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We investigate integral formulations and fast algorithms for the steady-state radiative 
transfer equation with isotropic and anisotropic scattering. When the scattering term 
is a smooth convolution on the unit sphere, a model reduction step in the angular 
domain using the Fourier transformation in 2D and the spherical harmonic transformation 
in 3D significantly reduces the number of degrees of freedoms. The resulting Fourier 
coefficients or spherical harmonic coefficients satisfy a Fredholm integral equation of the 
second kind. We study the uniqueness of the equation and proved an a priori estimate. 
For a homogeneous medium, the integral equation can be solved efficiently using the 
FFT and iterative methods. For an inhomogeneous medium, the recursive skeletonization 
factorization method is applied instead. Numerical simulations demonstrate the efficiency 
of the proposed algorithms in both homogeneous and inhomogeneous cases and for both 
transport and diffusion regimes.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The radiative transfer equation (RTE) is the primary equation for describing particle propagation in many different fields, 
such as neutron transport in reactor physics [31,10], light transport in atmospheric radiative transfer [27], heat transfer [25]
and optical imaging [24,36]. In this paper, we focus on the steady state radiative transfer equation with possibly anisotropic 
scattering

v · ∇x�(x, v) + μt(x)�(x, v) = μs(x)

 

Sd−1

σ(x, v · v ′)�(x, v ′)dv ′ + f (x), in � × S
d−1,

�(x, v) = 0, on �−,

(1.1)

where the quantity �(x, v) denotes the photon flux that depends on both space x and angle v , and f (x) is the light 
source. � ∈ R

d is a bounded Lipschitz domain, Sd−1 is the unit sphere in Rd , 
ffl

is the average integral, and �− = {(x, v) ∈
∂� × S

d−1 : n(x) · v < 0} with n(x) being the outer unit normal vector at x. The scattering kernel σ(x, v · v ′) ≥ 0 satisfies ffl
Sd−1 σ(x, v · v ′) dv ′ = 1. The transport coefficient μt = μa +μs measures the total absorption at x due on both the physical 

absorption quantified by the term μa and the scattering phenomenon quantified by the term μs . To simplify the discus-
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sion, we only consider the vacuum boundary condition and assume that the source term f is independent of the angular 
variable v . General boundary condition and source terms will be discussed in Section 4.

Numerical methods for solving the RTE can be categorized into two groups: (a) the probabilistic approaches, for example 
Monte Carlo methods [4,9,19] and (b) the deterministic schemes based on differential-integral equations. In the past decades, 
many deterministic methods have been proposed, including different discretization in the spatial and angular domains [1,3,
26,8,37,13,15,18,2,32] and various preconditioned iterative schemes [28,30,16].

However, numerical solutions of RTE still face several challenging issues. One of them is the high dimensionality of the 
photon flux �(x, v), which depends on both the spatial variable x and the angular variable v . For a d-dimensional problem, 
the photon flux therefore depends on a total of d + (d − 1) = 2d − 1 variables. Another issue is the computation of the 
scattering term

S(x, v) = μs(x)

 

Sd−1

σ(x, v · v ′)�(x, v ′)dv ′. (1.2)

Due to the (d − 1)-dimensional integral in the above formula, a naive computation of the RTE is a d + (d − 1) + (d − 1) =
(3d − 2)-dimensional problem. This poses a significant bottleneck for efficient numerical simulations of the RTE.

Recently in [32], the authors studied the isotropic scattering case (i.e. σ(x, v · v ′) ≡ 1) and converted the RTE into a 
Fredholm integral equation of the second kind of the mean local density

ffl
Sd−1 �(x, v) dv . One can then directly solve the 

mean local density first without the solution of the photon flux �. When �(x, v) is needed, then it can be computed 
easily by solving a transport equation with a known right hand side. In [14], the authors studied the RTE in a plane-parallel 
geometry and converted it to a Fredholm integral equation by expanding the scattering term into Legendre polynomials.

Inspired by the approaches of [14,32], in this work we propose integral formulations and fast algorithms for the RTE 
with smooth isotropic or anisotropic scattering. The primary assumption of the algorithm is that the angular dependence 
of the scattering term S(x, v) can be represented efficiently using a small number of modes. One can convert the RTE into 
a Fredholm equation of the second kind of these modes, thus achieving a significant model reduction. As in [32], once the 
scattering term S(x, v) is resolved, applying existing methods (e.g. [15,18]) to the following transport equation with the 
right hand side known gives the photon flux �(x, v)

v · ∇x�(x, v) + μt(x)�(x, v) = S(x, v) + f (x), in � × S
d−1,

�(x, v) = 0, on �−.
(1.3)

In the rest of this paper, we focus on how to formulate an integral equation for the scattering term S(x, v) and how to 
solve it numerically.

For the isotropic scattering case, a Fredholm integral equation of the second kind of the mean local density can be 
directly obtained from the RTE [7,32]. We study the solvability of the integral equation based on the contraction principle 
and prove an a priori estimate of the solution. The numerical approach for solving the integral equation depends on whether 
the problem is spatially constant or not (i.e. whether the coefficients μt and μs independent on x). For a homogeneous 
medium, the Fredholm kernel is simply a convolution, so the FFT can be used to evaluate the integral. Therefore, the 
Fredholm equation can be solved by combining the FFT with a standard iterative method such as MINRES [29] and GMRES 
[33]. For an inhomogeneous medium, we use the recursive skeletonization factorization (RSF) [21] method to factorize the 
dense linear system obtained from discretizing the integral equation. Due to the special factorization forms used in the RSF, 
this method is both fast and accurate.

For the anisotropic scattering case, noticing that the smooth anisotropic scattering term is a convolution on the unit 
sphere, we apply the Fourier transform (d = 2) and the spherical harmonic transform (d = 3) with respect to v to both σ
and �. After truncating the expansion of σ due to its smoothness, we obtain a Fredholm integral equation of the second 
kind of the truncated expansion coefficients of �. Once solving this integral equation, one obtains the expansion coefficients 
of � in the angular variable v and thus the scattering term. Similar to the isotropic case, we study the solvability of 
the Fredholm equation by the contraction principle and proved an a priori estimate. Both the FFT-based method and the 
RSF-based method are discussed for the homogeneous and inhomogeneous cases, respectively. Numerical simulations are 
performed to demonstrate the efficiency of both the FFT-based method and the RSF-based method.

The rest of the paper is organized as follows. Section 2 addresses the isotropic scattering case, where we review the Fred-
holm integral equation of the mean local density, prove the uniqueness of the Fredholm equation, construct the FFT-based 
method and the RSF-based method, and report numerical studies. The anisotropic scattering case is studied in Section 3.

2. Isotropic scattering

This section studies the isotropic scattering case, i.e. σ(x, v · v ′) ≡ 1. We show the properties of the RTE, derive the 
Fredholm equation of the scattering term, construct the fast algorithms and report numerical studies.
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2.1. Integral formulation

The integral formulation of the RTE has been studied in the literatures for example in [5,7,11,32]. Here for completeness, 
we provide a brief review of the integral equation of the RTE in the following, and refer readers to [7] for more details of 
the derivation.

