to be not accurate enough to do so. We adopt a different approach. The idea is
similar to what we did in the previous section, where we aim to find some local stencil
to annihilate a set of given functions evaluated at the points indexed by µi. In the
above, we used Green’s function G(x) to design the stencil α. Here we use a set of
“modified plane waves” to achieve the same goal.

Specifically, we first note that the plane wave function

F (x) := exp( iω(r · x)), ‖r‖2 = 1,

satisfies the free space Helmholtz equation(
−∆− ω2

)
F (x) = 0, x ∈ R2.(15)

Let Fσ(x) := F (xσ) be the complex stretching of F (x). We immediately have that
Fσ(x) satisfies (14) by definition. If we were to design a local stencil γ for µi, where
i ∈ Ih+η \ Ih, we would hope that γ∗Fσµi

≈ 0, where Fσµi
is the function Fσ(x)

evaluated at the grid points indexed by µi. Note that any direction r such that
‖r‖2 = 1 induces a “modified plane wave” Fσ(x). We hope to solve γ by annihilating
as many r as possible. To be precise, let R be a set of directions where the elements
are sampled uniformly from the unit circle {r : ‖r‖2 = 1} and Fσµi,R

be a matrix of
size |µi| × |R|, each column of which is a modified plane wave function Fσ(x) with a
direction r ∈ R, evaluated at the grid points indexed by µi. Then we solve γ by

min
γ:‖γ‖2=1

‖γ∗Fσµi,R‖2.(16)

Intuitively, it is better to increase the sample size |R| to improve the reliability
of the stencil. However, larger sample size also leads to more computational cost.
Fortunately, it turns out that not too many samples are needed for a reliable result.
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translational invariance in x1

translational invariance in x1

tr
an

sl
a
ti

on
a
l

in
va

ri
an

ce
in
x

2

tr
an

sl
at

io
n

a
l

in
va

ri
a
n

ce
in
x

2

symmetry

symmetry

symmetry

compute stencils
here

Fig. 4. By the symmetry and the translational invariance of the complex stretching along each
dimension, one only needs to compute the PML stencils for the points marked with red color near
the top right corner.

It suffices to use only the eight most common directions—north, south, west, east,
northwest, northeast, southwest, and southeast—to form R, and γ is given by the
vector perpendicular to the eight corresponding vectors on µi. Note that the solution
is unique up to a coefficient ±1 since we have eight independent modified plain waves
and the size of the neighborhood µi is nine.

In the PML region, we need to compute different stencils for different neighbor-
hoods due to the lack of translational invariance as a result of the complex stretching.
Nevertheless, by the symmetry of the stretching, we only need to compute the stencils
near a corner of Ih+η \ Ih, which takes only O(b2) work in total. See Figure 4 for an
illustration.

We denote γi as the stencil for µi; then the corresponding approximating
equation is

γ∗i u
σ
µi
≈ 0.(17)

This defines the local stencil for each i ∈ Ih+η \ Ih.

2.2.3. Assemble together. Assembling (13) and (17) together and noting that
uσi = ui for i ∈ Īh, we have{

α∗uσµi
+ ω2β∗[muσ]µi

≈ α∗gµi
, i ∈ Ih,

γ∗i u
σ
µi
≈ 0, i ∈ Ih+η \ Ih,

(18)

where α, β, and γ are given in (11), (12), and (16), respectively. Noticing also that
uσ almost satisfies the zero Dirichlet boundary conditions

uσi ≈ 0, i ∈ ∂Ih+η,

we can introduce the sparse linear system
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α∗ũµi

+ ω2β∗[mũ]µi
= α∗gµi

, i ∈ Ih,
γ∗i ũµi

= 0, i ∈ Ih+η \ Ih,
ũi = 0, i ∈ ∂Ih+η,

for the unknown ũ defined on Dh+η that serves as an approximation to uσ. In what
follows, we write this system conveniently as

Hũ = f,(19)

where the right-hand side f is given by

fi :=

{
α∗gµi

, if i ∈ Ih,
0, if i ∈ Ih+η \ Ih.

The system (19) is defined on Dh+η. To get the unknowns on D, we simply
solve (19) and extract the solutions on D. The result is an approximation to the true
solution of (5), and this process can serve as a preconditioner for the linear system
(5). In the next section, we present an approach for approximating the solution of
(19) efficiently by leveraging the idea of the sweeping preconditioner.

