

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTISCALE MODEL. SIMUL. c© 2017 Society for Industrial and Applied Mathematics
Vol. 15, No. 4, pp. 1584–1611

FAST SPATIAL GAUSSIAN PROCESS MAXIMUM LIKELIHOOD
ESTIMATION VIA SKELETONIZATION FACTORIZATIONS∗

VICTOR MINDEN† , ANIL DAMLE‡ , KENNETH L. HO§ , AND LEXING YING¶

Abstract. Maximum likelihood estimation for parameter fitting given observations from a
Gaussian process in space is a computationally demanding task that restricts the use of such methods
to moderately sized datasets. We present a framework for unstructured observations in two spatial
dimensions that allows for evaluation of the log-likelihood and its gradient (i.e., the score equations)
in Õ(n3/2) time under certain assumptions, where n is the number of observations. Our method relies
on the skeletonization procedure described by Martinsson and Rokhlin [J. Comput. Phys., 205 (2005),
pp. 1–23] in the form of the recursive skeletonization factorization of Ho and Ying [Comm. Pure Appl.
Math., 69 (2015), pp. 1415–1451]. Combining this with an adaptation of the matrix peeling algorithm
of Lin, Lu, and Ying [J. Comput. Phys., 230 (2011), pp, 4071–4087] for constructing H-matrix
representations of black-box operators, we obtain a framework that can be used in the context of any
first-order optimization routine to quickly and accurately compute maximum likelihood estimates.

Key words. spatial Gaussian processes, kriging, hierarchical matrices, maximum likelihood
estimation, fast algorithms

AMS subject classifications. 65F30, 65C60, 60G15

DOI. 10.1137/17M1116477

1. Introduction. Gaussian processes are commonly used in the applied sciences
as a statistical model for spatially indexed observations. In such applications, each
observation zi ∈ R of some quantity is associated with a corresponding location
xi ∈ Ω ⊂ Rd with d = 2 or 3. Given a prescribed covariance kernel K(·, ·; θ) that
maps Rd × Rd to R and is specified up to some parameter vector θ ∈ Rp, any vector
of observations z = [z1, . . . , zn] ∈ Rn (with associated locations {xi}ni=1) is assumed
to be randomly distributed as a multivariate Gaussian

(1) z ∼ N(0,Σ(θ)) with covariances [Σ(θ)]ij = K(xi, xj ; θ).

We assume the mean of the process to be 0 (i.e., known) for simplicity, though, as we
discuss later, this is not strictly necessary.

∗Received by the editors February 13, 2017; accepted for publication (in revised form) September
6, 2017; published electronically November 7, 2017.

http://www.siam.org/journals/mms/15-4/M111647.html
Funding: The first author was supported by a Stanford Graduate Fellowship in Science &

Engineering and a U.S. Department of Energy Computational Science Graduate Fellowship (grant
DE-FG02-97ER25308). The second author was supported by a Simons Graduate Research Assis-
tantship and National Science Foundation Graduate Research Fellowship (grant DGE-1147470). The
third author was supported by a National Science Foundation Mathematical Sciences Postdoctoral
Research Fellowship (grant DMS-1203554). The fourth author was supported by the National Sci-
ence Foundation (grants DMS-1328230 and DMS-1521830) and U.S. Department of Energy Advanced
Scientific Computing Research program (grants DE-FC02-13ER26134 and DE-SC0009409).
†Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA

94305 (vminden@stanford.edu).
‡Department of Computer Science, Cornell University, Ithaca, NY 14850 (damle@cornell.edu).
§TSMC Technology Inc., San Jose, CA 95134 (klho@alumni.caltech.edu).
¶Department of Mathematics and Institute for Computational and Mathematical Engineering,

Stanford University, Stanford, CA 94305 (lexing@math.stanford.edu).

1584

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/mms/15-4/M111647.html
mailto:vminden@stanford.edu
mailto:damle@cornell.edu
mailto:klho@alumni.caltech.edu
mailto:lexing@math.stanford.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1585

Neglecting θ, common choices for the covariance kernel include the family of
rational quadratic kernels

K(x, y) =
(

1 +
‖x− y‖2

2α

)−α
,(2)

which has corresponding processes that are infinitely differentiable in the mean-
squared sense for all α > 0. Notably, this family includes the Gaussian or squared
exponential kernel as a limiting case as α→∞. Another popular family is the Matérn
family of kernels

K(x, y) =
1

Γ(ν)2ν−1

(√
2ν · ‖x− y‖

)ν
Kν

(√
2ν · ‖x− y‖

)
,(3)

where Kν(·) is the modified second-kind Bessel function of order ν, Γ(·) is the gamma
function, and the corresponding process is bνc times mean-squared differentiable. To
explicitly parameterize K(·, ·; θ), we might introduce a correlation length parameter
ρ leading to

K(x, y; θ) =
(

1 +
‖x− y‖2

2αρ2

)−α
in the case of the rational quadratic kernel. The fundamental parameters of the kernel
family, e.g., α or ν, may be considered as part of θ or fixed a priori.

Typically, the parameter vector θ is unknown and must be estimated from the
data. For example, given a parameterized family of kernels and a set of observations,
we might want to infer θ for later use in estimating the value of the field at other
spatial locations as in kriging (see Stein [38]). In this paper we consider the general
Gaussian process maximum likelihood estimation (MLE) problem for θ: given an
observation vector z ∈ Rn, find θ̂MLE maximizing the Gaussian process log-likelihood

`(θ) ≡ −1
2
zTΣ−1z − 1

2
log |Σ| − n

2
log 2π,(4)

where we have dropped the explicit dependence of Σ on θ for notational convenience.
If θ is unconstrained, then θ̂MLE is given by maximizing (4) over all of Rp. In

this case, it is possible under certain assumptions to perform MLE by solving the
score equations g(θ) = 0, where the gradient of the log-likelihood g(θ) ∈ Rp is given
componentwise by

gi ≡
∂`(θ)
∂θi

=
1
2
zTΣ−1ΣiΣ−1z − 1

2
Tr(Σ−1Σi), i = 1, . . . , p,(5)

where Σi ≡ ∂
∂θi

Σ. This may be accomplished without evaluating `(θ) as is done by,
e.g., Anitescu, Chen, and Wang [2] and Stein, Chen, and Anitescu [40]. In contrast,
we consider in this paper the use of first-order methods for nonlinear optimization
that, at each iteration, use both gradient and log-likelihood evaluations to find a local
optimum. This allows for the treatment of constraints if desired, though we note the
methods here are equally applicable to the unconstrained case.

For any given θ, both `(θ) and the gradient g(θ) contain a number of terms whose
evaluation is traditionally computationally expensive. For example, the Cholesky
decomposition of Σ may be used to calculate zTΣ−1z and zTΣ−1ΣiΣ−1z as well as
the log-determinant log |Σ| and trace Tr(Σ−1Σi), but the asymptotic computation
and storage complexities are O(n3) and O(n2), respectively. This is prohibitively
expensive for datasets with a large number of observations, necessitating alternative
approaches.

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1586 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

1.1. Our method. The contribution of this paper is a framework for efficiently
finding θ̂MLE by taking advantage of fast hierarchical matrix algorithms developed in
the numerical linear algebra community. Such algorithms exploit the fact that linear
operators defined in terms of pairwise kernel evaluations between points embedded in
Rd frequently exhibit hierarchical rank structure, as we discuss in section 2 (briefly,
many different-sized off-diagonal blocks of the matrix are close to low rank and thus
compressible). Our framework has two key parts:

(I) Construct a fast approximate hierarchical factorization of the covariance matrix
Σ and its derivatives Σi for i = 1, . . . , p in a matrix-free fashion using the kernel
function K(·, ·; θ) and the points {xi}ni=1.

(II) Additionally factor the derivatives of the covariance matrix Σi for i = 1, . . . , p
through the same approach as in (I). Use the hierarchical factorizations as a fast
black-box operator for approximately applying Σ−1Σi for i = 1, . . . , p, and use
this operator and the points {xi}ni=1 to compute the traces Tr(Σ−1Σi) through
a randomized “matrix peeling” scheme for efficiently extracting the trace of a
hierarchically rank-structured linear operator.

In both parts, the approximation accuracy is well-controlled by specified tolerance
parameters intrinsic to the algorithms.

For any θ, the approximate factorization of part (I) can be used to efficiently
evaluate the terms composing `(θ) (including the log-determinant), which overlaps
with recent work by Ambikasaran et al. [1] that addresses the use of hierarchical
factorizations for kernelized covariance matrices for computing these terms (see also
Khoromskij, Litvinenko, and Matthies [28] and Börm and Garcke [4] for earlier work
on H-matrix techniques for fast computation of matrix-vector products with Σ in a
Gaussian process context). This piece of the framework alone gives sufficient machin-
ery to perform black-box optimization using numerical derivatives. However, using
finite differences of an approximate log-likelihood can magnify approximation errors,
which can lead to larger inaccuracies in the approximate gradient depending on, e.g.,
the conditioning of Σ (see subsection 5.4 for a relatively benign example). Therefore,
central to our framework is the computation in (II) of the gradient components gi for
i = 1, . . . , p, which requires the trace terms Tr(Σ−1Σi).

In the simplest form detailed in this paper, our framework employs the recursive
skeletonization factorization [25] as the approximate hierarchical factorization vari-
ant of choice for Σ and Σi, i = 1, . . . , p. We then compute the trace terms in the
gradient using an adaptation of the matrix peeling algorithm of Lin, Lu, and Ying
[29]. Combining these two tools, we obtain an efficient method for evaluating (4)
and (5)—and, ultimately, finding θ̂MLE—with high and controllable accuracy using a
black-box first-order optimization package (e.g., fminunc or fmincon in MATLAB).

While the framework of this paper technically applies to observations in d dimen-
sions for general d, the computational complexity increases in high dimensions due
to how the runtime of hierarchically rank-structured factorizations depends on the
numerical rank of off-diagonal blocks. For example, applying these methods in the
case d = 1 is essentially optimal in the sense that off-diagonal matrix blocks have
numerical rank that is not strongly dependent on the number of observations. We
direct the reader to Ambikasaran et al. [1] for extensive numerical examples of fac-
toring kernel matrices in this case. In contrast, for d = 3 the observed rank growth
is in general much larger and leads to greater asymptotic complexities. We focus on
the case d = 2 in the remainder of this paper, but note the broader applicability.D

ow
nl

oa
de

d
11

/2
1/

17
 to

 1
71

.6
7.

21
6.

22
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1587

1.2. Alternative approaches. Due to the prevalance of Gaussian process mod-
els, a number of methods exist in the literature for fast computations involving
kernelized covariance matrices. To decrease apply, solve, and storage costs, Σ can
be replaced with a sparser “tapered” approximant as described by Furrer, Genton,
and Nychka [12], wherein the desired covariance kernel is multiplied pointwise with
a compactly supported tapering function to attain sparsity. Of course, the computa-
tional benefit of tapering depends on the sparsity of the resulting approximant, which
is limited by the desired accuracy if the correlation length of the kernel is not small.