Define the operators T and A as

T � := v · ∇x� + μt�, A�(x) :=
 

Sd−1

�(x, v)dv, (2.1)

then the RTE (1.1) can be reformulated as

T � − μsA� = f . (2.2)

By using the method of characteristics, we obtain

(T −1�)(x, v) =
τ (x,v)ˆ

0

exp

⎛
⎝−

sˆ

0

μt
(
x − s′v

)
ds′

⎞
⎠�(x − sv, v)ds, (2.3)

where τ (x, v) is the distance of a particle traveling from x to the domain boundary with the velocity −v

τ (x, v) = sup{t : x − sv ∈ � for 0 ≤ s < t}. (2.4)

Define the operator J : � → � × S
d−1 as J g(x, v) = g(x) and introduce the mean local density as

u(x) = A�(x) =
 

Sd−1

�(x, v ′)dv ′. (2.5)

The equation (2.2) can be reformulated as a Fredholm integral equation of the second kind with the form

u(x) = Ku(x) + K̃ f (x), (2.6)

where

K = AT −1Jμs, K̃ = AT −1J . (2.7)

Notice that

(K̃φ)(x) =
 

Sd−1

τ (x,v)ˆ

0

exp

⎛
⎝−

sˆ

0

μt
(
x − s′v

)
ds′

⎞
⎠φ(x − sv)ds dv

= 1

|Sd−1|
ˆ

�

1

|x − y|d−1
exp

⎛
⎝−|x − y|

1ˆ

0

μt
(
x − s′(x − y)

)
ds′

⎞
⎠φ(y)d y.

(2.8)

We have

(K̃φ)(x) =
ˆ

�

K̃ (x, y)φ(y)d y, K̃ (x, y) = 1

|Sd−1|
E(x, y)

|x − y|d−1
, (2.9)

and

(Kφ)(x) =
ˆ

�

K (x, y)φ(y)d y, K (x, y) = μs(y)

|Sd−1|
E(x, y)

|x − y|d−1
, (2.10)

with E(x, y) = exp
(
−|x − y|´ 1

0 μt
(
x − s′(x − y)

)
ds′

)
. Introducing ũ(x) = μs(x)u(x) allows one to rewrite the integral equa-

tion (2.6) as

ũ(x) = μs(x)(K̃ũ)(x) + μs(x)(K̃ f )(x), (2.11)

or
ũ(x)

μs(x)
= (K̃ũ)(x) + (K̃ f )(x). (2.11’)

The advantage of the formulation (2.11’) is the symmetry of the kernel K̃ (x, y), i.e. K̃ (x, y) = K̃ (y, x), which can be used to 
save memory and calculation in numerical method.
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2.2. Existence theory

The solvability of the RTE (1.1) was studied in the past decades [5,7,6,35,34,11]. Vladimirov in [38] studied the solvability 
of the integral equation using the compactness argument and the Riesz–Schauder theory but didn’t provide an a priori 
estimate. Dautray and Lions in [7] developed a rather complete Lp theory for the RTE in the framework of semi-group 
theory. However, its a priori estimates for the solution are based on a rather strong assumption on μs and μt . In [35], 
Stefanov and Uhlmann studied the existence of solutions of RTE based on the compactness argument and the Fredholm 
theory. Based on the contraction principle, Egger and Schlottbom presented a L p theory for RTE with relaxed conditions 
on the parameters μt , μs , and σ and also gave a sharp a priori estimate of the solution in [34,11,12]. The aim of this 
subsection is to translate the work of the RTE to the Fredholm equation case (2.6), study the properties of the operators K
and K̃ along with the solvability of the Fredholm equations (2.6), and present an a priori estimate of the solution. We start 
from the following assumptions:

(C1) � ∈R
d is a bounded Lipschitz domain;

(C2) μt, μs : � →R are non-negative and bounded on �, and μs(x) ≤ μt(x).

The main analytic result is the following theorem.

Theorem 1. Under assumptions (C1) and (C2), for any 1 ≤ p ≤ ∞ and f ∈ Lp(�), the Fredholm equation (2.6) admits a unique 
solution u ∈ Lp(�) which satisfies

‖u‖L p(�) ≤ τ exp
(
τ ‖μs‖L∞(�)

)‖ f ‖L p(�) , (2.12)

where τ = supx∈�,v∈Sd−1 τ (x, v).

The proof is divided into two cases: p = ∞ and 1 ≤ p < ∞. For the case p = ∞, the following result holds.

Lemma 1. Under assumptions (C1) and (C2), the linear operator K : L∞(�) → L∞(�) is a contraction map with

‖K‖L∞(�)→L∞(�) ≤ C := 1 − exp
(−τ ‖μs‖L∞(�)

)
. (2.13)

Assume f ∈ L∞(�), then∥∥∥K̃ f
∥∥∥

L∞(�)
≤ τ ‖ f ‖L∞(�) . (2.14)

Proof. Let E [μt ](x, v, s) = exp
(−´ s

0 μt(x − s′v)ds′), then

E[μt ](x + sv, v, s) = E[μt ](x, v, s). (2.15)

Recalling the definition of K̃ (2.8), for φ(x) ∈ L∞(�), we have

|(Kφ)(x)| = |(K̃(μsφ))(x)| ≤ ‖φ‖L∞(�) |(K̃μs)(x)|.
Since μt(x) ≥ μs(x) are bounded and non-negative, we obtain

0 ≤ (K̃μs)(x) =
 

Sd−1

τ (x,v)ˆ

0

E[μt ](x, v, s)μs(x − sv)ds dv

≤
 

Sd−1

τ (x,v)ˆ

0

E[μs](x, v, s)μs(x − sv)ds dv

≤
 

Sd−1

(
1 − exp

(−‖μs‖L∞(�) τ (x, v)
))

dv ≤ C < 1.

(2.16)

Therefore ‖Kφ(x)‖L∞(�) ≤ C ‖φ‖L∞(�) < ‖φ‖L∞(�) for any φ ∈ L∞(�), i.e. K is a contraction map in L∞(�), and 
‖K‖L∞(�)→L∞(�) ≤ C .