2.3. Sweeping factorization. In this section, we adopt the sweeping factoriza-
tion to solve the sparse system (19) approximately. The main idea of the sweeping
factorization is to divide the domain into slices and eliminate the unknowns slice by
slice. An auxiliary PML region is introduced for each slice to build a subproblem to
approximate the inverse of the Schur complement during the Gaussian elimination to
save computational cost.

To be specific, we first divide the 2D grid into ` slices along the x1 direction. Each
slice contains only a few layers. The leftmost slice contains the left PML region, and
the rightmost one contains the right PML region (see Figure 5). For simplicity, we
assume that each of the middle slices contains b layers and each of the two boundary
slices contains 2b layers – b normal layers plus b attenuating layers in the PML region.
Let D1, . . . ,D` be the discrete points in each slice correspondingly, and define ũ[i] and
f[i] as the restrictions of ũ and f on Di, respectively. The sparse system (19) can be
written as the block tridiagonal form

H[1,1] H[1,2]

H[2,1] H[2,2]

. . .

. . .
. . .

. . .

. . .
. . . H[`−1,`]

H[`,`−1] H[`,`]




ũ[1]

ũ[2]

...
ũ[`−1]

ũ[`]

 =


f[1]

f[2]

...
f[`−1]

f[`]

 ,

where H[i,j]’s are the corresponding sparse blocks. Note that we use the bracket
subscripts [·] to emphasize that the corresponding unknowns are grouped together in
each slice.

We introduce the Schur complement S[i] and its inverse T[i] slice by slice recursively
as

S[1] = H[1,1], T[1] = S−1
[1] ,

S[i] = H[i,i] −H[i,i−1]T[i−1]H[i−1,i], T[i] = S−1
[i] , for i = 2, . . . , `.

D
ow

nl
oa

de
d 

08
/0

3/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B390 FEI LIU AND LEXING YING

D1 D2 D3 D4 D5

Fig. 5. The grid points are divided into five slices along the x1 direction. Each of the middle
slices contains four layers, and each of the two boundary ones contains four more attenuating layers
in the PML region.

Then we can solve ũ by the Gaussian elimination

ũ[1] = T[1]f[1],

ũ[i] = T[i](f[i] −H[i,i−1]ũ[i−1]), for i = 2, . . . , `,

ũ[i] = ũ[i] − T[i](H[i,i+1]ũ[i+1]), for i = `− 1, . . . , 1.

The expensive part of the above process is to compute T[i] and apply it to the
vectors on Di. If, say, we formed T[i] directly, the computation would take O(b3n3)
steps and the application O(b2n2) steps. The sweeping factorization reduces the cost
by approximating T[i] with a subproblem. To introduce the approximation, we first
make a key observation of the operator T[i]: Inverting the top left i × i block of H,
one notices that T[i] appears at the bottom right block of the resulting matrix. In
other words,

H−1
[1:i,1:i] =



H[1,1] H[1,2]

H[2,1] H[2,2]

. . .

. . .
. . .

. . .

. . .
. . . H[i−1,i]

H[i,i−1] H[i,i]



−1

=



∗ ∗ . . . ∗ ∗
∗ ∗ . . . ∗ ∗
...

...
. . .

...
...

∗ ∗ . . . ∗ ∗
∗ ∗ . . . ∗ T[i]


.

This means that T[i] is the restriction of H−1
[1:i,1:i] to Di. Think of T[i] as an operator

from some input vector v to T[i]v on the grid Di. Then given v, we can compute T[i]v
by solving the equation
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SPARSIFY AND SWEEP B391

H[1,1] H[1,2]

H[2,1] H[2,2]

. . .

. . .
. . .

. . .

. . .
. . . H[i−1,i]

H[i,i−1] H[i,i]




∗
∗
...
∗
w

 =


0
0
...
0
v

 ,(20)

where w is exactly equal to T[i]v. That is to say, given v, we can find T[i]v by padding
v with zeros on D1:(i−1), solving the unknowns on D1:i by (20), and then extracting
the solution on Di.

Note that the right-hand side of (20) is zero on D1:(i−1); thus, the only role of
the first i − 1 blocks of equations in (20) is to induce the radiation condition at the
left boundary of Di implicitly. To simulate this radiation condition, one can directly
put the PML region to the left side of Di instead of putting it far away on D1. That
is the key idea of the sweeping factorization: move the PML region adjacent to the
domain of interest Di and approximate the operator T[i] by solving a much smaller
system compared to (20) (see Figure 6).