If Σ decomposes naturally into the sum of a diagonal and a numerically low-rank
matrix then such a decomposition can be quite efficient for computation (see Cressie
and Johannesson [10]), but this representation is too simple for the applications and
kernel functions we consider. Extending this to a general sparse-plus-low-rank model
by replacing the diagonal piece with a tapered covariance kernel can perform better
than either a tapered or low-rank Σ alone, as shown by Sang and Huang [36] (see also
Vanhatalo, Pietiläinen, and Vehtari [43]).

For cases where the underlying process is stationary and the observations lie on a
regular grid it is possible to directly approximate the log-likelihood using spectral ap-
proximations due to Whittle [45] or to quickly apply the covariance matrix in Fourier
space to solve linear systems with an iterative method. Further, in such cases these
systems can be preconditioned using the method of Stein, Chen, and Anitescu [39]
yielding efficient methods for many important problem classes. For irregularly spaced
data such as we consider in this paper, however, these approaches do not apply di-
rectly. One approach for log-likelihood evaluation (and thus derivative-free optimiza-
tion) with generally distributed data is that of Aune, Simpson, and Eidsvik [3], which
offers an involved framework for approximating the log-determinant using Krylov
methods, assuming the covariance matrix or its inverse can be efficiently applied.
More recently, Castrillón-Candás, Genton, and Yokota [5] demonstrated a combina-
tion of multilevel preconditioning and tapering for fast derivative-free restricted MLE,
though gradient computation is not discussed.

An alternative approach to approximating the Gaussian process log-likelihood
directly is to explicitly construct and solve a different set of estimating equations
that is less computationally cumbersome. For example, the Hutchinson-like sample
average approximation estimator [2, 40] falls into this category, as do the composite
likelihood methods described by, e.g., Vecchia [44] and Stein, Chi, and Welty [41] and
their extension, block composite likelihood methods (see, e.g., Eidsvik et al. [11]).
Another notable effort based on a modified model is the work of Lindgren, Rue, and
Lindström [30], which gives a way of approximating Gaussian processes by Gaussian
Markov random fields for specific kernels in the Matérn family. In practice, these
methods perform quite well, but in our approach, we consider maximizing the true
likelihood as opposed to alternative models or estimators.

1.3. Outline. The remainder of the paper is organized as follows. In section 2
we review hierarchical matrix structure and outline the recursive skeletonization fac-
torization [25, section 3], which is our hierarchical matrix format of choice for fast
MLE. In section 3, we discuss a modification of the matrix peeling algorithm by Lin,
Lu, and Ying [29], which we use to quickly evaluate the gradient of the log-likelihood.
In section 4, we succinctly summarize our framework. In section 5 we present numeri-
cal results on a number of test problems and demonstrate the scaling of our approach.
Finally, in section 6, we make some concluding remarks.

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1588 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

Ω1;4

Ω1;2

Ω1;3

Ω2;4Ω2;3

Ω2;2Ω2;1

I1;1 I1;2 I1;3 I1;4

I1;1

I1;2

I1;3

I1;4

Fig. 1. To expose low-rank structure in the matrix Σ, consider the partitions Ω = ∪4
i=1Ω1;i

and Ω1;1 = ∪4
i=1Ω2;i (left), with corresponding index sets I`;i for ` = 1, . . . , 2, i = 1, . . . , 4. Due

to smoothness properties of K(·, ·; θ), the blocks of Σ are rank structured (right), where dark gray
blocks on the diagonal are full rank and light gray off-diagonal blocks are numerically low rank.
Representing each off-diagonal block in low-rank form independently leads to the HODLR format.
In contrast, the HBS format uses one low-rank representation for all off-diagonal blocks for each
block row, e.g., the patterned blocks in the bottom row are aggregated into a single low-rank matrix.

2. Factorization of the covariance matrix. Consider the kernelized covari-
ance matrix Σ as in (1), and assume for simplicity of exposition that the points
{xi}ni=1 are uniformly distributed inside a rectangular domain Ω. Partitioning Ω into
four equal rectangular subdomains Ω1;i for i = 1, . . . , 4, it has been observed that
the corresponding block partitioning of Σ exposes low-rank structure of off-diagonal
blocks when K(x, y; θ) is sufficiently nice as a function of ‖x− y‖.

Concretely, we define the set [n] ≡ {1, 2, . . . , n} and let I1;i ⊂ [n] denote the index
set indexing degrees of freedom (DOFs) located inside Ω1;i for i = 1, . . . , 4 such that
{xj}j∈I1;i ⊂ Ω1;i and

⋃4
i=1 I1;i = [n]. In a self-similar fashion, we further partition

Ω1;1 into the four subdomains Ω2;i (with corresponding DOFs I2;i) for i = 1, . . . , 4
and obtain the decomposition shown in Figure 1 (left). Assuming that the covariance
kernel is smooth away from x = y and does not exhibit high-frequency oscillations, the
off-diagonal blocks Σ(I1;i, I1;j) for i 6= j and Σ(I2;i, I2;j) for i 6= j in the corresponding
partitioning shown in the same figure (right) tend to be numerically low rank and thus
compressible.

Definition 1 (numerically low rank). We call a matrix A ∈ Rm1×m2 numeri-
cally low rank with respect to a specified tolerance ε if for some r < min(m1,m2) there
exist matrices V1 ∈ Rm1×r and V2 ∈ Rm2×r such that ‖A− V1VT2 ‖2 ≤ ε‖A‖2.

The rank structure of Figure 1 includes numerically low-rank blocks at multiple
spatial scales independent of the length-scale of the underlying Gaussian process, i.e.,
we may continue to recursively subdivide the domain and expose more compressible
blocks of Σ. Explicitly representing each of these blocks in low-rank form leads to the
so-called hierarchical off-diagonal low-rank (HODLR) matrix format that has been
used by Ambikasaran et al. [1] to compress various families of covariance kernels with
application to Gaussian processes.

Remark 1. A sufficient condition to ensure this rank structure is that for any pair
of distinct subdomains on the same level Ω`;i and Ω`;j there exists an approximation
K(xi, xj ; θ) ≈

∑r
k=1 fk(xi)gk(xj) for any xi ∈ I`;i and xj ∈ I`;j , where the number of

terms r is relatively small (via, e.g., Chebyshev polynomials). An important example
where this is not typically the case is periodic kernels with a short period relative to
the size of the domain. Further, the techniques we discuss here are less relevant to

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1589

compactly supported kernels, for which standard sparse linear algebra is already a
computationally efficient approach.

The HODLR format is only one of many hierarchical matrix formats, appearing
as a special case of the H- and H2-matrices of Hackbusch and collaborators [17, 20,
19]. This format is particularly simple as at each level it compresses all off-diagonal
blocks of Σ, including those corresponding to domains that are adjacent (e.g., Ω1;2
and Ω1;3). Matrices compressible in this way are referred to as weakly admissible
[21], in contrast to strongly admissible matrices which compress only a subset of off-
diagonal blocks at each level. Closely related literature includes work on hierarchically
semiseparable matrices [47, 7, 6] and hierarchically block separable (HBS) matrices
[31, 13] which offer simplified representations for weakly admissible matrices with
improved runtime.

For matrices where the entries are explicitly generated by an underlying kernel
function such as Σ and its derivatives, specific factorization algorithms have been
developed to exploit this additional structure for increased efficiency [15, 13, 24, 25,
9]. These “skeletonization-based” algorithms, based on the framework introduced
by Martinsson and Rokhlin [31] stemming from observations by Starr and Rokhlin
[37] and Greengard and Rokhlin [16], construct low-rank representations of certain
off-diagonal blocks using the skeletonization process described by Cheng et al. [8].

Our framework is agnostic to the choice of hierarchical factorization used for Σ and
its derivatives, provided that the factorization admits fast linear algebra computations
(including computation of the log-determinant) with the underlying operator. The
recursive skeletonization factorization that we use in this paper was first introduced by
Ho and Ying [25, section 3] as a multiplicative factorization based on skeletonization
[31]. In the remainder of this section we provide a brief review of the algorithm.

Remark 2. In what follows, we will continue to assume that the DOFs {xi}ni=1
are uniformly distributed inside a rectangular subdomain Ω for simplicity of exposi-
tion. Further, we will describe the algorithm as though the quadtree representing the
hierarchical partitioning of space is perfect, i.e., every subdomain is subdivided into
four child subdomains at every level. In practice an adaptive decomposition of space
is used to avoid subdividing the domain in regions of low observation density.

2.1. Block compression through skeletonization. We begin by recursively
subdividing Ω into four subdomains until each leaf-level subdomain contains a con-
stant number of observations independent of n. This leads to a quadtree data structure
with levels labeled ` = 0 through ` = L, where ` = 0 refers to the entire domain Ω
and ` = L refers to the collection of subdomains ΩL;i for i = 1, . . . , 4L. Considering
factorization of the covariance matrix Σ, the basic intuition of the method is to first
compress all blocks of Σ corresponding to covariances between observations in distinct
subdomains at the leaf level, and then to recurse in a bottom-up traversal.

Consider first a single leaf-level subdomain containing observations indexed by
I ⊂ [n] and define the complement DOF set Ic ≡ [n] \ I. Given a specified tolerance
ε > 0, the algorithm proceeds by compressing the off-diagonal blocks Σ(I, Ic) and
Σ(Ic, I) as in the HBS format (see Figure 1) through the use of an interpolative
decomposition (ID) [8].

Definition 2 (interpolative decomposition). Given a matrix A ∈ Rm×|I| with
columns indexed by I and a tolerance ε > 0, an ε-accurate ID of A is a partitioning
of I into DOF sets associated with so-called skeleton columns S ⊂ I and redun-
dant columns R = I \ S and a corresponding interpolation matrix TI such that

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1590 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

Fig. 2. Shown here are the DOFs to be compressed at each level of the recursive skeletonization
factorization. At the leaf level (left), all DOFs are involved in skeletonization. At each subsequent
level (center, right), only skeleton DOFs from the previous level are involved in further skeletoniza-
tion. We see that the skeleton DOFs tend to line the boundaries of their corresponding subdomains.

‖A(:,R) − A(:,S)TI‖2 ≤ ε‖A‖2, where A(:,R) ∈ Rm×|R| is given by subselecting the
columns of A indexed by R, and A(:,S) is defined analogously.

It is desirable in Definition 2 to take |S| as small as possible for a given ε.
Given an ID of Σ(Ic, I) such that Σ(Ic,R) ≈ Σ(Ic,S)TI , Σ can be written in

block form (up to a permutation) as
Σ(Ic, Ic) Σ(Ic,S) Σ(Ic,R)

Σ(S, Ic) Σ(S,S) Σ(S,R)

Σ(R, Ic) Σ(R,S) Σ(R,R)

 ≈

Σ(Ic, Ic) Σ(Ic,S) Σ(Ic,S)TI
Σ(S, Ic) Σ(S,S) Σ(S,R)

TTIΣ(S, Ic) Σ(R,S) Σ(R,R)

 .
Using a sequence of block row and column operations, we first eliminate the blocks
Σ(Ic,S)TI and TTIΣ(S, Ic) and then decouple the bottom-right block to obtain

L−1
I ΣL−TI ≈

Σ(Ic, Ic) Σ(Ic,S)

Σ(S, Ic) Σ(S,S) XSR
XRS XRR

 = UI

Σ(Ic, Ic) Σ(Ic,S)

Σ(S, Ic) XSS
XRR

UTI ,

where LI and UI are block unit-triangular matrices that are fast to apply or invert
and the X subblocks are linear combinations of the Σ subblocks.