Recalling the definition of K̃ (2.8), and noticing 0 < E [μt ](x, v, s) ≤ 1, we have

|K̃ f | ≤

∣∣∣∣∣∣∣
 

Sd−1

τ (x,v)ˆ

0

E[μt ](x, v, s)| f (x − sv ′)|ds dv

∣∣∣∣∣∣∣≤
 

Sd−1

τ (x,v)ˆ

0

| f (x − sv)|ds dv ≤ τ ‖ f ‖L∞(�) . �
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For the case 1 ≤ p < ∞, notice that (2.6) can be rewritten as u = K̃ (μsu + f ). By letting w = μsu + f , the Fredholm 
equation (2.6) can be stated equivalently as

w = μsK̃w + f , u = K̃w. (2.17)

Lemma 2. Under assumptions (C1), (C2), the linear operator μsK̃ : Lp(�) → Lp(�), 1 ≤ p < ∞ is a contraction map with∥∥∥μsK̃
∥∥∥

L p(�)→L p(�)
≤ C, (2.18)

and

‖u‖L p(�) ≤ τ ‖w‖L p(�) . (2.19)

Proof. Recalling the definition of K̃ (2.7), for any φ ∈ Lp(�), we have

∥∥∥μsK̃φ

∥∥∥p

L p(�)
≤
ˆ

�

⎛
⎜⎝μs(x)

 

Sd−1

τ (x,v)ˆ

0

E[μt ](x, v, s)|φ(x − sv)|ds dv

⎞
⎟⎠

p

dx

=
ˆ

�

⎛
⎜⎝  

Sd−1

τ (x,v)ˆ

0

E[μt ](x, v, s)μs(x − sv)ds dv

⎞
⎟⎠

p

|φ(x)|p dx

≤ C p ‖φ‖p
L p(�) < ‖φ‖p

L p(�) ,

where the relation (2.15) and (2.16) are used in the equality and the last inequality, respectively. Therefore, μsK̃ is a 
contraction map in Lp(�) and 

∥∥∥μsK̃
∥∥∥

Lp(�)→Lp(�)
≤ C .

The non-negativeness of μt indicates 0 ≤ E [μt ](x, v, s) ≤ 1, thus we have

‖u‖p
L p(�) ≤

ˆ

�

⎛
⎜⎝  

Sd−1

τ (x,v)ˆ

0

E[μt ](x, v, s)|w(x − sv)|ds dv

⎞
⎟⎠

p

dx ≤ ‖τ w‖p
L p(�) . �

With these two lemmas, the proof of the Theorem 1 is rather straightforward.

Proof of Theorem 1. For the case p = ∞, noticing Lemma 1, and applying Banach’s fixed point theorem [23, Chapter 3, 
Theorem 3.2], we obtain that (2.6) has a unique solution u ∈ L∞(�) if K̃ f ∈ L∞(�), which is guaranteed by (2.14).

Analogously, for the case 1 ≤ p < ∞, noticing Lemma 2 and applying Banach’s fixed point theorem, we obtain that (2.17)
has a unique solution w ∈ Lp(�), which indicates (2.6) has a unique solution u ∈ Lp(�). The conclusion (2.12) is a directly 
deduction of Lemma 2. This completes the proof. �

By setting p = 2 in Lemma 2, we can directly deduce the result.

Corollary 1. Under assumptions (C1) and (C2), the linear operators I −K, I − μsK̃: L2(�) → L2(�) are positive definite.

Proof. Since K = K̃μs , and K̃ is a symmetric operator, for any φ ∈ L2(�), we have

〈φ,Kφ〉 = 〈K̃φ,μsφ〉 = 〈μsK̃φ,φ〉.
Using (2.18) with p = 2 and Hölder inequality, we can obtain〈(

I − μsK̃
)

φ,φ
〉
≥ (1 − C)‖φ‖2

L2(�)
.

Since C < 1, I −K and I − μsK̃ are both positive definite. �
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2.3. Fast algorithms

In this subsection, we assume that μs has a positive lower bound and study the fast algorithms for solving (2.11’). These 
algorithms can also be applied to (2.6). Solving (2.11) requires two steps:

S.1 Evaluate (K̃ f )(x);

S.2 Given r(x), solve 
(

I
μs(x)

− K̃
)

ũ(x) = r(x), or equivalently ũ(x) =
(

I
μs(x)

− K̃
)−1

r(x).

To simplify the discussion, we assume that the domain � is rectangular. The discretization of the Fredholm equation 
(2.11’) starts by partitioning the domain � into Cartesian cells of equal volume. Let N be the number of the cells and 
{xi}1≤i≤N be the center of the cells. We introduce ũi as an approximation of ũ(xi) and define μs,i = μs(xi) and f i = f (xi). 
Using the Nyström method, the discretization of (2.11’) takes the following form

ũi

μs,i
=

N∑
j=1

K̃ i, j ũ j +
N∑

j=1

K̃ i, j f j . (2.20)

When i �= j, K̃ i, j is equal to K̃ (xi, x j) scaled by the cell volume. When i = j since K̃ (x, y) is singular at x = y, the value 
K̃ i,i is taken to be the integral of K̃ at the i-th cell. We remark that the spatial discretization is usually problem depended, 
and here we don’t pay much attention on it. One can extend the following algorithms to other the spatial discretization 
straightly.

Setting K̃ =
(

K̃ i j

)
N×N

and A =
(

δi j
μs,i

− K̃ i j

)
N×N

allows one to rewrite (2.20) in the following matrix form

Aũ = K̃ f , (2.21)

where ũ = (
ũi

)
and f = ( f i). Corollary 1 guarantees the matrix A is positive definite. Finally, in order to get the approxi-

mation u = (ui) for the values of u(x) at xi , we simply set ui = ũi/μs,i .
In the calculation of K̃ i j , there is a line integral in E(xi, x j). The approach of [32] uses the Fourier transform of μt to 

evaluate the integral. The computational cost is proportional to the number of the Fourier modes used in the integral. Even 
μt is quite smooth, this method can be somewhat inefficient in practice. Here we use the Gauss–Legendre quadrature for 
the line integral. In all tests of this paper, the Gauss–Legendre quadrature with merely 5 points give sufficiently accurate 
results for smooth μt .

The calculation of K̃ ii requires evaluating an integral of a singular function in a grid cell. Noticing that K̃ (x, y) =
1

|Sd−1||x−y|d−1 + 1
|Sd−1|

E(x,y)−1
|x−y|d−1 , we first evaluate the mean of the first part by analysis and then apply the Gauss–Legendre 

quadrature for the second part. We note that the second part is not smooth in the whole cell because of the | · |. In prac-
tice, we split the cell into 2d quadrants and apply the numerical quadrature in each quadrants. Numerical test shows the 
Gauss–Legendre quadrature with 15 points gives accurate results.

To solve (2.21), a typical direct method proceeds by constructing A, factorizing it with either LU or Cholesky decomposi-
tion, and solving it with backward/forward substitution. The computational cost of such a direct method scales like O (N3), 
where N is the number of discrete points of �. This is rather costly where N is large and in what follows we study fast 
alternatives.