By introducing the modified plain waves, we can build the local stencils for points
in the auxiliary PML region on the left of Di similar to what was done in subsec-
tion 2.2.2. A subtle difference is that the local spatial frequency is perturbed to
ω
√

1−m(x) instead of ω at location x, and we need to use this local frequency to build
the local stencil for each point.

To save computational cost of the stencil construction, we do not use the exact
value of the local frequency. Though building local stencil in the PML region with
the exact local frequency takes only constant steps per point in theory, the constant

D1 D2 D3 D4 D5

T[3]

D1 D2 D3 D4 D5

T̃[3]

Fig. 6. This figure is an illustration of the moving PML method. Left: T[3] is the restriction

of H−1
[1:3,1:3]

to the discrete domain D3. Right: We move the PML adjacent to D3 to induce the

approximation operator T̃[3] as the restriction to D3 of the corresponding subproblem on D2:3.
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is not small since it involves finding the kernel of a 8× 9 matrix. Instead, we consider
the square frequency range:

[ω2(1−max{m(x)}), ω2(1−min{m(x)})].

We choose some samples uniformly from this range interval and build local stencils
only for those samples. Then for each point in the PML region, we assign the stencil to
be the one from the samples with the closest local square frequency value, a technique
introduced earlier in [21]. In practice, only n samples will be enough for an accurate
approximation. So it only takes O(bn) steps to build these stencils, which is negligible
compared to the problem size O(n2). An intuition of why we only need n samples is
that O(ω2/n) is the size of the variation in one neighborhood µi on average, so there
is no need to make the sampling scale smaller than that.

With the auxiliary PML region on the left of Di, we can solve a much smaller
system instead of solving (20). In our setting, the set of the auxiliary PML points for
Di is just Di−1 since the width of the PML region is the same as Di−1. The auxiliary
system can be written as [

H̃[i−1,i−1] H̃[i−1,i]

H[i,i−1] H[i,i]

] [
∗
w

]
=

[
0
v

]
,(21)

where the bottom block of equations is inherited from (20) and the top block is defined
by the local stencils of the second type in the auxiliary PML region, the role of which
is to simulate the radiation boundary condition on the left of Di.

A minor problem here is that the auxiliary PML region for D2 consists only the
normal layers in D1 rather than all the layers, so (21) needs a slight modification
for i = 2: we restrict the columns of H[2,1] to the normal layers in D1 so that the
two blocks are compatible. This problem is inessential, and the patch here is only to
make the discussion strictly correct. In practice, the width of the slices and the PML
regions can be rather flexible.

Equation (21) defines an approximating operator T̃[i] : v → w for i ∈ 1 . . . , ` by

restricting the system (21) on D(i−1):i to Di. Note that for i = 1, T̃[1] is exactly
equal to T[1] if we treat D0 as ∅ naturally. Compared to (20), (21) is a much smaller
quasi-1D problem, which can be solved efficiently with the LU factorization.

2.4. Putting together. We now have all the tools needed to design a linear-
complexity preconditioner for the discretized Lippmann–Schwinger equation (5). The
setup and application processes of the preconditioner are given by Algorithms 1 and 2,
respectively. The slice width b is typically a small integer less than 10; thus, both the
setup and the application costs are linear.

We would like to make some comments below for the actual implementation of
the algorithm.

1. The algorithm presented above constructs the sweeping factorization along
the x1 direction from left to right. Indeed, since we have radiation condi-
tions on all sides of the domain, we can construct the factorization from both
sides and sweep toward the middle slice. The two sweeping fronts can be
processed independently until they meet in the middle, where they exchange
some local information in the middle slice and then sweep back to the bound-
aries independently. This is potentially helpful for the parallelization of the
algorithm.
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Algorithm 1. Setup of the preconditioner for the system (5). Complexity = O(b2N).

1: Compute the stencils α and β. Complexity = O(N).
2: Compute the PML stencils γ for different local frequency samples and different

positions of complex stretching. Complexity = O(bn).
3: Divide the domain into ` slices as D1 . . . ,D`.
4: Define the approximating operator T̃[i] by the sweeping factorization below from

steps 5 to 8. Complexity = O(b2N):
5: for i = 1, . . . , ` do
6: Pad Di with auxiliary PML points in Di−1 to form the subproblem (21), where

the auxiliary PML stencils are built with samples closest to the local square
frequency values.

7: Compute the LU factorization of (21), which defines the solution operator.
Restricting the solution operator to Di induces T̃[i].