2.2. The recursive skeletonization factorization. Defining the collection of
DOF sets corresponding to subdomains at level ` = L as LL ≡ {IL;1, IL;2, . . . , IL;4L},
we use the skeletonization process of subsection 2.1 to compress the corresponding
blocks of Σ for each I ∈ LL, yielding Σ ≈

(∏
I∈LL

LIUI
)

Σ̃L

(∏
I∈LL

UTI LTI
)
, where

the order taken in the product over LL does not matter due to the structure of the
L and U matrices. Using RL;i and SL;i to denote the redundant DOFs and skeleton
DOFs associated with IL;i for each i = 1, . . . , 4L and defining RL ≡ ∪4L

i=1RL;i, the
blocks of the matrix Σ̃L have the following structure for each i = 1, . . . , 4L:

• The modified block Σ̃L(RL;i,RL;i) has been decoupled from the rest of Σ̃L.
• The block Σ̃L(SL;i,SL;i) has been modified.
• The blocks Σ̃L(SL;i, IcL;i \RL) = Σ(SL;i, IcL;i \RL) and Σ̃L(IcL;i \RL,SL;i) =

Σ(IcL;i \ RL,SL;i) remain unmodified from what they were in Σ.
In other words, we have identified and decoupled all redundant DOFs at the leaf level
while leaving unchanged the blocks of Σ corresponding to kernel evaluations between
skeleton DOFs in distinct leaf-level subdomains.

The recursive skeletonization factorization of Σ is given by repeating this process
at each higher level of the quadtree as visualized in Figure 2. For example, at level
` = L−1 of the quadtree, each subdomain contains skeleton DOFs corresponding to its

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1591

four distinct child subdomains in the tree. However, the redundant DOFs of its child
subdomains no longer need to be considered as they have already been decoupled. We
thus define ĨL−1;i ≡ IL−1;i \RL for each i = 1, . . . , 4(L−1) and write the collection of
DOFs remaining at this level as LL−1 ≡ {ĨL−1;1, ĨL−1;2, . . . , ĨL−1;4(L−1)}. Due to the
hierarchical block low-rank structure of Σ, off-diagonal blocks at this level are again
compressible through skeletonization, yielding

Σ̃L ≈ PL

 ∏
I∈LL−1

LIUI

 Σ̃L−1

 ∏
I∈LL−1

UTI LTI

PTL,

where PL is a global permutation matrix regrouping the DOF sets in LL−1 to be
contiguous. Proceeding in this fashion level by level and defining the ordered product∏L
`=1 A` ≡ ALAL−1 . . .A1, we obtain the full recursive skeletonization factorization F

of Σ

Σ ≈

 L∏
`=1

 ∏
I∈L`

LIUI

P`

 Σ̃1

 L∏
`=1

 ∏
I∈L`

LIUI

P`

T

=

 L∏
`=1

 ∏
I∈L`

LIUI

P`

CCT

 L∏
`=1

 ∏
I∈L`

LIUI

P`

T ≡ F,(6)

where Σ̃1 is block diagonal with diagonal blocks corresponding to the sets of redundant
DOFs at each level and Σ̃1 = CCT is the Cholesky decomposition of Σ̃1.

Remark 3. Because the factorization F ≈ Σ is approximate, using an extremely
inaccurate tolerance ε in the IDs of Definition 2 admits the possibility that Σ̃1 may be
slightly indefinite due to approximation error. In practice, this is not an issue for any
tolerance precise enough to be used for computing `(θ) for optimization purposes.
When factoring the derivative matrices Σi for i = 1, . . . , p (which may themselves
be indefinite), the Cholesky decomposition may be replaced with, e.g., an LDLT

factorization.

2.3. Computational complexity. The computational cost of the recursive
skeletonization factorization is in theory dominated by the cost of computing IDs
Σ(Ic,R) ≈ Σ(Ic,S)TI of Σ(Ic, I) in subsection 2.1 for each I. This is because the
typical algorithm to compute an ID is based on a rank-revealing QR factorization,
such that the m × |I| ID of Definition 2 has complexity O(m|I|2) [8]. This depen-
dence on m is prohibitively expensive during the initial levels of the factorization,
since m = |Ic| = O(n) and there are O(n) such IDs to compute.

The original application of skeletonization was to boundary integral equations
arising from elliptic partial differential equations, in which case the so-called “proxy
trick” described by Martinsson and Rokhlin [31] can be applied to accelerate the
computation of an ID through the use of integral identities. These integral identities
do not strictly apply in the case where K(·, ·; θ) is a general covariance function, but
we find that a variant of this proxy trick works well to obtain similar acceleration.

2.3.1. Modified proxy trick. Suppose that the index set I corresponds to
points inside the subdomain B ⊂ Ω in Figure 3, where we use B as a stand-in for
an arbitrary subdomain Ω`;i in our quadtree. The purpose of computing an ID of
Σ(Ic, I) is to find a small set of skeleton DOFs S ⊂ I such that the range of Σ(Ic,S)

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1592 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

B B

Fig. 3. Because of the underlying kernel, computing an ID of the submatrix Σ(Ic, I) can
be accelerated, where I ⊂ [n] indexes observations inside the subdomain B (left). Rather than
considering all of Ic, the (modified) proxy trick involves neglecting rows of Σ(Ic, I) corresponding
to points F ⊂ Ic far from B. Instead, the ID is computed by considering only points N ⊂ Ic near B
combined with a small number of so-called “proxy points” discretizing an annulus around B (right).

approximately captures the range of Σ(Ic, I). The key to computational acceleration
using the proxy trick is to accomplish this without using all rows of Σ(Ic, I) in the
computation.

As detailed by Ho and Ying [25, section 3.3], we can partition the DOFs Ic into
those that are near to B and those that are far from B, denoted N and F , respectively.
For example, we may take N to be all points xi ∈ Ic such that the distance between
xi and the center of B is less than some radius. The proxy trick proceeds by finding a
surrogate representation M(Γ, I) for Σ(F , I) in the ID computation, such that M(Γ, I)
has many fewer rows than Σ(F , I) and[

Σ(N ,R)

M(Γ,R)

]
≈

[
Σ(N ,S)

M(Γ,S)

]
TI =⇒

[
Σ(N ,R)

Σ(F ,R)

]
≈

[
Σ(N ,S)

Σ(F ,S)

]
TI(7)

such that we may compute the left ID in (7) and get the right ID for “free.”
In the modified proxy trick, we let Γ be a set of nprox points discretizing the gray

annulus in the right of Figure 3. Crucially, this differs from the original proxy trick
due to the fact that we discretize a two-dimensional region (the annulus), whereas if
our kernel satisfied some form of a Green’s identity we could instead discretize a quasi-
one-dimensional curve (a circle) around B as in the original proxy trick. Defining the
matrix M(Γ, I) to have entries K(y, xi; θ) with rows indexed by y ∈ Γ and columns
indexed by xi ∈ I, we observe that (7) holds without significant loss in accuracy even
with nprox relatively small. This brings the complexity of computing the right ID
down to O(|I|3 +nprox|I|2), which is beneficial when nprox is small compared to |Ic|.
In practice, we take nprox to be constant with respect to the total number of points
n.

2.3.2. Complexity sketch using the modified proxy trick. Using the mod-
ified proxy trick, the cost of the recursive skeletonization factorization is essentially
determined by the number of DOFs interior to each skeletonized subdomain, i.e., |S`;i|
for each ` = 1, . . . , L and i = 1, . . . , 4`. As seen in Figure 2, the skeleton DOFs tend to
line the boundaries of their corresponding subdomains. This is statistically intuitive:
due to the fact that our kernels of interest K(·, ·; θ) decay smoothly, the subset of
DOFs that best represent the covariance structure of a subdomain with the rest of
the domain is the subset closest to the rest of the domain.

Assuming a uniform distribution of points {xi}ni=1 and perfect quadtree, the aver-
age number of skeleton DOFs per subdomain at level ` is on the order of the sidelength
of a subdomain in the quadtree at level `. In other words, the number of skeleton

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1593

Table 1
Complexity of the two-dimensional recursive skeletonization factorization.

Operation Complexity

Construct F ≈ Σ O
(
n3/2)

Apply F or F−1 to a vector O(n logn)
Apply F1/2 or F−1/2 to a vector O(n logn)
Compute log |F| from F O(n logn)

DOFs per box grows by roughly a factor of two each time we step up a level in the
tree and thus s` ≡ 1

4`

∑4`

i=1 |S`;i| = O(2−`). The assumptions that lead to this rank
growth bound are described in more detail by Ho and Greengard [24, section 4]; we
do not discuss them here.

Theorem 3 (see [31, 25, 24]). Assuming that the size of the skeleton sets behaves
like s` = O(2−`) for ` = 1, . . . , L and L ∼ log n, the computational complexity of the
recursive skeletonization factorization F ≈ Σ (with constants depending on the toler-
ance ε in Definition 2) is Tfactor = O(n3/2) and Tapply = Tsolve = O(n log n), where
Tfactor is the complexity of the factorization and Tapply and Tsolve are the complexities
of applying F or F−1 to a vector. The storage complexity is O(n log n).

From (6) we see that the application of the factorization F to a vector x ∈ Rn sim-
ply requires application of the block unit-triangular matrices LI and UI corresponding
to each subdomain at each level as well as the block-diagonal Cholesky factor C of
Σ̃1. Further, the inverse of F can be applied by noting that

F−1 =

 1∏
`=L

 ∏
I∈L`

PT` U−1
I L−1

I

T C−TC−1

 1∏
`=L

 ∏
I∈L`

PT` U−1
I L−1

I

 .
Additionally, a generalized square root F1/2 such that F = F1/2(F1/2)T can be applied
(as can its transpose or inverse) by taking

F1/2 =

 L∏
`=1

 ∏
I∈L`

LIUI

P`

C.

Finally, the log-determinant of Σ can be approximated by log |Σ| ≈ log |F| = 2 log |C|.
Table 1 summarizes the computational complexities for these operations, which es-
sentially follow from Theorem 3.

By constructing the recursive skeletonization factorizations F of Σ and Fi of Σi

for i = 1, . . . , p, we see that after the O(n3/2) initial factorization cost each term
in the evaluation of the log-likelihood or its gradient can be computed with cost
O(n log n) except for the product traces Tr(Σ−1Σi) for i = 1, . . . , p. Further, through
the approximate generalized square root F1/2 of Σ we can quickly sample from the
distribution N(0,Σ).

Remark 4. While the recursive skeletonization factorization described here ex-
ploits the most well-justified rank assumptions on the covariance kernel K(·, ·; θ),
each recursive skeletonization factorization in our framework can be replaced by the
closely-related hierarchical interpolative factorization [25] or strong recursive skele-
tonization factorization [33], which are observed in practice to exhibit better scaling
properties and also admit simple log-determinant computation.