2.3.1. Homogeneous media and FFT-based algorithm
For a homogeneous medium, the total transport coefficient μt is independent on x. The kernel

K̃ (x, y) = 1

|Sd−1|
exp (−μt |x − y|)

|x − y|d−1
:= κ(x − y) (2.22)

only depends on |x − y| and this indicates that K̃ f (x) is a convolution. If the domain � is a rectangle (d = 2) or cuboid 
(d = 3), the Fourier transformation can be used to calculate the convolution more efficiently. More precisely, let us assume 
� = [0, 1]d and then κ(x) is defined on [−1, 1]d . One then extends κ(x) periodically to the whole space and redefines 
K̃ (x, y) = κ(x − y), x, y ∈ R

d . For any function φ(x), x ∈ [0, 1]d , extending it to [−1, 1]d by padding zero (and still denoting 
it by φ), we obtain

K̃φ(x) =
ˆ

[−1,1]d

κ(x − y)φ(y)d y, (2.23)

which can be evaluated by the Fourier transformation. If the discretization in (2.20) is uniform, then the matrix K̃ =
(K̃ i, j)N×N is a circulant matrix, thus the FFT can be employed to evaluate K̃ũ and K̃ f , with the computation cost re-
duced to O (N log(N)) with N = nd . Hence, the application of the operators K̃ and I

μs(x)
− K̃ is highly efficient and Step S.2 

can be evaluated by a standard iterative method, for example MINRES [29] and GMRES [33].
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Before the evaluation of K̃φ(x), one needs to calculate the Fourier modes of κ(x), which costs O (N log(N)) computation 
steps and O (N) storage. Therefore, the precomputing cost of the algorithm is O (N log(N)). The computation cost of the 
two steps S.1 and S.2 are O (N log(N)) and O (niter N log(N)), respectively, where niter the number of iterations used in the 
iterative method. As a result, the total computation cost is O (niter N log(N)).

Remark 1. The algorithm presented in this subsection can be applied to (2.6) without any difficulty. The differences are that 
we also have to assume μs is independent on x, and in solving Step S.2, the iterative method including MINRES does not 
work because the kernel K (x, y) is not symmetric.

2.3.2. Inhomogeneous media and RSF-based algorithm
The FFT-based algorithm in Section 2.3.1 has a strong requirement that the total transport coefficient μt is constant. 

Moreover, Step S.2 dominates the computation cost of the whole algorithm. When the number of iterations is large or there 
are multiple right hand sides, the iterative methods can be somewhat inefficient. The fast multipole based algorithm in [32]
shares the same issue since an iterative method is also used in Step S.2.

The recently proposed recursive skeletonization factorization (RSF) in [22] provides an alternative. Building on top of earlier 
work in [17,20], the RSF constructs a multiplicative factorization of the matrix operator using a sparsification technique 
called interpolative decomposition recursively. This representation enables surprisingly simple algorithms to apply A and A−1

directly. This makes it rather easy to solve (2.21). RSF is based on elimination, so it requires certain intermediate matrices 
to be invertible, which is guaranteed by Corollary 1. For more details of RSF, we refer the readers to [22, Section 3].

When the matrix A is factorized recursively, the RSF takes advantage of the low-rank behavior of the off-diagonal entries 
of the matrix and thus avoids visiting all entries of A. More precisely from [22], for a Fredholm integral equation of the 
second kind, the RSF only visits O (N log(N)) entries of A. The cost t f of factorizing A and the cost ta/s of evaluating A f as 
well as A−1 f are respectively given by

t f =
{

O (N3/2), d = 2

O (N2), d = 3,
ta/s =

{
O (N log N), d = 2,

O (N4/3), d = 3.
(2.24)

Thus, the precomputation cost of the algorithm is t f , and the costs of Steps S.1 and S.2 are both ta/s , with no iterations 
involved.

As we pointed out, the FFT-based algorithm has strong requirements on the total transport coefficient μt (i.e., constant) 
and the domain �, while the RSF-based works for any μt and domain �. However, even for the case of constant μt , 
sometimes it is preferred to use the RSF-based algorithm. The nice feature of the RSF-based algorithm is that, for any 
additional right hand side, the extra cost is merely ta/s . Therefore, when one needs to solve (2.11) for many different source 
terms f , the RSF-based algorithm shows its advantage.

Remark 2. Since the kernel K̃ (x, y) is symmetric, the matrix Ã is symmetric as well. RSF will use this property to save 
storage memory and factorization time (save nearly half memory and time [21]). The RSF-based algorithm can be directly 
applied on (2.6). However, due to the lack of symmetry in the kernel K (x, y), RSF has to factorize a non-symmetric matrix 
with extra computational and storage costs.

2.4. Numerical results

Here we provide several numerical examples to study the complexity and accuracy of the direct method, the FFT-based 
method and the RSF-based method. The computational cost consists of two parts: the precomputation part and the solution 
part, denoted by Tpre and Tsol, respectively. The precomputation part is the time used for preparing and inverting A for the 
direct method; preparing the convolution vector for the FFT-based method; or factorizing A for the RSF-based method.

The solution part is the time used for solving a single linear system (2.21), i.e., applying A−1 for the direct method; 
applying GMRES/MINRES for the FFT-based method; or applying the factorized inverse A−1 for the RSF-based method. Here, 
we will use the superscripts DIR, FFT and RSF to denote the corresponding quantities for these three methods, respectively. 
For example, T RSF

pre denotes the precomputation time of the RSF-based method. All the numerical simulations are performed 
in MATLAB R2016b on a single core (without parallelization) of an Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60 GHz on a 64-bit 
Linux desktop with 32 GB of RAM.

The parameter ε is used to control the designed accuracy of the solution. In the FFT-based method ε is the desired 
tolerance of the GMRES/MINRES method, while in the RSF-based method ε is the relative accuracy parameter of the RSF. To 
measure the accuracy, we introduce the relative L2 error

E = ‖u − uref‖L2

‖uref‖L2
, (2.25)

where u is the solution obtained either from the FFT-based or from the RSF-based method and uref is the reference solution. 
Similar to the computational cost, we use the superscripts FFT and RSF to denote the relative error of these two methods, 
respectively.
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Fig. 1. Source terms (2.26) used in numerical simulation. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Table 1
Isotropic scattering case: computational cost of three methods for different n and ε with constant scattering 
coefficient μs = 1 and transport coefficient μt = 1.2.

n ε T DIR
pre (sec) T FFT

pre (sec) T RSF
pre (sec) T DIR

sol (sec) T FFT
sol (sec) T RSF

sol (sec)

32 1E−4 3.39E−2 3.23E−4 5.75E−2 1.86E−3 2.99E−3 2.53E−3
64 1E−4 9.19E−1 9.45E−4 4.34E−1 2.44E−2 9.32E−3 1.27E−2
128 1E−4 5.04E+1 1.76E−3 3.32E+0 3.78E−1 1.52E−2 6.91E−2
256 1E−4 – 8.65E−3 2.36E+1 – 9.71E−2 3.51E−1
512 1E−4 – 3.97E−2 1.93E+2 – 2.83E−1 1.78E+0

32 1E−6 3.39E−2 3.23E−4 8.08E−2 1.86E−3 3.16E−3 2.67E−3
64 1E−6 9.19E−1 9.45E−4 7.24E−1 2.44E−2 1.02E−2 1.38E−2
128 1E−6 5.04E+1 1.76E−3 6.12E+0 3.78E−1 1.74E−2 8.05E−2
256 1E−6 – 8.65E−3 4.43E+1 – 9.52E−2 4.41E−1
512 1E−6 – 3.97E−2 3.87E+2 – 3.33E−1 2.21E+0