8: end for

Algorithm 2. Application of the preconditioner. Complexity = O(bN).

1: Form the right-hand side f of (19). Complexity = O(N).
2: Solve the linear system (19) approximately by the process below from steps 3 to

9. Complexity = O(bN).
3: ũ[1] = T̃[1]f[1]

4: for i = 2, . . . , ` do
5: ũ[i] = T̃[i](f[i] −H[i,i−1]ũ[i−1])
6: end for
7: for i = `− 1, . . . , 1 do
8: ũ[i] = ũ[i] − T̃[i](H[i,i+1]ũ[i+1])
9: end for

10: Now ũ is an approximation to H−1f . Extract the solution of ũ on D as the output.

2. The widths of the slices and the auxiliary PML regions are completely arbi-
trary. There are two reasons why we set them to be b uniformly in the above.
The first is for the simplicity of discussion. The second is that, given the PML
width b, it is optimal to set the width of each slice to be also b to minimize
the setup and application costs of the preconditioner. In practice, it may not
be possible to uniformly divide the domain where each slice contains b layers
exactly. In that case, we change the widths of one or two slices accordingly,
which has negligible effect to the cost and efficiency of the preconditioner.

3. The constructions of the stencils α, β, and γ, though depending on n and ω,
are essentially independent of the velocity field c(x). First, the computation
of α and β only involves the free space Green’s function G(x), where the
velocity field is completely irrelevant. Next, for the local PML stencils γ,
they might depend on c(x) slightly, but only on the range, as we see from the
sampling process. In practice, c(x) = Θ(1), so the range is actually bounded
for fixed ω. Thus, we can precompute the stencils without given the velocity
field. This means that the stencil construction only needs a fixed cost for
given problem size, which can be eliminated from the setup process of the
algorithm for the input c(x).
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2.5. Numerical results. In this section we present the numerical results in
2D. The algorithm is implemented in MATLAB and the tests are performed on a
2.4-GHz server. We force MATLAB to use only one computational thread to test
the sequential time cost. The preconditioner is combined with the standard GMRES
solver with relative tolerance 10−6 and restart value 20. The domain is discretized
with h = λ/8, where λ = 2π/ω is the typical wavelength.

We choose b = 8 as the width of the slices and the auxiliary PML regions. This
corresponds to about one wavelength width for the PML regions and the slices used
in the sweeping preconditioner. The sweeping factorization is built with two fronts
sweeping toward the middle slice, and the middle slice is padded with auxiliary PMLs
on both sides for the corresponding quasi-1D subproblem.

Four velocity fields are tested in 2D:
(i) a converging Gaussian centered at (0.5, 0.5);
(ii) a diverging Gaussian centered at (0.5, 0.5);

(iii) 32 randomly placed converging Gaussians with narrow width;
(iv) a random velocity field that is equal to 1 at ∂Ω.

The incoming wave uI(x) for each test is a plane wave shooting downward at frequency
ω. The test results are given in Tables 1 to 4, respectively. The notations in the tables
are listed as follows:

• ω is the angular frequency;
• N is the number of unknowns;
• Tsetup is the setup cost of the preconditioner in seconds;
• Tapply is the application cost of the preconditioner in seconds;
• Niter is the iteration number;
• Tsolve is the solve cost of the preconditioner in seconds.
From the numerical tests we observe that both the setup time and the application

time scale linearly in N , which are in accordance with the complexity analyses. More

Table 1
Numerical results for velocity field (i) in 2D. Top: The velocity field c(x) (left) and the total

wave field u(x)+uI(x) (right) for ω/(2π) = 64. Bottom: Table of the numerical results for different
problem sizes.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.7

0.8

0.9

1

1.1

1.2

1.3

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

-4

-3

-2

-1

0

1

2

3

4

ω/(2π) N Tsetup Tapply Niter Tsolve
16 1272 1.03e−01 1.47e−02 5 1.96e−01
32 2552 3.01e−01 4.85e−02 5 4.27e−01
64 5112 1.23e+00 1.82e−01 5 1.89e+00
128 10232 4.80e+00 7.29e−01 6 8.58e+00
256 20472 1.95e+01 2.90e+00 7 4.69e+01
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Table 2
Numerical results for velocity field (ii) in 2D. Top: The velocity field c(x) (left) and the total

wave field u(x)+uI(x) (right) for ω/(2π) = 64. Bottom: Table of the numerical results for different
problem sizes.
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1