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1594 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

3. Computing the trace terms. There are a number of methods for estimat-
ing the term Tr(Σ−1Σi) appearing in each gradient component gi for i = 1, . . . , p.
Employing the recursive skeletonization factorizations F of Σ and Fi of Σi, the prod-
uct Σ−1Σi ≈ F−1Fi (or a symmetrized form with the same trace) can be applied to a
vector with complexity O(n log n). Using G to denote this black-box linear operator,
the classical statistical approach is the estimator of Hutchinson [26]. Drawing random
vectors ui ∈ {−1, 1}n for i = 1, . . . , q such that the components of ui are independent
and take value ±1 with equal probability, the Hutchinson trace estimator is

Tr(G) ≈ 1
q

q∑
i=1

uTi Gui,(8)

which is unbiased with variance decaying as 1/q and has cost O(qn log n). For low-
accuracy estimates of the trace, the Hutchinson estimator is simple and computation-
ally efficient, but for higher accuracy it proves computationally infeasible to use the
Hutchinson approach because of the slow rate of convergence in q; see section 5.

When Σ and Σi have hierarchical rank structure, it is reasonable to also look for
hierarchical rank structure in the product Σ−1Σi, as matrix inversion and multipli-
cation preserve such rank structure (albeit with different ranks) in many cases [18].
In our framework, we use the matrix peeling algorithm of Lin, Lu, and Ying [29] for
constructing an explicit H-matrix representation of a fast black-box operator G. At a
high level, the method proceeds by applying the operator G to random vectors drawn
with a specific sparsity structure to construct an approximate representation of the
off-diagonal blocks at each level. We recursively perform low-rank compression level
by level, following the same quadtree hierarchy as in the recursive skeletonization
factorization, albeit in a top-down traversal rather than bottom-up. Finally, at the
bottom level of the tree, the diagonal blocks corresponding to leaf-level subdomains
can be extracted and their traces computed. While the full algorithm is applicable to
both the strongly admissible and weakly admissible settings, the version of the algo-
rithm we detail here is efficient for the simple weakly admissible case. We point the
reader to Lin, Lu, and Ying [29] for more details related to the modifications required
for strong admissibility.

The use of a randomized method for computing low-rank representations of ma-
trices, which we review below, is integral to the peeling algorithm.

3.1. Randomized low-rank approximations. To begin, suppose that matrix
A ∈ Rm1×m2 has (numerical) rank r and that we wish to construct an explicit rank-r
approximation A ≈ U1MUT2 with U1 ∈ Rm1×r, U2 ∈ Rm2×r, and M ∈ Rr×r. In the
context of approximating the trace terms, for example, A will be an off-diagonal block
of Σ−1Σi or perhaps of a related symmetrized form with the same trace. Here we
provide an overview of an algorithm that accomplishes this goal.

We begin by constructing approximations to the column space and row space
of the matrix A. Let c be a small integer and suppose W1 ∈ Rm2×(r+c) and W2 ∈
Rm1×(r+c) are appropriately chosen random matrices, the distribution of which we
will discuss later. Following Halko, Martinsson, and Tropp [22], let U1 be a well-
conditioned basis for the column space of AW1 and U2 be a well-conditioned basis
for the column space of ATW2 constructed via, e.g., column-pivoted QR factoriza-
tions. Using the Moore–Penrose pseudoinverse, we obtain a low-rank approximation
according to the approach summarized by Lin, Lu, and Ying [29, subsection 1.2] via

(9) A ≈ U1
[
(WT

2 U1)†(WT
2 AW1)(UT2 W1)†

]
UT2 = U1MUT2 .

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1595

Perhaps surprisingly, with an appropriate choice of W1 and W2 it is the case that
with high probability this approximation is near optimal, in the sense that

‖A− U1MUT2 ‖2 ≤ α(m1,m2, c)‖A− Ar,best‖2,

where Ar,best is the best rank-r approximation of A and α(m1,m2, c) is a small fac-
tor dependent on c and the size of A. Further, the approximation process can be
monitored and controlled adaptively to ensure a target desired accuracy [22].

It remains to discuss the choice of distribution for W1 and W2. The most com-
mon and straightforward choice is for both to have independently and identically
distributed N(0, 1) entries, which guarantees the strongest analytical error bounds
and highest success probability. Under this choice, one can show that the algorithm
as stated takes O(Tapplyr+nr2 + r3), where Tapply is the complexity of applying A to
a vector. This is sufficiently fast for our purposes, though we note that it is possible
to accelerate this using other distributions [35, 22, 42].

3.2. Matrix peeling for weakly admissible matrices. For simplicity, we
assume a perfect quadtree as in Remark 2. Further, we will assume that the numerical
ranks of the off-diagonal blocks to a specified tolerance εpeel are known a priori at each
level, such that off-diagonal blocks of G at level ` have numerical rank at most r`. In
practice, an adaptive procedure is used to find the ranks. Finally, we assume that G
is symmetric, since if the trace of nonsymmetric G is required we can instead always
consider a symmetrized form with the same trace such as 1

2 (G + GT).

3.2.1. First level of peeling algorithm. To begin, at level ` = 1 the domain is
partitioned into four subdomains Ω1;i with corresponding index sets I1;i, i = 1, . . . , 4
as in Figure 1. We follow the style of Lin, Lu, and Ying [29] and write the off-diagonal
blocks at this level as G1;ij ≡ G (I1;i, I1;j) to make our notation less cumbersome.

To construct randomized low-rank approximations of G1;ij for i 6= j, we need
to find the action of these off-diagonal blocks on random matrices as described in
subsection 3.1. Define the block-sparse matrices

W(1)
1 ≡

W1;1

0

0

0

 , W(1)
2 ≡

0

W1;2

0

0

 , W(1)
3 ≡

0

0

W1;3

0

 , W(1)
4 ≡

0

0

0

W1;4

 ,

where W1;j is a random matrix of dimension |I1;j |×(r1 +c) for j = 1, . . . , 4. Applying
G to W(1)

1 gives the action of G1;1j on the random matrix W1;1 for j = 1, . . . , 4, since
G1;11 G1;12 G1;13 G1;14

G1;21 G1;22 G1;23 G1;24

G1;31 G1;32 G1;33 G1;34

G1;41 G1;42 G1;43 G1;44

W1;1

 =

G1;11W1;1

G1;21W1;1

G1;31W1;1

G1;41W1;1

 .

The top block of the right-hand side vector above is unused as it involves a diagonal
block of G. However, the remaining blocks are exactly the matrices G1;i1W1;1 for i 6= 1
as required by the randomized low-rank approximation of subsection 3.1. Applying
G to each W(1)

j for j = 1, . . . , 4, for each block G1;ij with i 6= j we obtain a random

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1596 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

sampling of its column space G1;ijW1;j . Note that by symmetry of G we also obtain
a random sampling of the row space of each block since G1;ijW1;j = GT1;jiW1;j .

Using (9) to construct rank-r1 approximations of each of these blocks, we write
the approximation of G1;ij as G1;ij ≈ Ĝ1;ij ≡ U1;ijM1;ijUT1;ji, where the approximation
is accurate to the specified tolerance εpeel with high probability.

Defining the matrix G(1) ∈ Rn×n with blocks given by

G(1) (I1;i, I1;j) =

{
Ĝ1;ij , i 6= j,

0, else,

we obtain

G− G(1) ≡ G−

Ĝ1;12 Ĝ1;13 Ĝ1;14

Ĝ1;21 Ĝ1;23 Ĝ1;24

Ĝ1;31 Ĝ1;32 Ĝ1;34

Ĝ1;41 Ĝ1;42 Ĝ1;43

 ≈

G1;11

G1;22

G1;33

G1;44

 .
In other words, we have approximated the off-diagonal blocks at this level to a specified
accuracy and used the result to obtain a fast operator G−G(1) that is block diagonal
with diagonal blocks the same as those of G.

Remark 5. We note that the matrix G(1) is not explicitly assembled as a dense
matrix inside the peeling algorithm. Instead, we store the nonzero blocks in low-rank
form so that G(1) may be efficiently applied to vectors.

3.2.2. Second level of peeling algorithm. In the next step of the peeling
algorithm, we recurse on the diagonal subblocks G1;ii for i = 1, . . . , 4. Partitioning
each subdomain Ω1;i at level ` = 1 into four child subdomains at level ` = 2 using the
quadtree structure and renumbering blocks accordingly, we write the diagonal blocks
G1;ii for i = 1, . . . , 4 as

G1;11 =

G2;11 G2;12 G2;13 G2;14

G2;21 G2;22 G2;23 G2;24

G2;31 G2;32 G2;33 G2;34

G2;41 G2;42 G2;43 G2;44

 , G1;22 =

G2;55 G2;56 G2;57 G2;58

G2;65 G2;66 G2;67 G2;68

G2;75 G2;76 G2;77 G2;78

G2;85 G2;86 G2;87 G2;88

 ,
and so on for G1;33 and G1;44.

For each j = 1, . . . , 16 we define the random matrix W2;j ∈ R|I2;j |×(r2+c), which
is appropriately sized to give a random sample of the column space of G2;ij for each
i = 1, . . . , 16, i 6= j. We can minimize the number of times we apply the operator
G−G(1) as follows due to its block diagonal structure. For each k = 1, . . . , 4, we define
W(2)
k ∈ Rn×(r2+c) to have rows divided into 16 blocks according to

W(2)
k (I2;j , :) =

{
W2;j j ∈ {k, k + 4, k + 8, k + 12},
0 else.

In other words, block k of W(2)
k is nonzero, as is every fourth block after k.

Definition 4 (Quadtree siblings). In the context of the quadtree decomposition
of Ω, we say that Ω`;i and Ω`;j are siblings if i 6= j and both Ω`;i ⊂ Ω`−1;k and
Ω`;j ⊂ Ω`−1;k for some 1 ≤ k ≤ 4(`−1).

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1597

Let Bk ≡ (G − G(1))W(2)
k and suppose that W(2)

k (I2;j , :) is nonzero. For each i
such that Ω2;i and Ω2;j are siblings, we have Bk(I2;i, :) ≈ G2;ijW2;j . For example, in
W(2)

1 the nonzero blocks are W(2)
1 (I2;j , :) = W2;j for j ∈ {1, 5, 9, 13}, so

B1(I2;i, :) ≈

G2;i1W2;1, i = 1, . . . , 4,

G2;i5W2;5, i = 5, . . . , 8,

G2;i9W2;9, i = 9, . . . , 12,

G2;i13W2;13, i = 13, . . . , 16.

Therefore, applying G − G(1) to W(2)
k for k = 1, . . . , 4 gives a random sample of

the column space and row space of G2;ij for each i and j such that Ω2;i and Ω2;j
are siblings. For all such i and j we use the randomized low-rank approximation
algorithm as before to construct

Ĝ2;ij = U2;ijM2;ijUT2;ji.

Defining G(2) ∈ Rn×n with blocks

G(2) (I2;i, I2;j) =

{
Ĝ2;ij if Ω2;i and Ω2;j are siblings,

0 else,

we have that G − G(1) − G(2) is approximately block diagonal with diagonal blocks
G2;ii for i = 1, . . . , 16.

3.2.3. Subsequent levels of peeling algorithm. In general, at level ` > 2 we
see that G−

∑`−1
m=1 G(m) is approximately block diagonal with 4(`−1) diagonal blocks.