32 1E−8 3.39E−2 3.23E−4 9.63E−2 1.86E−3 3.18E−3 2.79E−3
64 1E−8 1.01E+0 9.45E−4 9.79E+0 2.44E−2 1.20E−2 1.42E−2
128 1E−8 5.04E+1 1.76E−3 1.00E+1 3.78E−1 2.20E−2 1.05E−1
256 1E−8 – 8.65E−3 8.96E+1 – 1.47E−1 6.64E−1
512 1E−8 – 3.97E−2 7.84E+2 – 3.60E−1 3.74E+0

Three source terms used in the simulations are

f1(x) = 1√
2π T

exp

(
−|x − c1|2

2T

)
+ 1√

2π T
exp

(
−|x − c2|2

2T

)
, (2.26a)

f2(x) =
{

1 if |x − c3| ∈ [3/20,1/4],
0 otherwise,

(2.26b)

f3(x) =
{

1, if x1, x2 ∈ [1/2,3/4],
0, otherwise,

(2.26c)

with T = 4E−3, c1 = (3/10, 7/10), c2 = (7/10, 3/10), c3 = (3/5, 2/5). Fig. 1 plots the contour of these source terms. The 
computational domain � is chosen as the unit square, i.e. � = [0, 1]2. The domain is uniformly discretized by n points in 
each direction.

These numerical examples test for different n, different tolerance ε , and different scattering coefficients μs and μt . 
Because the FFT-based method only works for the constant transport coefficient case, we report the constant transport 
coefficient case and the variable coefficient case separately.

2.4.1. Homogeneous media
Computational cost We perform simulation for different mesh sizes n = 32, 64, 128, 256 and 512 and different tolerance ε
as 1E−4, 1E−6 and 1E−8, and for the constant scattering coefficient μs = 1 and μt = 1.2 to study the computational cost 
of three methods. The results are summarized in Table 1. The source term is given in (2.26a). The FFT-based method is the 
fastest in both precomputation and solution. Comparing the solution time, one finds that the RSF-based method is only a 
little slower than the FFT-based method. Both the RSF-based method and direct method need to decompose the matrix, but 
the RSF is faster in both precomputation and solution steps.

For a fixed mesh size n, when ε changes, the solution time of the FFT-based method changes as well because ε affects 
the number of iterative steps of MINRES. Both the precomputation time and the solution time of the RSF-based method 
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Table 2
Isotropic scattering case: relative error of the FFT-based method and RSF-based method for three source term in 
(2.26) with constant scattering coefficient μs = 1 and transport coefficient μt = 1.2. Ek is the relative error for 
the source term fk , k = 1, 2, 3.

n ε EFFT
1 ERSF

1 EFFT
2 ERSF

2 EFFT
3 ERSF

3

32 1E−4 2.66E−6 1.81E−5 1.44E−5 1.85E−5 2.10E−5 1.65E−5
64 1E−4 2.69E−6 2.67E−5 1.44E−5 2.49E−5 2.10E−5 2.23E−5
128 1E−4 2.70E−6 1.96E−5 1.43E−5 1.88E−5 7.69E−7 1.69E−5
256 1E−4 2.71E−6 1.89E−5 3.81E−7 1.74E−5 7.70E−7 1.49E−5
512 1E−4 2.72E−6 1.69E−5 3.82E−7 1.49E−5 7.71E−7 1.34E−5

32 1E−6 8.96E−8 2.74E−7 3.72E−7 2.77E−7 7.49E−7 2.50E−7
64 1E−6 9.01E−8 3.06E−7 1.64E−8 3.04E−7 2.47E−8 2.68E−7
128 1E−6 9.04E−8 4.60E−7 1.64E−8 4.64E−7 2.49E−8 4.17E−7
256 1E−6 9.07E−8 4.37E−7 1.64E−8 4.23E−7 2.49E−8 3.73E−7
512 1E−6 3.12E−9 4.61E−7 1.64E−8 4.49E−7 2.49E−8 4.00E−7

32 1E−8 3.02E−9 3.16E−9 6.06E−10 3.01E−9 1.03E−9 2.62E−9
64 1E−8 3.07E−9 1.25E−8 7.01E−10 1.30E−8 1.18E−9 1.19E−8
128 1E−8 5.09E−11 1.92E−8 7.07E−10 1.94E−8 1.20E−9 1.77E−8
256 1E−8 5.12E−11 1.73E−8 7.07E−10 1.70E−8 4.13E−11 1.53E−8
512 1E−8 5.14E−11 2.04E−8 2.63E−11 2.04E−8 4.13E−11 1.86E−8

Table 3
Isotropic scattering case: computational cost and relative error for different scattering coefficient μs and ε with 
n = 128 and μt = μs + 0.2.

μs ε T FFT
pre T RSF

pre T FFT
sol T RSF

sol EFFT ERSF

1 1E−4 1.82E−3 3.01E+0 1.51E−2 6.84E−2 2.70E−6 2.34E−5
10 1E−4 1.82E−3 3.05E+0 3.42E−2 7.05E−2 1.82E−6 5.59E−4
100 1E−4 1.82E−3 2.79E+0 4.53E−2 7.02E−2 1.85E−5 9.06E−5

1 1E−6 1.76E−3 5.16E+0 1.92E−2 8.18E−2 9.04E−8 4.83E−7
10 1E−6 1.78E−3 5.28E+0 4.16E−2 9.73E−2 3.81E−8 2.20E−6
100 1E−6 1.80E−3 4.24E+0 6.84E−2 9.34E−2 1.18E−7 1.77E−6

1 1E−8 1.78E−3 9.06E+0 2.29E−2 1.11E−1 5.09E−11 1.81E−8
10 1E−8 1.74E−3 9.71E+0 3.74E−2 1.18E−1 9.82E−11 9.44E−9
100 1E−8 1.75E−3 8.13E+0 8.83E−2 1.04E−1 1.36E−9 3.75E−9

are affected as well. When ε decreases, more skeletonization points are selected in the RSF, so both the precomputation 
and solution time increase. It is worth to point out that even for ε = 1E−8, the computational cost of RSF-based method is 
smaller than the direct method if n ≥ 64. When n ≥ 256, due to the limitation of RAM, the direct method fails to work any 
more.

Comparing these three methods, one observes that the FFT-based method is the fastest one for the constant case. The 
solution time of RSF-based method is comparable with the FFT-based method and its precomputation time is faster than 
the direct method if n is not small.

Relative error Simulations for different mesh size n and different tolerance ε are performed to study the relative error. 
Table 2 presents the relative error of the FFT-based method and the RSF-based method for the three source terms (2.26)
with μs = 1 and μt = 1.2. The reference solution is the solution of the direct method if n = 32, 64 and 128. For n > 128, 
the reference solution is computed with the FFT-based method with a very small relative tolerance for MINRES. Both the 
two methods behavior well on the relative error.