1.5

2

2.5

ω/(2π) N Tsetup Tapply Niter Tsolve

16 1272 1.59e−01 2.73e−02 4 1.79e−01
32 2552 5.39e−01 4.86e−02 4 3.29e−01
64 5112 1.23e+00 1.82e−01 5 1.61e+00
128 10232 4.81e+00 7.04e−01 5 7.19e+00
256 20472 1.95e+01 2.89e+00 6 4.01e+01

Table 3
Numerical results for velocity field (iii) in 2D. Top: The velocity field c(x) (left) and the total

wave field u(x)+uI(x) (right) for ω/(2π) = 64. Bottom: Table of the numerical results for different
problem sizes.
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3

ω/(2π) N Tsetup Tapply Niter Tsolve
16 1272 9.27e−02 1.39e−02 9 2.02e−01
32 2552 3.01e−01 4.88e−02 8 6.65e−01
64 5112 1.23e+00 1.82e−01 9 2.95e+00
128 10232 4.80e+00 7.08e−01 10 1.43e+01
256 20472 1.94e+01 2.96e+00 11 7.57e+01

importantly, the iteration numbers change only slightly as the problem size grows,
almost independent of ω.

We notice that the iteration number also depends on the velocity field. For sim-
ple fields, such as the diverging Gaussian, it requires less iterations compared to more
complicated fields, such as the narrower converging Gaussians. This makes sense
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Table 4
Numerical results for velocity field (iv) in 2D. Top: The velocity field c(x) (left) and the total

wave field u(x)+uI(x) (right) for ω/(2π) = 64. Bottom: Table of the numerical results for different
problem sizes.
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ω/(2π) N Tsetup Tapply Niter Tsolve
16 1272 9.05e−02 1.39e−02 7 1.54e−01
32 2552 2.98e−01 4.88e−02 7 5.80e−01
64 5112 1.23e+00 1.82e−01 8 2.65e+00
128 10232 4.83e+00 7.07e−01 9 1.26e+01
256 20472 1.95e+01 2.90e+00 9 6.09e+01

intuitively since converging lenses and velocity fields with drastic local variations
increase the oscillations and refractions of the wave field; thus, the corresponding
systems are harder to solve. In addition, for the sweeping factorization to work well,
we need to assume that there are no strong reflections and refractions during the
transmission of the waves so that the auxiliary PMLs in the intermediate slices can
make correct approximations to the true underlying DtN maps. In practice, moderate
amount of wave-ray bendings can be taken care of by a few more iterations as we see in
the tests for the multiple diverging Gaussians and the random field. If the velocity field
is even worse, for example, if the field has large region of strong discontinuities, then
neither will the Nyström method be able to give an accurate discretization scheme nor
can the sweeping factorization provide an accurate approximating solution due to the
strong reflections caused by the discontinuities. Thus, for our preconditioner to work,
we require certain smoothness from the velocity fields. Nonetheless, as we can tell from
the numerical examples, the preconditioner works well even when the fields have dras-
tic transitions in narrow regions. So this approach can be widely applied to many use
cases.

3. Preconditioner in 3D. This section presents the preconditioner in 3D. As
we see from section 2, the approach is essentially dimension independent, and it can
be easily generalized to 3D. We will keep the description short, mainly emphasizing
the differences compared to the 2D case so that the reader can get the central idea
effortlessly. The 3D numerical results for both the recursive approach and the nonre-
cursive approach of the sweeping factorization are provided in the second part of this
section.

3.1. Problem formulation, sparsification, and sweeping factorization.
In this section we formulate the approach in 3D. All the notations in 2D can be easily
reused without causing any ambiguities. We will keep them unless otherwise stated.
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We assume Ω = (0, 1)3 contains the support of m(x). The domain is discretized
with step size h = O(1/ω) in each dimension. A similar quadrature correction formula
is used for the central weight of Green’s function, which gives an accuracy of O(h4).

For the sparsification process, the first type of stencils α and β can be constructed
similarly, where now each neighborhood µi has 27 points. For the second type of
stencils in the PML region, we use the modified plain waves in 3D, defined similarly as

Fσ(x) := exp( iω(r · xσ)), ‖r‖2 = 1,

where now xσ and r are in R3 and xσ is stretched to the complex plane from x for all
three coordinates. In 2D, the stencil γ is defined as the kernel vector which annihilates
the independent waves shooting toward the eight most common directions. This can
be done similarly in 3D. We now need a set of 26 directions, which is defined as

R :=

{
(r1, r2, r3)√
r2
1 + r2

2 + r2
3

: (r1, r2, r3) ∈ {−1, 0, 1}3 \ {(0, 0, 0)}

}
.