For each k = 1, . . . , 4 we define W(`)
k ∈ Rn×(r`+c) to have rows divided into 4` blocks

according to

W(`)
k (I`;j , :) =

{
W`;j , j ≡ k (mod 4),

0, else,

where each W`;j is a random matrix of size R|I`;j |×r` . Using the same logic as in
subsection 3.2.2, we apply G−

∑`−1
m=1 G(m) to W(`)

k for each k = 1, . . . , 4 and use the
results to construct low-rank approximations

Ĝ`;ij = U`;ijM`;ijUT`;ji

for each i and j such that Ω`;i and Ω`;j are siblings. We define

G(`) (I`;i, I`;j) =

{
Ĝ`;ij if Ω`;i and Ω`;j are siblings,

0 else

such that G−
∑`
m=1 G(m) is approximately block diagonal with 4` diagonal blocks.

3.2.4. Extracting the trace. At the bottom level of the quadtree, each diag-
onal block of G −

∑L
m=1 G(m) is of a constant size independent of n as discussed in

subsection 2.1. Define nL;i ≡ |IL;i| and nL ≡ maxi nL;i such that nL is the maxi-
mum number of observations in a leaf-level subdomain. We construct a block matrix
E ∈ Rn×nL such that

E (IL;i, [nL;i]) = I ∈ R|IL;i|×|IL;i|

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1598 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

for each i, where I is an appropriately sized identity matrix. Letting

H ≡

(
G−

L∑
m=1

G(m)

)
E,

we find that H (IL;i, [nL;i]) ≈ GL;ii for each i = 1, . . . , 4L. We can then approximate
the trace of G using the relation

Tr(G) =
4L∑
i=1

Tr(GL;ii) ≈
4L∑
i=1

Tr(H (IL;i, [nL;i])).

Remark 6. When using the peeling algorithm to construct an approximate trace
of an operator G with numerically low-rank off-diagonal blocks, it is important to note
that we do not have direct control of the relative error of the trace approximation.
This is because a matrix with diagonal entries with large absolute value but mixed
signs can have a small trace due to cancellation. In practice, however, our numerical
results in section 5 show excellent agreement between the approximate trace and true
trace.

3.3. Computational complexity. For each level of the weak-admissibility-
based peeling algorithm described in subsection 3.2 there are two key steps: applying
the operator G−

∑`−1
m=1 G(m) and forming the low-rank factorizations Ĝ`;ij for each i

and j such that Ω`;i and Ω`;j are siblings. Analyzing the cost of these steps leads to
the following complexity result.

Theorem 5. Let the cost of applying G ∈ Rn×n to a vector be Tapply and assume
that the observations are uniformly distributed in Ω such that |I`;i| = O(4−`n) for
each 1 ≤ ` ≤ L and 1 ≤ i ≤ 4`. Assuming that the ranks of the off-diagonal blocks
G`;ij are bounded by r` for each i and j such that Ω`;i and Ω`;j are siblings, and define

s1 ≡
L∑
`=1

r`, and s2 ≡
L∑
`=1

r2` .

Then the complexity of the weak-admissibility-based peeling algorithm is

Tpeel = O(Tapplys1 + ns2 log n).(10)

The storage complexity is O(ns1).

Proof. We adapt the proof of Lin, Lu, and Ying [29] to the weak admissibility
case. At the first level, applying G to each W(1)

k costs O(Tapplyr1) and each randomized
factorization costs O(nr21), leading to an overall cost for level 1 of O(Tapplyr1 + nr21).

At level ` > 1, we break the cost of applying G−
∑`−1
m=1 G(m) into two pieces. The

cost of applying G to each W(`)
k is O(Tapplyr`). The matrix

∑`−1
m=1 G(m) is a heavily

structured matrix with blocks in low-rank form. Applying this to each W(`)
k costs

O
(∑`−1

m=1 nrmr`

)
, which is O(ns2). We additionally must construct each randomized

factorization at this level. Each one costs O(4−`nr2`) and there are O(4`) off-diagonal
blocks to compress at this level, so the overall cost for level ` is O(Tapplyr`+ns2+nr2`).

Summing the cost of each level from ` = 1, . . . , L, we obtain (10). Note that at
level ` = L, we must additionally extract the diagonal blocks, but by the assumption

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1599

Table 2
The runtime and storage complexity of the peeling algorithm depend on the asymptotic rank r`

of off-diagonal blocks of G at level `. The tabulated complexities are based on the assmption that the
recursive skeletonization factorization is used to apply G as a fast operator.

r` Time Storage

O(logn`) Õ(n) Õ(n)

O(
√
n`) Õ

(
n2) Õ(n3/2)

these blocks are of constant size so this does not increase the asymptotic cost. The
storage complexity comes from noting that at level ` we must store the O(4`) matrices
of rank r`, where each has outer dimension that is O(4−`n).

When the underlying matrix has the rank of all off-diagonal blocks bounded by
r` = O(1) for all `, then the computational complexity of weak peeling is Õ(Tapply+n),
where we use the so-called “soft-O” notation from theoretical computer science to
suppress factors that are polylogarithmic in n. In this case, peeling G = Σ itself using
its recursive skeletonization factorization results in Õ(n) complexity for both time
and memory.

Many real matrices of interest, however, do not exhibit off-diagonal blocks with
ranks independent of n. For example, our experiments with the Matérn kernel of
(3) show that a constant number of off-diagonal blocks at each level of the hierarchy
exhibit ranks bounded only as r` = O(2−`

√
n). This coincides with the argument

for rank growth in the recursive skeletonization factorization in subsection 2.3. Thus,
this simplified peeling algorithm in the case of the Matérn kernel has asymptotic
time complexity Õ(n2) and storage complexity Õ(n3/2), where we pick up at most
a polylogarithmic factor in the ranks since we are looking at G = Σ−1Σi and not Σ
itself. In theory, using the simple peeling algorithm described here is asymptotically
no better than extracting the trace by applying G to the coordinate vectors ei for
i = 1, . . . , n. This necessitates the standard form of peeling for large problems.

Remark 7. In practice, the standard form of the peeling algorithm [29] that uses
the full generality of strong admissibility can be employed to remedy such rank growth
by explicitly avoiding compression of off-diagonal blocks that are not sufficiently low
rank. Using the modifications described in that paper, the complexity of peeling
follows the same bound as Theorem 5 but with the rank bound r` referring to a bound
on the ranks of only those blocks that are compressed in the strongly admissible
hierarchical format. We find in subsection 5.1 that using peeling based on strong
admissibility is more efficient when n is large, as expected. However, the implicit
constants in the asymptotic runtime lead to weak admissibility being more efficient
for moderately sized problems.

We summarize our complexity results in Table 2. Note that these results were
derived on the assumption that n` = O(4−`n), i.e., a quasi-uniform distribution of
observations and a perfect quadtree decomposition of space. In practice, observations
that are distributed in a different fashion can actually exhibit better behavior, par-
ticularly if the observations are concentrated around a quasi-one-dimensional curve
[25].

4. Summary of MLE framework. In Algorithm 1 we summarize our complete
framework for computing the log-likelihood `(θ) and gradient g(θ) given θ, which can
be used inside of any first-order optimization routine for Gaussian process maximum

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1600 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

likelihood estimation. As mentioned previously, the approach is flexible and does not
rely on the specific hierarchical factorization used (e.g., the recursive skeletonization
factorization, the hierarchical interpolative factorization, the strong recursive skele-
tonization factorization) or the form of peeling used (i.e., the peeling based on weak
admissibility described in section 3 or the form by Lin, Lu, and Ying [29] based
on strong admissibility). Rather, the exact components of the framework should be
decided on a case-by-case basis depending on the rank properties of the kernel family.

Algorithm 1 Computing the Gaussian process log-likelihood and gradient.
Given: observation vector z ∈ Rn, observation locations {xi}ni=1 ⊂ R2, peel tolerance
εpeel, factorization tolerance εfact < εpeel, parameter vector θ ∈ Rp, and covariance kernel
K(·, ·; θ)

1: // Factor Σ with hierarchical factorization
2: F← Recursive skeletonization factorization of Σ with tolerance εfact
3: // Use fast hierarchical solve and log-determinant
4: ˆ̀(θ)← − 1

2z
T F−1z − 1

2 log |F| − 1
2 log 2π ≈ `(θ)

5: for i = 1, . . . , p do
6: // Factor Σi with hierarchical factorization
7: Fi ← Recursive skeletonization factorization of Σi with tolerance εfact)
8: // Compute trace of Σ−1Σi with peeling algorithm
9: ti ← Trace of operator 1

2 (F−1Fi + FiF−1) via peeling algorithm with tolerance εpeel

10: // Use fast hierarchical apply and solve
11: ĝi ← 1

2z
T F−1FiF−1z − 1

2 ti ≈ gi

12: end for
Output: ˆ̀(θ) and ĝ(θ)

Remark 8. After estimation of the parameter vector θ, there remains the question
of how to sample from the Gaussian process conditioned on the observed data z.
Assuming [z′, z]T is jointly distributed according to the original Gaussian process,
this conditional distribution is given by

z′|z ∼ N(Σ12Σ−1
22 z, Σ11 − Σ12Σ−1

22 ΣT
12),

where Σ11 is the covariance matrix of z′, Σ22 is the covariance matrix of z, and so on.
Using the identity

Σ11 − Σ12Σ−1
22 ΣT

12 =
[

I −Σ12Σ−1
22

] [Σ11 Σ12

ΣT
12 Σ22

][
I

−Σ−1
22 ΣT

12

]
and letting Σ denote the two-by-two block matrix in a slight abuse of notation, we can
apply a square root of Σ11−Σ12Σ−1

22 ΣT
12 with skeletonization factorizations F22 ≈ Σ22

and F ≈ Σ by using F1/2 to apply a square root of Σ, F to apply Σ12 through
appropriate padding, and F−1

22 to apply Σ−1
22 . This gives a fast method for sampling

from the conditional distribution or computing the conditional mean.

5. Numerical results. To demonstrate the effectiveness of our approach to
Gaussian process MLE, we first test the accuracy and runtime of the peeling-based
technique for approximating the trace and then test our full method on two examples
using synthetic datasets and one example using a dataset of measurements of ocean
surface temperatures. In all of our examples, we take the number of proxy points
to be nprox = 256, and use a quadtree decomposition of space with a maximum of
nocc = 64 points per leaf subdomain.

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1601

In our tests we use the FLAM library (https://github.com/klho/FLAM/) for
the recursive skeletonization factorization and a custom implementation of matrix
peeling as described in subsection 3.2. This additional code is available at https:
//github.com/asdamle/GPMLE/. All numerical results shown were run in MATLAB
R2015a on a quad-socket Intel Xeon E5-4640 processor clocked at 2.4 GHz using up
to 1.5 TB of RAM.

5.1. Runtime scaling of the peeling algorithm. To begin, we investigate
the numerical performance of the peeling algorithm on synthetic examples. We take
the observation locations {xi}ni=1 to be a

√
n×
√
n grid of points uniformly discretizing

the square [0, 100]2 ⊂ R2. We let θ = [θ1, θ2] parameterize the correlation length scale
of the process in each coordinate direction, defining the scaled distance

‖x− y‖2θ =
(x1 − y1)2

θ21
+

(x2 − y2)2

θ22
,

where here xi and yi are used to denote components of vectors x and y. Using this
parameterization and incorporating an additive noise term, the two kernels we test
are the rational quadratic kernel of (2) with α = 1/2,

KRQ(x, y; θ) =
(
1 + ‖x− y‖2θ

)−1/2
+ σ2

Nδxy,(11)

and the Matérn kernel of (3) with parameter ν = 3/2,

KM (x, y; θ) = (1 +
√

3‖x− y‖θ) exp(−
√

3‖x− y‖θ) + σ2
Nδxy.(12)

Here δxy is the Kronecker delta which satisfies δxy = 1 if x = y and δxy = 0 otherwise.