Behavior for different scattering coefficients Here we study the dependence on the scattering coefficient μs for the source 
term (2.26a). When μs is small, for example μs = 1, the physics corresponds to the transport regime for the photon. The 
case of relatively large μs , for example μs = 100, corresponds to the diffusive regime. Here we always set μt = μs + 0.2. 
The simulation results for μs = 1, 10, 100 are listed in Table 3. Because the use of MINRES, for different μs , the solution 
time of the FFT-based method varies significantly as the iterations are quite different. The RSF-based method is quite robust 
in terms of the scattering coefficient. This indicates that these two methods work in both diffusive regimes and transport 
regimes, and the RSF-based method is quite insensitive to the parameters.

2.4.2. Inhomogeneous media
When the transport coefficient μt depends on x, the FFT-based method fails to work. Here we test the RSF-based method 

for the variable transport coefficient case. The scattering coefficient takes the form of
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Table 4
Isotropic scattering case: computational cost of the direct method and RSF-
based method for different n and ε with variable scattering coefficient 
(2.27) with ρ = 1 and μt = μs + 0.2.

n ε T DIR
pre (sec) T RSF

pre (sec) T DIR
sol (sec) T RSF

sol (sec)

32 1E−4 1.62E−1 1.41E−1 2.51E−3 3.22E−3
64 1E−4 1.94E+0 7.16E−1 2.32E−2 1.33E−2
128 1E−4 6.84E+1 5.01E+0 4.13E−1 6.72E−2
256 1E−4 – 3.81E+1 – 3.56E−1
512 1E−4 – 2.81E+2 – 1.77E+0

32 1E−6 1.62E−1 1.67E−1 2.51E−3 3.85E−3
64 1E−6 1.94E+0 1.05E+0 2.32E−2 1.40E−2
128 1E−6 6.84E+1 8.66E+0 4.13E−1 7.84E−2
256 1E−6 – 6.72E+1 – 4.35E−1
512 1E−6 – 5.20E+2 – 2.26E+0

32 1E−8 1.62E−1 1.84E−1 2.51E−3 4.07E−3
64 1E−8 1.94E+0 1.43E+0 2.32E−2 1.46E−2
128 1E−8 6.84E+1 1.35E+1 4.13E−1 1.12E−1
256 1E−8 – 1.19E+2 – 6.15E−1
512 1E−8 – 9.59E+2 – 3.40E+0

Table 5
Isotropic scattering case: relative error of the RSF-based method for three 
source terms (2.26) with variable scattering term (2.27) with ρ = 1 and 
μt = μs + 0.2. Ek is the relative error for the source term fk .

n ε ERSF
1 ERSF

2 ERSF
3

32 1E−4 2.02E−5 2.02E−5 1.70E−5
64 1E−4 4.19E−5 3.03E−5 2.31E−5
128 1E−4 3.04E−5 2.32E−5 2.05E−5

32 1E−6 3.05E−7 3.36E−7 3.05E−7
64 1E−6 2.88E−7 3.11E−7 2.35E−7
128 1E−6 4.29E−7 4.43E−7 3.51E−7

32 1E−8 6.49E−9 8.73E−9 6.50E−9
64 1E−8 6.43E−9 6.71E−9 6.01E−9
128 1E−8 1.33E−8 1.42E−8 1.06E−8

μs(x) = 1 + ρ exp

(
−|x − c|2

4

)
, c =

(
1

2
,

1

2

)
, (2.27)

where ρ is constant.

Computational cost We perform the simulations for different mesh size n and different tolerance ε for the scattering term 
(2.27) with ρ = 1. The computational costs of the direct method and the RSF-based method are presented in Table 4. 
The source term is chosen to be (2.26a). Since μt depends on x, one has to calculate a line integral in the evaluation of 
each entry of the matrix A. However, because the factorization dominates the computational cost for the two methods, the 
precomputation time is only a bit slower than the constant scattering case.

Comparing these two methods, when n ≥ 64, the RSF-based method becomes faster than the direct method in both the 
precomputation and solution parts.

Relative error Table 5 presents the relative error for different mesh size n and different tolerance ε with the scattering 
term (2.27) with ρ = 1 and μt = μs + 0.2. The reference solution is calculated by the direct method and the relative error 
behaves similarly as in the constant scattering case.

Behavior for different scattering coefficients Here we study the dependence of the computational cost and accuracy of the 
methods on the scattering coefficient μs for the source term (2.26a). As before, μt = μs + 0.2. The simulation results for 
ρ = 1, 10, 100 in (2.27) are listed in Table 6. Similar as in the constant transport coefficient case, the RSF-based method is 
quite robust in terms of the scattering coefficient. This indicates that the RSF-based method works well in both diffusive 
regimes and transport regimes and is insensitive to different regimes.
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Table 6
Isotropic scattering case: computational cost and relative error for different 
ρ in (2.27) and ε with n = 128 and μt = μs + 0.2.

ρ ε T RSF
pre T RSF

sol ERSF

1 1E−4 4.91E+0 7.02E−2 2.97E−5
10 1E−4 4.97E+0 7.23E−2 2.42E−4
100 1E−4 4.56E+0 7.08E−2 1.47E−4

1 1E−6 9.41E+0 7.91E−2 4.47E−7
10 1E−6 9.44E+0 8.38E−2 3.03E−6
100 1E−6 6.91E+0 9.43E−2 7.52E−7

1 1E−8 1.31E+1 1.19E−1 1.49E−8
10 1E−8 1.39E+1 1.17E−1 8.52E−9
100 1E−8 1.08E+1 9.89E−2 3.04E−9

3. Anisotropic scattering

This section studies the RTE with anisotropic scattering. The start point is the observation that the scattering term 
μs(x) 

ffl
Sd−1 σ(x, v · v ′)�(x, v ′) dv ′ is a convolution on sphere. Thus the Fourier transformation for d = 2 and the spherical 

harmonic transformation for d = 3 can be used to simplify the scattering term.

3.1. Integral formulation

The RTE (1.1) has been well studied in [5,7,14,34,11]. Here, we extend the derivation in Section 2.1 to the anisotropic 
case. The extension is not trivial due to the complexity of the scattering term.

For the anisotropic case, let us redefine the operator A as

(A�)(x, v) :=
 

Sd−1

σ(x, v · v ′)�(x, v ′)dv ′, (3.1)

then the RTE (1.1) can be solved as

�(x, v) = T −1μsA� + T −1J f , (3.2)

where T −1 and J are same as those in Section 2.
Notice (A�)(x, v) := ffl

Sd−1 σ(x, v · v ′)�(x, v ′) dv ′ is a convolution on sphere. Since the formulas for 2D and 3D are quite 
different, we discuss them separately.