In other words, these are the directions shooting from the center of a neighborhood
to the 26 boundary neighbor points.

The computational cost of constructing the stencils in 3D seems higher due to
more degrees of freedom and larger size of the neighborhoods. But indeed, the relative
cost compared to the sweeping factorization is lower than the 2D case, let alone that
the stencil computations are independent of the velocity field and can be done by a
once-in-a-lifetime preprocessing.

For the sweeping factorization, the domain are now divided into ` quasi-2D slices.
The auxiliary PMLs are padded to each slice similarly. Each subproblem is quasi-
2D, which can be solved efficiently by the nested dissection algorithm with O(b3n3)
setup cost and O(b2n2 log n) application cost. Consisting of ` ≈ n/b subproblems,
the whole process has a total setup cost O(b2n4) = O(b2N4/3) and application cost
O(bn3 log n) = O(bN logN). Note that the direct use of the nested dissection algo-
rithm to the 3D sparse system costs O(N2) for setup and O(N4/3) for solve. The
sweeping factorization drastically reduces the costs by dimension reduction.

For each of the quasi-2D problems, we can sweep similarly along the x2 direction,
reducing it to ` quasi-1D subproblems. This reduces the setup cost to O(b4N) and
the application cost to O(b2N), which are both linear in N but more sensitive to the
slice width b. We call this the recursive approach [20] and the one in the previous
paragraph as nonrecursive.

3.2. Numerical results. In this section we present the numerical results in 3D.
The test configurations are the same as subsection 2.5 unless otherwise stated. In the
3D tests, we set b = 4 for the slice width and PML width.

The four velocity fields tested are the following:
(i) a converging Gaussian centered at (0.5, 0.5, 0.5);
(ii) a diverging Gaussian centered at (0.5, 0.5, 0.5);

(iii) 256 randomly placed converging Gaussians of narrow width;
(iv) a random velocity field that is equal to 1 at ∂Ω;

The right-hand side is a plain wave shooting downward at frequency ω.
The tests of the nonrecursive approach are given in Tables 5 to 8, and the ones

of the recursive approach are in Tables 9 to 12, where the relative costs compared to
the nonrecursive approach are also listed as percentages, together with the iteration
numbers of the nonrecursive ones in the parentheses for the convenience of comparison.
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Table 5
Numerical results for velocity field (i) in 3D with the nonrecursive approach. Top: The velocity

field c(x) (left) and the total wave field u(x) +uI(x) (right) in a cross-section view for ω/(2π) = 32.
Bottom: Table of the numerical results for different problem sizes.
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ω/(2π) N Tsetup Tapply Niter Tsolve
4 313 6.85e+00 4.20e−01 5 2.46e+00
8 633 5.74e+01 3.28e+00 5 1.78e+01
16 1273 5.97e+02 2.74e+01 5 1.57e+02
32 2553 7.24e+03 2.49e+02 6 1.68e+03

Table 6
Numerical results for velocity field (ii) in 3D with the nonrecursive approach. Top: The velocity

field c(x) (left) and the total wave field u(x) +uI(x) (right) in a cross-section view for ω/(2π) = 32.
Bottom: Table of the numerical results for different problem sizes.
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1.5

ω/(2π) N Tsetup Tapply Niter Tsolve
4 313 7.04e+00 4.27e−01 4 1.85e+00
8 633 5.85e+01 3.26e+00 5 1.77e+01
16 1273 5.99e+02 2.70e+01 5 1.54e+02
32 2553 7.24e+03 2.49e+02 5 1.41e+03

From the numerical tests we see that, as in the 2D cases, the iteration numbers
remain essentially independent of the problem size. The preconditioner converges in
a few iterations for all the test cases. Another highlight is that the recursive approach
requires only zero or one more iteration compared to the nonrecursive approach, which
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Table 7
Numerical results for velocity field (iii) in 3D with the nonrecursive approach. Top: The velocity

field c(x) (left) and the total wave field u(x) +uI(x) (right) in a cross-section view for ω/(2π) = 32.
Bottom: Table of the numerical results for different problem sizes.
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ω/(2π) N Tsetup Tapply Niter Tsolve
4 313 6.84e+00 4.23e−01 6 2.92e+00
8 633 5.71e+01 3.31e+00 8 2.87e+01
16 1273 5.93e+02 2.75e+01 8 2.50e+02
32 2553 7.19e+03 2.48e+02 8 2.35e+03