Remark 9. In both (11) and (12) the additional term σ2
Nδxy can be interpreted as

modeling additive white noise with variance σ2
N on top of the base Gaussian process

model. In practice, this so-called “nugget effect” is frequently incorporated to account
for measurement error or small-scale variation from other sources [32] and, further,
is numerically necessary for many choices of parameter θ due to exceedingly poor
conditioning of many kernel matrices.

We compute high-accuracy recursive skeletonization factorizations of the matrices
Σ and Σ1 ≡ ∂

∂θ1
Σ, which we combine to obtain the fast black-box operator

G =
1
2

(Σ−1Σ1 + Σ1Σ−1)(13)

for input to the peeling algorithm to compute the trace to specified tolerance εpeel =
1×10−6. We choose the parameter vector θ = [10, 7] for these examples as in Figure 4
(left), and set the noise parameter at σ2

N = 1× 10−4.
Beginning with the rational quadratic kernel, in Table 3 we give runtime results

for both the simplified peeling algorithm described in subsection 3.2 (“weak peeling”)
as well as the full strong-admissibility-based peeling algorithm of Lin, Lu, and Ying
[29] (“strong peeling”). As can be seen in Figure 5 (left), the runtime of the peeling
algorithm with the kernel (11) seems to scale between O(n) and O(n3/2) with the
number of observations n, regardless of whether weak or strong peeling is used. Fur-
ther, the relative error in the trace approximation, epeel, is near the specified tolerance
εpeel, though the tolerance is not a hard upper bound. Note that we omit the relative
error for our largest example, as the operator was too large to determine the true
trace using the näıve approach.

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://github.com/klho/FLAM/
https://github.com/asdamle/GPMLE/
https://github.com/asdamle/GPMLE/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1602 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

Fig. 4. Two different realizations on the domain [0, 200]×[0, 100] of the Matérn kernel Gaussian
process with covariance seen in (12) and noise parameter σ2

N = 0. In the left figure the parameter
vector is θ = [10, 7] corresponding to a kernel that is relatively close to isotropic. In contrast, in the
right figure the parameter vector θ = [3, 30] generates strong anisotropy.

Table 3
Runtime tpeel of the the peeling algorithm with the rational quadratic kernel of (11). Note that

we omit the relative error epeel in the estimated trace for our largest example, as the operator was
too large to determine the true trace using the näıve approach.

n tpeel,weak (s) epeel,weak tpeel,strong (s) epeel,strong

642 9.17× 100 5.68× 10−7 4.85× 101 1.60× 10−7

1282 9.16× 101 1.02× 10−5 5.64× 102 2.58× 10−7

2562 6.63× 102 3.72× 10−5 3.04× 103 3.32× 10−6

5122 2.88× 103 - 1.73× 104 -

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

Strong peeling

Weak peeling

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

Strong peeling

Weak peeling

Fig. 5. On the left the runtime of peeling for the rational quadratic kernel is plotted along with
an O(n3/2) trend line (top) and an O(n) trend line (bottom), showing subquadratic scaling for weak
peeling in this case. In contrast, on the right the runtime of peeling for the Matérn kernel is plotted
along with an O(n2) trend line (top) and an O(n3/2) trend line (bottom). We see that weak peeling
with the Matérn kernel seems to ultimately exhibit quadratic scaling, whereas strong peeling seems
to exhibit slightly better than O(n3/2) scaling. The corresponding data are given in Tables 3 and 4.

In contrast, the results in Table 4 for the Matérn kernel in (12) show different
scaling behavior for weak and strong peeling. In Figure 5 (right), we see that the
runtime for weak peeling seems to be close to quadratic in the number of observations,
which agrees with our analysis from section 3. Using strong peeling, however, the
complexity of peeling scales considerably better, ultimately following the O(n3/2)
trend line. We see again that the relative trace error is well-controlled by εpeel in both
cases.

Though the observed scaling behavior of strong peeling is as good as or better
than that for weak peeling for both kernels, in practice we see that for problems with
up to a quarter of a million observations weak peeling has a smaller time to solution.
As such, in the remainder of our examples we show results using only weak peeling.

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1603

Table 4
Runtime tpeel of the the peeling algorithm with the Matérn kernel of (12). Note that we omit

the relative error epeel in the estimated trace for our largest example, as the operator was too large
to determine the true trace using the näıve approach.

n tpeel,weak (s) epeel,weak tpeel,strong (s) epeel,strong

642 6.03× 100 5.73× 10−8 2.06× 101 4.78× 10−10

1282 5.30× 101 2.46× 10−7 2.29× 102 3.36× 10−10

2562 5.37× 102 4.28× 10−6 1.62× 103 8.14× 10−10

5122 7.07× 103 - 1.00× 104 -

400 800 1200 1600 2000

Applies

10
-13

10
-9

10
-5

10
-1

E
rr
o
r

Hutchinson

Peeling

5 10 15 20

Time (s)

10
-13

10
-9

10
-5

10
-1

E
rr
o
r

Hutchinson

Peeling

Fig. 6. Plotting the relative error in the trace approximation versus the number of applications
of the black-box operator, we see in the left figure that the Hutchinson estimator exhibits character-
istic inverse square root convergence as dictated by the central limit theorem. In contrast, using the
peeling algorithm described in subsection 3.2, we see that the same number of black-box applies yields
a much improved accuracy, though the rate of convergence depends on the spectra of off-diagonal
blocks of the operator. In the right figure, we plot the error of each method versus wall-clock time to
establish that the same scaling behavior holds when error is viewed as a function of time to solution.

5.2. Relative efficiency of peeling versus the Hutchinson estimator. As
discussed in section 3, a common alternative statistical approach for approximating
the trace of a matrix G is the estimator of Hutchinson [26] seen in (8). The aim of this
section is to show that for matrices with hierarchical low-rank structure our peeling-
based algorithm can be much more efficient when a high-accuracy trace approximation
is desired.

As in subsection 5.1, we take our observations to be a regular grid discretizing
[0, 100]2 ⊂ R2 using the Matérn kernel of (12) with noise σ2

N = 1×10−4 and parameter
vector θ = [10, 7]. We fix the number of observations at n = 642 and consider how
the accuracy of the trace approximation varies with the number of applications of the
black-box operator for both weak peeling and the Hutchinson estimator.

Using a high-accuracy recursive skeletonization factorization to construct the
black-box operator in (13) as in subsection 5.1, we vary the tolerance εpeel in the
peeling algorithm and plot in Figure 6 the relative error in the trace approximation
as a function of both the number of black-box applies and total peeling runtime. Ad-
ditionally, for the Hutchinson estimator we use the same factorizations to construct
the unsymmetric operator G′ = Σ−1Σ1. We plot the same quantities for a given
instantiation of the estimator for comparison.

For low-accuracy approximations with relative error on the order of 1 × 10−1

to 1 × 10−3, we see that the Hutchinson estimator is a competitive alternative to
the peeling algorithm for finding the trace. When increased accuracy is desired,
however, it is clear that in our examples the peeling algorithm is the more attractive
option. While the Hutchinson estimator has a simple form and is easy to compute,

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1604 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

10
3

10
4

10
5

10
6

Number of observations

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
(s
)

Tolerance 10
-8

Tolerance 10
-6

10
3

10
4

10
5

10
6

Number of observations

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
(s
)

Tolerance 10
-8

Tolerance 10
-6

Fig. 7. On the left we plot the total runtime of evaluating a single objective function and
gradient for the uniform grid example of section 5.3 as a function of the total number of observations
for two different tolerances. The top trend line shows O(n2) scaling and the bottom shows O(n3/2)
scaling. On the right we plot the corresponding results for the scattered data of section 5.4 with the
same trend lines. We observe that the scaling in all cases looks like O(n3/2).

the relatively slow inverse square root convergence means that M in (8) must be taken
to be exceedingly large to drive the variance down to reasonable levels, whereas the
peeling algorithm is observed to make more economical use of its black-box matrix-
vector products. It is worth noting that, for this choice of n, only 4096 applies are
needed to explicitly construct all diagonal entries of the operator via application to
the identity, though this is not feasible for larger n.

5.3. Gridded synthetic data example. We now profile a full objective func-
tion and gradient evaluation for the MLE problem for θ. As before, we consider the
Matérn kernel of (12) with noise σ2

N = 1× 10−4.
We set the parameter vector at θ = [10, 7] and again take the observation lo-

cations to be a regular
√
n ×
√
n grid discretizing the square [0, 100]2. Evaluating

`(θ) and gi for i = 1, . . . , 2 then requires three skeletonization factorizations and two
different trace approximations. We investigate the algorithm’s performance for two
different peeling tolerances εpeel, and in each case take the factorization tolerance to
be εfact = 1

1000εpeel. For varying n between 642 and 5122, we measured the runtime of
both the factorization portion and peeling portion of Algorithm 1. We note that, given
the factorizations and peeled trace estimates, the remainining pieces of Algorithm 1
are several orders of magnitude less costly in terms of runtime.

In Figure 7 (left), we plot the total runtime for a single objective function and
gradient evaluation for the uniform grid of observations (corresponding data in Ta-
ble 5). We see from the figure that the runtime seems to scale as roughly O(n3/2) with
the number of observations; a least-squares fit of the data gives O(n1.6). As can be
seen in the table, the amount of time spent in calculating the recursive skeletonization
factorizations is roughly an order of magnitude less than the time spent in the peeling
trace approximation and, further, scales slightly better than peeling for this example.

5.4. Scattered synthetic data example. While all examples thus far have
used a regular grid of observations, our framework does not rely on this assumption.
To complement the examples on gridded observations, we repeat the same experiment
from the previous section with real-world observation locations coming from release
2.5 of the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) [46]
obtained from the National Center for Atmospheric Research at http://rda.ucar.edu/
datasets/ds540.0/. We subselect from ICOADS a set of sea surface temperatures
measured at varying locations in the North Atlantic ocean between the years 2008

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://rda.ucar.edu/datasets/ds540.0/
http://rda.ucar.edu/datasets/ds540.0/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1605

Table 5
Runtime for one objective function and gradient evaluation (i.e., the work for a single iteration)

on a uniform grid of observations.

εpeel n tfact (s) tpeel,weak (s) ttotal (s)

1× 10−6

642 7.34× 100 1.23× 101 1.96× 101

1282 4.86× 101 1.20× 102 1.68× 102

2562 2.73× 102 1.22× 103 1.49× 103

5122 1.41× 103 1.39× 104 1.53× 104

1× 10−8

642 9.70× 100 1.55× 101 2.52× 101

1282 7.08× 101 1.68× 102 2.39× 102

2562 4.28× 102 1.76× 103 2.29× 103

5122 2.64× 103 1.54× 104 1.80× 104

Fig. 8. In the top-left plot, we show a subselection of n = 217 Atlantic ocean surface temperature
measurements from ICOADS projected to a two-dimensional plane through Mercator projection and
then scattered on top of a white background for visualization. Fitting the model with constant
mean and covariance given by (14), we use the estimated parameters to find the conditional mean
temperatures throughout this region of the Atlantic for ν = 1/2 (top right), ν = 3/2 (bottom left),
and ν = 5/2 (bottom right). The color bar shows the estimated sea surface temperature in Celsius.

and 2014. Restricting the data to observations made in the month of July across all
years we obtain roughly 300,000 unique observation locations and corresponding sea
surface temperature measurements, some of which can be seen in Figure 8.