3.1.1. 2D case
In 2D (d = 2), v = (cos(θ), sin(θ)). The operator A can be rewritten as

(A�)(x, θ) =
2π 

0

σ(x, θ − θ ′)�(x, θ ′)dθ ′. (3.3)

Applying Fourier transformation on � and σ with respect to θ on [0, 2π ] gives rise to

(A�)(x, θ) =
∞∑

k=−∞
σ̂ (x,k)�̂(x,k)eikθ , (3.4)

where we take the following convention for the continuous Fourier transform

φ̂(x,k) = (Fφ)(x,k) :=
2π 

0

φ(x, θ)e−ikθ dθ, φ = �,σ . (3.5)

Then the solution (3.2) can be reformulated as

F� = FT −1μsA� +FT −1J f . (3.6)

When the scattering kernel σ is smooth (as we have assumed), a few Fourier modes of σ dominate, i.e.

σ(x, θ) ≈
∑

σ̂ (x,k)eikθ , (3.7)

k∈M
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where M ⊂ Z contains a small number of frequencies, typically centering at zero. Then the operator A can be approximated 
as

(A�)(x, θ) ≈ (Ã�)(x, θ) :=
∑
k∈M

eikθ σ̂ (x,k)�̂(x,k). (3.8)

Noticing that integral of �(x, θ) with respect to θ is the mean local density, which is usually important in application, we 
always assume 0 ∈ M. We introduce an operator as

(F †φ̂)(x, θ) =
∑
k∈M

φ̂(x,k)eikθ , (3.9)

which satisfies FF †φ̂ = φ̂ , similar as the pseudo-inverse in linear algebra. Therefore, we have Ã� =F †(σ̂ �̂). Moreover, let 
ĝ(x, k) = f (x)δk,0, then J f =F † ĝ .

Replacing A in (3.6) by Ã results in a Fredholm integral equation of the second kind with the following form

�̂(x,k) = K�̂(x,k) + K̃ ĝ(x,k), (3.10)

where the operators K and K̃ are defined as

K = FT −1F †μsσ̂ , K̃ = FT −1F †. (3.11)

Noticing that

K̃φ̂(x,k) =
∑

k′∈M

2π 

0

τ (x,v)ˆ

0

exp

⎛
⎝−

sˆ

0

μt
(
x − s′v

)
ds′

⎞
⎠ φ̂(x − sv,k)ei(k′−k)θ ds dθ

=
∑

k′∈M

ˆ

�

K̃ (x, y)ei(k′−k)θ φ̂(y,k)d y,

(3.12)

where θ = arccos
(

x−y
|x−y|

)
, and K̃ (x, y) is the kernel for the isotropic case defined in (2.9), we have

K̃φ̂(x,k) =
∑

k′∈M

ˆ

�

K̃ (x,k, y,k′)φ̂(y,k)d y, K̃ (x,k, y,k′) = K̃ (x, y)ei(k′−k)θ , (3.13)

and

Kφ̂(x,k) =
∑

k′∈M

ˆ

�

K (x,k, y,k′)φ̂(y,k)d y, K (x,k, y,k′) = K (x, y)σ̂ (y,k′)ei(k−k′)θ , (3.14)

where K (x, y) is the kernel defined in (2.10). The kernel K̃ is Hermitian while K is not due to the existence of μs(y)σ̂ (y, k′). 
If |σ̂ (y, k′)| is uniformly positive for any k′ ∈ M, i.e. there exists a c0 > 0 such that |σ̂ (y, k′)| ≥ c0 for any k′ ∈ M, one can 
use the same technique as in (2.11) to obtain a Hermitian operator. However, the condition σ̂ (y, k′) > 0 for any k′ ∈ M, 
y ∈ � is usually too strong to hold in general.

3.1.2. 3D case
For the case d = 3, v = (sin(θ) cos(ψ), sin(θ) sin(ψ), cos(θ)). Expressing the spherical function �(x, v) and σ(x, θ) in 

terms of the spherical harmonic basis, we obtain

�(x, v) =
∞∑

l=0

l∑
m=−l

�̂(x, l,m)Y m
l (θ,ψ),

σ (x, θ) =
∞∑

l=0

σ̂ (x, l)Y 0
l (θ),

(3.15)

where Y m
l (θ, ψ) is the spherical harmonic basis, and

φ̂(x, l,m) = Fφ(x, l,m) := 1

4π

2πˆ π̂

φ(x, θ,ψ)Y m
l (θ,ψ)dθ dψ, φ = �,σ . (3.16)
0 0
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Then the operator A can be expressed as

(A�)(x, v) =
∞∑

l=0

l∑
m=−l

�̂(x, l,m)σ̂ (x, l)

√
4π

2l + 1
Y m

l (θ,ψ). (3.17)

Similar to the d = 2 case, if a few modes of σ dominate, i.e.

σ(x, θ) ≈
∑
l∈M

σ̂ (x, l)Y m
l (θ,ψ), (3.18)

the operator A can be approximated by

(A�)(x, v) ≈ Ã�(x, v) :=
∑
l∈M

l∑
m=−l

�̂(x, l,m)σ̂ (x, l)

√
4π

2l + 1
Y m

l (θ,ψ). (3.19)

Similar to the derivation of the d = 2 case, by replacing A by Ã, one obtains a Fredholm integral equation of the second 
kind with the form

�̂(x, l,m) = KA�̂(x, l,m) + K̃ ĝ(x, l,m), (3.20)

where ĝ(x, l, m) = f (x)δl,0δm,0, and the operators K and K̃ are defined as

Kφ̂(x, l,m) =
∑
l′∈M

l′∑
m′=−l′

ˆ

�

K (x, l,m, y, l′,m′)φ̂(y, l′,m′)dx,

K (x, l,m, y, l′,m′) = K (x, y)σ̂ (y, l′)
√

4π

2l + 1
Y m

l (θ,ψ)Y m′
l′ (θ,ψ),

(3.21)

and

K̃φ̂(x, l,m) =
∑
l′∈M

l′∑
m′=−l′

ˆ

�

K̃ (x, l,m, y, l′,m′)φ̂(y, l,m)dx,

K̃ (x, l,m, y, l′,m′) = K̃ (x, y)Y m
l (θ,ψ)Y m′

l′ (θ,ψ).

(3.22)

We remark that if M = {0}, then the Fredholm equations (3.10) and (3.20) simplify to the ones in the isotropic scattering 
case.

Here we point out that in the plane-parallel geometry, i.e., homogeneous in y and z directions, the integral equation 
(3.20) degenerates into the case in [14], where the scattering term is expanded into Legendre polynomials.

3.2. Existence theory

In this subsection, we extend the existence theory for the isotropic case to the anisotropic one. For simplicity, here we 
only study the case d = 2, and all the conclusions in this subsection hold for the d = 3 case.