Table 8
Numerical results for velocity field (iv) in 3D with the nonrecursive approach. Top: The velocity

field c(x) (left) and the total wave field u(x) +uI(x) (right) in a cross-section view for ω/(2π) = 32.
Bottom: Table of the numerical results for different problem sizes.
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ω/(2π) N Tsetup Tapply Niter Tsolve
4 313 7.09e+00 4.33e−01 10 4.64e+00
8 633 5.85e+01 3.32e+00 10 3.60e+01
16 1273 5.99e+02 2.76e+01 9 2.81e+02
32 2553 7.20e+03 2.48e+02 9 2.65e+03

means that the recursive sweeping factorization for the quasi-2D linear systems keeps
the total approximation error almost at the same level.

4. Sparsifying scheme as a direct method. In this section, we show that
the compact stencils acquired by the sparsifying scheme can be viewed as accurate
discretizations of the Helmholtz equation. Specifically, we will solve the 2D homoge-
neous Helmholtz equation with the compact scheme introduced in the sparsification

D
ow

nl
oa

de
d 

08
/0

3/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B400 FEI LIU AND LEXING YING

Table 9
Numerical results for velocity field (i) in 3D with the recursive approach.

ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 2.79e+00 (41%) 3.44e−01 (82%) 5 (5) 2.01e+00 (82%)
8 633 1.62e+01 (28%) 2.25e+00 (69%) 5 (5) 1.29e+01 (73%)
16 1273 1.10e+02 (18%) 1.64e+01 (60%) 5 (5) 1.01e+02 (65%)
32 2553 8.23e+02 (11%) 1.24e+02 (50%) 6 (6) 9.33e+02 (56%)

Table 10
Numerical results for velocity field (ii) in 3D with the recursive approach.

ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 2.81e+00 (40%) 3.38e−01 (79%) 5 (4) 1.84e+00 (100%)
8 633 1.63e+01 (28%) 2.27e+00 (70%) 5 (5) 1.28e+01 (72%)
16 1273 1.11e+02 (19%) 1.64e+01 (61%) 5 (5) 1.02e+02 (66%)
32 2553 8.18e+02 (11%) 1.24e+02 (50%) 6 (5) 9.31e+02 (66%)

Table 11
Numerical results for velocity field (iii) in 3D with the recursive approach.

ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 2.80e+00 (41%) 3.36e−01 (79%) 6 (6) 2.19e+00 (75%)
8 633 1.63e+01 (29%) 2.25e+00 (68%) 8 (8) 2.02e+01 (70%)
16 1273 1.11e+02 (19%) 1.64e+01 (60%) 8 (8) 1.62e+02 (65%)
32 2553 8.20e+02 (11%) 1.24e+02 (50%) 8 (8) 1.24e+03 (53%)

Table 12
Numerical results for velocity field (iv) in 3D with the recursive approach.

ω/(2π) N Tsetup Tapply Niter Tsolve

4 313 2.81e+00 (40%) 3.37e−01 (78%) 10 (10) 3.67e+00 (79%)
8 633 1.64e+01 (28%) 2.24e+00 (68%) 10 (10) 2.52e+01 (70%)
16 1273 1.12e+02 (19%) 1.64e+01 (60%) 9 (9) 1.82e+02 (65%)
32 2553 8.22e+02 (11%) 1.24e+02 (50%) 9 (9) 1.39e+03 (52%)

process and compare it with the QSFEM method in [5]. As we shall see from the
numerical tests, both methods did comparably well at minimizing the pollution error
with only a small number of points per wavelength.

Let us consider

(−∆− ω2)u(x) = f(x), x ∈ R2,(22)

where f(x) is a delta source centered at (0.5, 0.5). The exact solution is given by
Green’s function with a shift of the center (see Figure 7 for an example).

For the sparsifying scheme, we have the discrete equation

α∗uµi
= β∗fµ

for each of the interior point i, where α and β are 9-point stencils given by (11) and
(12), respectively, and f is the discrete delta function.
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Fig. 7. An example of the 2D Green’s function centered at (0.5, 0.5) with ω/(2π) = 8.