Because large-scale spatial measurements typically cover a nontrivial range of
latitudes and longitudes, the development of valid covariance functions on the entire
sphere that respect the proper distance metric has been the subject of much recent
work; see, e.g., Gneiting [14] and related work [34, 27, 23]. As the focus of this
manuscript is not statistical modeling, we employ a simplified model based on Merca-
tor projection of the observations to two spatial dimensions. Note that the choice of
axis scaling in the Mercator projection is arbitrary; in our convention the horizontal
axis spans 90 units and the vertical axis spans 70 units.

To perform scaling tests on the cost of an objective function and gradient evalua-
tion according to Algorithm 1, we subselect from our full dataset of unique observation
locations by drawing observations uniformly at random without replacement. Figure 7
(right) shows the runtime scaling results as a function of the number of observations,
with corresponding data in Table 6. We see that the runtime scaling for the scattered

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1606 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

Table 6
Runtime for one objective function and gradient evaluation (i.e., the work for a single iteration)

on scattered observations with locations from ICOADS.

εpeel n tfact (s) tpeel,weak (s) ttotal (s)

1× 10−6

212 7.82× 100 2.41× 101 3.19× 101

214 4.25× 101 2.91× 102 3.34× 102

216 8.60× 101 2.49× 103 2.57× 103

218 4.84× 102 1.79× 104 1.84× 104

1× 10−8

212 1.06× 101 2.92× 101 3.98× 101

214 5.96× 101 3.83× 102 4.43× 102

216 2.72× 102 3.98× 103 4.26× 103

218 1.03× 103 3.15× 104 3.25× 104

observations follows essentially the same scaling behavior as the gridded observations
from subsection 5.3, with observed complexity between O(n1.5) and O(n1.6). Again,
the skeletonization factorizations take considerably less time than the trace estima-
tion.

As an illustrative example of the full power of Algorithm 1 in context, we take a
subset of n = 216 scattered observations and realize an instance of a Gaussian pro-
cess at those locations with true parameter vector θ∗ = [10, 7] and noise parameter
σ2
N = 1 × 10−4 to generate the observation vector z. Setting the peel tolerance to
εpeel = 1 × 10−6 and the factorization tolerance to εfact = 1 × 10−9, we plugged our
approximate log-likelihood and gradient routines into the MATLAB routine fminunc
for unconstrainted optimization using the quasi-Newton option. Starting from an ini-
tial guess of θ0 = [3, 30], we found that after 13 iterations (14 calls to Algorithm 1)
the first-order optimality as measured by the `∞-norm of the gradient had been re-
duced by three orders of magnitude, yielding an estimate of θ̂ = [10.0487, 7.0496] after
approximately 4.86× 104 seconds.

Remark 10. While a large percentage of this runtime was spent in the peeling
algorithm, we find it worthwhile to note that in this example the use of our gradient
approximation proved essential—using finite difference approximations to the gradient
led to stagnation at the first iteration, even with a factorization tolerance εfact =
1× 10−15, i.e., at the limits of machine precision.

Because the number of iterations to convergence depends on many factors (e.g.,
the choice of optimization algorithm, how well the data can be modeled by a Gaussian
process, and many convergence tolerances depending on the chosen algorithm), we do
not find it useful to attempt to profile the full minimization algorithm more extensively
than this, but direct the reader instead to the single-iteration results.

5.5. Scattered ocean data example. While the factorizations and peeling in
Algorithm 1 depend only on the locations of the observations and not their values, the
log-likelihood `(·) can have a more complicated shape with real observations z than
with synthetic data, which may impact the required tolerance parameters εfact and
εpeel and the difficulty of MLE. Further, there are a number of practical considerations
relevant for real data not addressed thus far in our synthetic examples.

As a refinement of (1), suppose now that the data are distributed according to
z ∼ N(µ1, σ2Σ(θ)), where 1 ∈ Rn is the all-ones vector, µ and σ2 represent the
constant but unknown mean and variance level, and our parameterized Matérn model

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1607

is given by (for several different choices of ν)

[Σ(θ)]ij =
1

Γ(ν)2ν−1

(√
2νrij
ρ

)ν
Kν

(√
2νrij
ρ

)
+ σ2

Nδij(14)

=

exp

(
− rij

ρ

)
, ν = 1/2,(

1 +
√

3rij

ρ

)
exp

(
−
√

3rij

ρ

)
+ σ2

Nδij , ν = 3/2,(
1 +

√
5rij

ρ + 5r2ij

3ρ2

)
exp

(
−
√

5rij

ρ

)
+ σ2

Nδij , ν = 5/2,

with rij = ‖xi − xj‖. In this example, the parameter vector is θ = [ρ, σ2
N], consisting

of a single correlation length parameter and the noise level. To optimize the new log-
likelihood over µ, σ2, and θ, we note that optimization over µ and σ2 results in closed
form expressions for these parameters in terms of θ, which may then be substituted
back into (4) to obtain the log profile likelihood for this model

˜̀(θ) ≡ −1
2

log |Σ| − n

2
log
(
zT (Σ + 11T)−1z

)
+
n

2
(log n− 1− 2π)(15)

with gradient components given by

g̃i ≡ −
1
2

Tr(Σ−1Σi) +
n

2

(
zT (Σ + 11T)−1Σi(Σ + 11T)−1z

zT (Σ + 11T)−1z

)
, i = 1, . . . , p.

Optimization of this new model fits neatly into the computational framework of Al-
gorithm 1 with trivial modifications. The new model has the advantage of greater
plausibility, though it still admits many further improvements.

From the full set of sea surface temperature observations, we subselected n = 217

unique temperature measurements corresponding to observations between July 2013
and August 2013. Taking εfact = 1× 10−9 and εpeel = 1× 10−6, we use the MATLAB
optimization routine fmincon with the SQP option to estimate the correlation length
parameter θ1 = ρ and noise parameter θ2 = σ2

N for the standardized temperature
measurements. For ν = 3/2 and ν = 5/2 this was accomplished by numerically
maximizing (15) subject to the lower-bound constraint σ2

N ≥ 1 × 10−5, which was
necessary to ensure Σ was not numerically rank deficient. For ν = 1/2 the covariance
matrix Σ is naturally better conditioned so a looser lower bound σ2

N ≥ 1 × 10−8

was used. The tolerances dictating the minimum step size and minimum change in
objective function between successive iterates were both set to 1× 10−6.

Due to the nonconvex nature of the problem, we tried several choices of starting
parameter for each ν; the results we present are for the best initialization in each
case. For choices of initial parameters leading to convergent iterates (e.g., θ0 = [5, 1]
or θ0 = [1 × 10−1, 1 × 10−3]), the converged solutions all agreed to the specified
tolerance and the objective function value at the optimal points agreed to six digits.
For some choices of initial parameters, the optimization terminated prematurely due
to the relative improvement tolerances used to evaluate convergence (i.e., when the
initial parameters are very poor, even a large improvement relative to the initial
parameters can be far from the best choice of parameters). We did not observe any
evidence of multiple local optima, though the possibility that our reported parameters
are globally suboptimal cannot be ruled out.

The results of our numerical optimization for each choice of ν can be seen in
Table 7, where in each case optimization terminated due to the step-size tolerance.

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1608 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

Table 7
Parameter estimates θ̂ = [ρ̂, σ̂2

N], the corresponding mean and variance level µ(θ̂) and σ2(θ̂),
and the log-likelihood values of the fitted parameters for the model with kernel (14). We note that
for ν = 1/2, the estimate of σ2

N is at its lower bound.

ν ρ̂ σ̂2
N µ(θ̂) σ2(θ̂) `(θ̂)

1/2 2.12× 10+0 1.00× 10−8 −5.65× 10−1 9.97× 10−1 9.28× 10+4

3/2 2.52× 10−1 4.37× 10−3 −4.38× 10−1 8.71× 10−1 8.42× 10+4

5/2 1.78× 10−1 5.67× 10−3 −4.30× 10−1 8.57× 10−1 7.74× 10+4

At each corresponding θ̂, however, we note that the gradient is small relative to the
objective function.

Of the three different models, we find that the fitted model for ν = 1/2 gives the
best fit as measured both by comparative likelihood and qualitatively (see Figure 8).
Since ν dictates the smoothness of the denoised process, these results imply that the
best description of the observed data among our choices is the one with the least
assumptions on smoothness. We caution that this does not preclude a much better
fit with a more sophisticated model, but this simple example illustrates that our
framework is effective for MLE even for real observations.

6. Conclusions. The framework for Gaussian process MLE presented in this
paper and summarized in Algorithm 1 provides a straightforward method of leveraging
hierarchical matrix representations from scientific computing for fast computations
with kernelized covariance matrices arising in spatial statistics. The general linear
algebraic approach to approximating off-diagonal blocks of the covariance matrix to a
specified error tolerance by adaptively determining their ranks gives a flexible way of
attaining high-accuracy approximations with reasonable runtimes. A further merit to
this approach is that it does not rely on having gridded observations or a translation-
invariant covariance kernel.

While in this paper we have focused on MLE for Gaussian processes, these meth-
ods are equally viable for the Bayesian setting. For example, computing maximum
a posteriori estimates follows essentially the same approach with the addition of a
term depending on the prior. Further, sampling from the posterior distriution of θ
in a Bayesian setting can be accomplished using standard Markov chain Monte Carlo
methods based on quickly evaluating the likelihood and posterior. This can also be
combined with Remark 8 for a fully Bayesian treatment.

Our numerical results in section 5 show that our framework scales favorably when
applied to our two test cases (the rational quadratic and Matérn family kernels), lead-
ing to runtimes scaling approximately as O(n3/2) with n the number of observations.
Further, we see that the tolerance parameter εpeel controlling the rank of off-diagonal
block approximations in the peeling algorithm serves as a good estimate of the order of
the error in the ultimate trace approximation as well. In practice, the tolerances εpeel
and εfact can be dynamically modified during the course of the maximum likelihood
process for performance, e.g., one could use relatively low-accuracy approximations
during initial iterations of the optimization routine and slowly decrease the tolerance
as the optimization progresses.