For the QSFEM method, the 9-point stencil for u is given by

A =

A2 A1 A2

A1 A0 A1

A2 A1 A2

 ,
where

A0 = 4,

A1 = 2
c1(κ)s1(κ)− c2(κ)s2(κ)

c2(κ)s2(κ)(c1(κ) + s1(κ))− c1(κ)s1(κ)(c2(κ) + s2(κ))
,

A2 = 2
c2(κ) + s2(κ)− c1(κ)− s1(κ)

c2(κ)s2(κ)(c1(κ) + s1(κ))− c1(κ)s1(κ)(c2(κ) + s2(κ))
,

c1(κ) := cos
(
κ cos

π

16

)
, s1(κ) := cos

(
κ sin

π

16

)
,

c2(κ) := cos

(
κ cos

3π

16

)
, s2(κ) := cos

(
κ sin

3π

16

)
,

κ := ωh,

and h is the step size. The right-hand side is the discrete delta function with a scaling.
We solve the 2D homogeneous Helmholtz equation (22) and compare the phase

errors against the true solution. Specifically, we write the solutions u(x) as u(x) =
A(x)e2π iφ(x) and compare the phase φ(x) with the one acquired by Green’s func-
tion. The boundary points are discretized by a slowly turning up PML such that the
reflection error is negligible compared to the phase error.

Figure 8 shows the phase errors for a large test case (1024 waves across each
dimension) with a small number of points (3 to 5) per wavelength. From the tests
we see that the phase error of the sparsifying scheme is comparable to the one of the
QSFEM method in [5].

We would like to comment that, as pointed out in [4], 2D compact stencils can
be optimized to reduce the pollution error but cannot completely eliminate it. For
example, in Figure 8, the phase shifts near the four corners are about 1/6 for the
3-points-per-wavelength (p.p.w.) test cases, which is not negligible for practical us-
age. Hence, for large problems, one would eventually have to increase the stencil
width or use more points per wavelength.
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(a) Sparsifying scheme at 5 p.p.w.
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(b) QSFEM at 5 p.p.w.
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(c) Sparsifying scheme at 4 p.p.w.
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(d) QSFEM at 4 p.p.w.
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(e) Sparsifying scheme at 3 p.p.w.
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(f) QSFEM at 3 p.p.w.

Fig. 8. The phase errors of the two schemes for ω/(2π) = 1024. Phase error is defined as
φ(x)− φG(x), where φ(x) is computed from the numerical solution u(x) = A(x)e2π iφ(x) and φG(x)
is acquired by the phase of Green’s function (exact solution). From top to bottom are test cases for
5, 4, and 3 p.p.w., respectively. We see that both methods behave similarly in terms of the phase
error. For the hardest test cases (3 p.p.w with 1024 waves across each dimension), the phase shifts
at the far field (four corners) are about 1/6. This corresponds to about 2.3 × 10−4 relative phase
error. In other words, the distortion of each wavelength of both methods are on the order of 10−4

with only three 3 p.p.w.D
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5. Conclusions and future work. This paper presents the sparsify-and-sweep
preconditioner for the Lippmann–Schwinger equation in 2D and 3D. The precondi-
tioner involves two steps. The first step is to sparsify the system by introducing the
compact stencil sparsifying scheme. The second step is to apply the sweeping factor-
ization to the sparsified system. Numerical results show that the iteration number is
essentially independent of the angular frequency ω.

Though the cost is reduced to linear, potential improvements can be made re-
garding parallelizations. First, the factorization of the auxiliary subproblems are
completely independent and thus can be done in parallel, especially when the recur-
sive approach in 3D is adopted where there are O(n2) quasi-1D subproblems that can
be processed at the same time. Second, the setup and application processes of the
nested dissection algorithm can also be parallelized for independent skeleton fronts
(see [23], for example). Third, the two sweeping fronts during the application process
are also independent and can be processed in a parallel way.

Move future work could include sparsification of dense systems by the data-fitting
approach. This approach was first proposed by Ying in [31, 30] for solving highly
indefinite systems including time-independent high-frequency wave propagations with
radiation conditions or periodic boundary conditions. This paper generalizes it to
incorporate the PML approach. There have been some exploration and applications of
this sparsification method, such as solving the nonlinear eigenvalue problems in soliton
systems [22]. This data-fitting approach to design local schemes is quite different
from most classical approaches and could be potentially generalized to other types of
integral equations and dense systems.
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[32] L. Zepeda-Núñez and L. Demanet, The method of polarized traces for the 2D Helmholtz
equation, J. Comput. Phys., 308 (2016), pp. 347–388, https://doi.org/10.1016/j.jcp.2015.
11.040.
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