While the methods and complexity estimates discussed in this paper relate to the
case of two spatial dimensions, they trivially extend to one-dimensional (time-series)
data or quasi-two-dimensional data, e.g., observations in three-dimensions where the
sampling density in one dimension is much smaller than in the other two. While the

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1609

same methods apply in principle to truly three-dimensional data, the corresponding
computational complexity is bottlenecked by the cost of using peeling to obtain a
high-accuracy trace estimate of the matrices Σ−1Σi for i = 1, . . . , p due to increased
rank growth. In fact, even in the two-dimensional case it is clear from Tables 5
and 6 that the most expensive piece of our framework in practice is determining these
traces. One solution is to instead use the hierarchical matrix representations inside
of an estimator such as that of Stein, Chen, and Anitescu [40], which obviates the
need for the trace. For true MLE, however, future work on efficiently computing
this trace to high accuracy is necessary. Given a method for efficiently computing
this trace for three-dimensional data, we expect that related factorizations based on
more sophisticated use of skeletonization should give complexities for computing the
log-likelihood and gradient that are as good as or better than those we obtain with
recursive skeletonization in the two-dimensional case. For example, the hierarchical
interpolative factorization [25] (which uses further levels of compression to mitigate
rank growth of off-diagonal blocks) may be used in our framework as an efficient
method of applying Σi and Σ−1 and computing the log-determinant of Σ for three-
dimensional problems.

While Gaussian process regression is widely used for data in Rd with d much larger
than three, the methods of this paper are designed with spatial data in mind. In par-
ticular, in the high-dimensional setting the geometry of the observations becomes very
important for efficiency. If the data can be well-approximated according to an intrin-
sic low-dimensional embedding that is efficient to identify, there is hope for efficient
approximations using hierarchical rank structure (see, for example, Yu, March, and
Biros [48]). However, in general we expect that rank-structured factorizations will
continue to be most effective for low-dimensional spatial applications.

Acknowledgments. The authors thank Matthias Cremon, Eileen Martin, Sven
Schmit, and Austin Benson for useful discussion on Gaussian process regression, the
anonymous reviewers for thoughtful comments that improved the presentation of this
paper, and Stanford University and the Stanford Research Computing Center for pro-
viding computational resources and support that have contributed to these research
results.

REFERENCES

[1] S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W. Hogg, and M. O’Neil, Fast
direct methods for Gaussian processes, IEEE Trans. Pattern Anal. Mach. Intell., 38 (2016),
pp. 252–265.

[2] M. Anitescu, J. Chen, and L. Wang, A matrix-free approach for solving the parametric
Gaussian process maximum likelihood problem, SIAM J. Sci. Comput., 34 (2012), pp. A240–
A262.

[3] E. Aune, D. P. Simpson, and J. Eidsvik, Parameter estimation in high dimensional Gaus-
sian distributions, Statist. Comput., 24 (2014), pp. 247–263, https://doi.org/10.1007/
s11222-012-9368-y.

[4] S. Börm and J. Garcke, Approximating Gaussian processes with H2-matrices, in Proceedings
of the 18th European Conference on Machine Learning, Springer, Berlin, 2007, pp. 42–53.

[5] J. E. Castrillón-Candás, M. G. Genton, and R. Yokota, Multi-level restricted maximum
likelihood covariance estimation and kriging for large non-gridded spatial datasets, Spat.
Stat., 18A (2015), pp. 105–124.

[6] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, A fast solver for HSS
representations via sparse matrices, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 67–81.

[7] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1007/s11222-012-9368-y
https://doi.org/10.1007/s11222-012-9368-y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1610 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

[8] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin, On the compression of low
rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404.

[9] E. Corona, P.-G. Martinsson, and D. Zorin, An O(N) direct solver for integral equations
on the plane, Appl. Comput. Harmon. Anal., 38 (2015), pp. 284–317.

[10] N. Cressie and G. Johannesson, Fixed rank kriging for very large spatial data sets, J. R.
Stat. Soc. Ser. B Stat. Methodol., 70 (2008), pp. 209–226.

[11] J. Eidsvik, B. A. Shaby, B. J. Reich, M. Wheeler, and J. Niemi, Estimation and prediction
in spatial models with block composite likelihoods, J. Comput. Graph. Statist., 23 (2014),
pp. 295–315, https://doi.org/10.1080/10618600.2012.760460.

[12] R. Furrer, M. G. Genton, and D. Nychka, Covariance tapering for interpolation of large
spatial datasets, J. Comput. Graph. Statist., 15 (2006), pp. 502–523.

[13] A. Gillman, P. M. Young, and P.-G. Martinsson, A direct solver with O(N) complexity for
integral equations on one-dimensional domains, Front. Math. China, 7 (2012), pp. 217–247.

[14] T. Gneiting, Strictly and non-strictly positive definite functions on spheres, Bernoulli, 19
(2013), pp. 1327–1349, https://doi.org/10.3150/12-BEJSP06.

[15] L. Greengard, D. Gueyffier, P.-G. Martinsson, and V. Rokhlin, Fast direct solvers for
integral equations in complex three-dimensional domains, Acta Numer., 18 (2009), pp. 243–
275.

[16] L. Greengard and V. Rokhlin, On the numerical solution of two-point boundary value prob-
lems, Comm. Pure Appl. Math., 44 (1991), pp. 419–452.

[17] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices, Computing, 62 (1999), pp. 89–108.

[18] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer Ser. Comput.
Math., Springer, Berlin, 2015.

[19] W. Hackbusch and S. Börm, Data-sparse approximation by adaptive H2-matrices, Comput-
ing, 69 (2002), pp. 1–35.

[20] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: Application
to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.

[21] W. Hackbusch, B. N. Khoromskij, and W. Kriemann, Hierarchical matrices based on a
weak admissibility criterion, Computing, 73 (2004), pp. 207–243.

[22] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[23] M. Heaton, M. Katzfuss, C. Berrett, and D. W. Nychka, Constructing valid spatial
processes on the sphere using kernel convolutions, Environmetrics, 25 (2014), pp. 2–15,
https://doi.org/10.1002/env.2251.

[24] K. L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive
skeletonization, SIAM J. Sci. Comput., 34 (2012), pp. A2507–A2532.

[25] K. L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: Integral
equations, Comm. Pure Appl. Math., 69 (2015), pp. 1415–1451.

[26] M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines, Comm. Statist. Simulation Comput., 19 (1990), pp. 433–450.

[27] M. Jun and M. L. Stein, Nonstationary covariance models for global data, Ann. Appl. Stat.,
2 (2008), pp. 1271–1289, https://doi.org/10.1214/08-AOAS183.

[28] B. N. Khoromskij, A. Litvinenko, and H. G. Matthies, Application of hierarchical matrices
for computing the Karhunen–Loève expansion, Computing, 84 (2008), pp. 49–67.

[29] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from
matrix-vector multiplication, J. Comput. Phys., 230 (2011), pp. 4071–4087.

[30] F. Lindgren, H. Rue, and J. Lindström, An explicit link between Gaussian fields and Gaus-
sian Markov random fields: The stochastic partial differential equation approach, J. R.
Stat. Soc. Ser. B Methodol., 73 (2011), pp. 423–498, https://doi.org/10.1111/j.1467-9868.
2011.00777.x.

[31] P.-G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in
two dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[32] G. Matheron, Principles of geostatistics, Econom. Geol., 58 (1963), pp. 1246–1266.
[33] V. Minden, K. L. Ho, A. Damle, and L. Ying, A recursive skeletonization factorization

based on strong admissibility, Multiscale Model. Simul., 15 (2017), pp. 768–796, https:
//doi.org/10.1137/16M1095949.

[34] E. Porcu, M. Bevilacqua, and M. G. Genton, Spatio-temporal covariance and cross-
covariance functions of the great circle distance on a sphere, J. Amer. Statist. Assoc.,
111 (2016), pp. 888–898, https://doi.org/10.1080/01621459.2015.1072541.D

ow
nl

oa
de

d
11

/2
1/

17
 to

 1
71

.6
7.

21
6.

22
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1080/10618600.2012.760460
https://doi.org/10.3150/12-BEJSP06
https://doi.org/10.1002/env.2251
https://doi.org/10.1214/08-AOAS183
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1137/16M1095949
https://doi.org/10.1137/16M1095949
https://doi.org/10.1080/01621459.2015.1072541

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST SPATIAL GP MLE VIA SKELETONIZATION 1611

[35] V. Rokhlin and M. Tygert, A fast randomized algorithm for overdetermined linear least-
squares regression, Proc. Natl. Acad. Sci. USA, 105 (2008), pp. 13212–13217.

[36] H. Sang and J. Z. Huang, A full-scale approximation of covariance functions for large spatial
data sets, J. Roy. Stat. Soc. Ser. B Stat. Methodol., 74 (2012), pp. 111–132.

[37] P. Starr and V. Rokhlin, On the numerical solution of two-point boundary value problems
II, Comm. Pure Appl. Math., 47 (1994), pp. 1117–1159.

[38] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer Ser. Statist.,
Springer, New York, 1999.

[39] M. L. Stein, J. Chen, and M. Anitescu, Difference filter preconditioning for large covariance
matrices, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 52–72.

[40] M. L. Stein, J. Chen, and M. Anitescu, Stochastic approximation of score functions for
Gaussian processes, Ann. Appl. Stat., 7 (2013), pp. 1162–1191.

[41] M. L. Stein, Z. Chi, and L. J. Welty, Approximating likelihoods for large spatial data sets,
J. Roy. Stat. Soc. Ser. B Stat. Methodol., 66 (2004), pp. 275–296.

[42] J. A. Tropp, Improved analysis of the subsampled randomized Hadamard transform, Adv.
Adapt. Data Anal., 3 (2011), pp. 115–126.

[43] J. Vanhatalo, V. Pietiläinen, and A. Vehtari, Approximate inference for disease mapping
with sparse Gaussian processes, Stat. Med., 29 (2010), pp. 1580–1607.

[44] A. V. Vecchia, Estimation and model identification for continuous spatial processes, J. Roy.
Stat. Soc. Ser. B Stat. Methodol., 50 (1988), pp. pp. 297–312.

[45] P. Whittle, On stationary processes in the plane, Biometrika, 41 (1954), pp. pp. 434–449.
[46] S. D. Woodruff, S. J. Worley, S. J. Lubker, Z. Ji, J. E. Freeman, D. I. Berry, P. Bro-

han, E. C. Kent, R. W. Reynolds, S. R. Smith, and C. Wilkinson, ICOADS release
2.5: Extensions and enhancements to the surface marine meteorological archive, Int. J.
Climatol., 31 (2011), pp. 951–967.

[47] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), p. 953–976.

[48] C. D. Yu, W. B. March, and G. Biros, An n log n parallel fast direct solver for kernel ma-
trices, in Proceedings of the 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), IEEE, Piscataway, NJ, 2017, pp. 886–896, https://doi.org/10.1109/
IPDPS.2017.10.

D
ow

nl
oa

de
d

11
/2

1/
17

 to
 1

71
.6

7.
21

6.
22

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1109/IPDPS.2017.10
https://doi.org/10.1109/IPDPS.2017.10

	Introduction
	Our method
	Alternative approaches
	Outline

	Factorization of the covariance matrix
	Block compression through skeletonization
	The recursive skeletonization factorization
	Computational complexity
	Modified proxy trick
	Complexity sketch using the modified proxy trick

	Computing the trace terms
	Randomized low-rank approximations
	Matrix peeling for weakly admissible matrices
	First level of peeling algorithm
	Second level of peeling algorithm
	Subsequent levels of peeling algorithm
	Extracting the trace

	Computational complexity

	Summary of MLE framework
	Numerical results
	Runtime scaling of the peeling algorithm
	Relative efficiency of peeling versus the Hutchinson estimator
	Gridded synthetic data example
	Scattered synthetic data example
	Scattered ocean data example

	Conclusions
	References