Define the vector function space Lp(�, M) with 1 ≤ p ≤ ∞ as

Lp(�,M) :=
{

v : � →C
|M| such that v(x) = (vm(x))m∈M : vm ∈ Lp(�)

}
, (3.23)

where |M| denotes the number of modes in set M, and the norm is given by

‖v‖L p(�,M) =
⎛
⎝ ˆ

�

‖v(x)‖p
l2

dx

⎞
⎠

1/p

=
⎛
⎝ ˆ

�

( |M|∑
i=1

|vi(x)|2
)p/2

dx

⎞
⎠

1/p

. (3.24)

We also introduce the assumption:

(C3) σ(x, v · v ′) is non-negative and measurable and 

Sd−1

σ(x, v · v ′)dv ′ = 1, for any (x, v) ∈ � × S
d−1. (3.25)

The main analytic result in the anisotropic case is the following theorem.
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Theorem 2. Under assumptions (C1), (C2) and (C3), for any 1 ≤ p ≤ ∞ and f ∈ Lp(�), the Fredholm equation (3.10) admits a unique 
solution �̂ ∈ Lp(�, M) which satisfies∥∥∥�̂

∥∥∥
L p(�,M)

≤ τ exp
(
τ ‖μs‖L∞(�)

)‖ f ‖L p(�) . (3.26)

The proof is similar to that of Theorem 1. Before the proof, we first define

G(k,k′; x) =
2π 

0

τ (x,v)ˆ

0

E[μt ](x, v, s)μs(x)ei(k′−k)θ ds dθ,

and the matrix function G(x) = (G(k, k′; x)). For any given w ∈ C
|M| , a direct calculation yields

w H Gw =
2π 

0

τ (x,v)ˆ

0

E[μt ](x, v, s)μs(x)
∑
k∈M

w∗
k e−ikθ

∑
k′∈M

wk′eik′θ ds dθ≤ C

2π 

0

∣∣∣∣∣
∑
k∈M

wkeikθ

∣∣∣∣∣
2

dθ = C |w|2,

where the relation (2.16), is used in the inequality. Therefore, we obtain

‖G‖2 ≤ C < 1, (3.27)

where ‖·‖2 is the 2-norm of a matrix.
Similar to the isotropic case, we first study the case p = ∞ and obtain the following result.

Lemma 3. Under assumptions (C1), (C2) and (C3), the linear operator K : L∞(�, M) → L∞(�, M) is a contraction map with

‖K‖L∞(�,M)→L∞(�,M) ≤ C < 1. (3.28)

Assume f ∈ L∞(�) and let ĝ(x, k) = f (x)δk,0 , then∥∥∥K̃ ĝ
∥∥∥

L∞(�,M)
≤ τ ‖ f ‖L∞(�) . (3.29)

Proof. The condition (C3) indicates |σ̂ (x, k)| ≤ 1, k ∈M. For any φ̂ ∈ L∞(�, M), recalling (3.12) and |σ̂ (x, k)| ≤ 1, we have

|(Kφ̂)(x,k)| =
∣∣∣∣∣∣

2π 

0

τ (x,v)ˆ

0

E[μt ](x, v, s)μs(x − sv)
∑

k′∈M
φ̂(x − sv,k′)σ̂ (x − sv,k′)ei(k′−k)θ ds dθ

∣∣∣∣∣∣
≤

∑
k′∈M

G(k,k′; x)

∥∥∥σ̂ (x,k′)φ̂(x,k′)
∥∥∥

L∞(�)
≤

∑
k′∈M

G(k,k′; x)

∥∥∥φ̂(x,k′)
∥∥∥

L∞(�)

≤ C
∥∥∥φ̂

∥∥∥
L∞(�,M)

.

Therefore, the operator K is a contraction map in L∞(�, M) with ‖K‖Lp(�,M)→Lp(�,M) ≤ C .

The definition of K̃ indicates

|(K̃ ĝ)(x,k)| =
∣∣∣∣∣∣
ˆ

�

K̃ (x, y)e−ikθ f (y)d y

∣∣∣∣∣∣ ≤
ˆ

�

K̃ (x, y)| f (y)|d y = K̃| f | ≤ τ ‖ f ‖L∞(�) ,

where (2.14) is used in the last inequality. �
For the case 1 ≤ p < ∞, notice that (3.10) can be rewritten as �̂ = K̃

(
μsσ̂ �̂ + ĝ

)
with ĝ(x, k) = f (x)δk,0. By letting 

�̂ = μsσ̂ �̂ + ĝ , the Fredholm equation (3.10) can be stated equivalently as

�̂(x,k) = μsσ̂ K̃�̂(x,k) + ĝ, �̂ = K̃�̂. (3.30)

Lemma 4. Under assumptions (C1), (C2) and (C3), the linear operator μsσ̂ K̃ : Lp(�, M) → Lp(�, M), 1 ≤ p < ∞ is a contraction 
map with∥∥∥μsσ̂ K̃

∥∥∥
p p

≤ C, (3.31)

L (�,M)→L (�,M)
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and ∥∥∥�̂

∥∥∥
L p(�,M)

≤ τ
∥∥∥�̂

∥∥∥
L p(�,M)

. (3.32)

Proof. For any φ̂ ∈ Lp(�, M), since |σ̂ (x, k)| ≤ 1, we have 
∥∥∥μsσ̂ K̃φ̂

∥∥∥
Lp(�,M)

≤
∥∥∥μsK̃φ̂

∥∥∥
Lp(�,M)

, and

∥∥∥μsK̃φ̂

∥∥∥
L p(�,M)

=
∥∥∥∥∥∥

∑
k′∈M

2π 

0

τ (x,v)ˆ

0

E[μt ](x, v, s)μs(x)ei(k′−k)θ φ̂(x − sv,k′)ds dθ

∥∥∥∥∥∥
L p(�,M)

=
∥∥∥∥∥

∑
k′∈M

G(k,k′; x)φ̂(x,k′)
∥∥∥∥∥

L p(�,M)

≤ C
∥∥∥φ̂

∥∥∥
L p(�,M)

,

where the relation (3.27) is used in the last inequality. Therefore, μsσ̂ K̃ is a contraction map in Lp(�, M) and ∥∥∥μsσ̂ K̃
∥∥∥

Lp(�,M)→Lp(�,M)
≤ C .

The non-negativeness of μt indicates 0 ≤ E [μt ](x, v, s) ≤ 1. Let

G2(k,k′; x) =
2π 

0

τ (x,v)ˆ

0

E[μt ](x, v, s)ei(k′−k)θ ds dθ

and the matrix function G2 = (G2(k, k′; x)), then using the same method in studying the matrix G, we can obtain that 
‖G2‖2 ≤ τ . A direct calculation yields

∥∥∥�̂

∥∥∥
L p(�,M)

=
∥∥∥∥∥∥

∑
k′∈M

2π 

0

τ (x,v)ˆ

0

E[μt ](x, v, s)ei(k′−k)θ ds dv�̂(x,k′)

∥∥∥∥∥∥
L p(�,M)

=
∥∥∥G2�̂

∥∥∥
L p(�,M)

≤ τ
∥∥∥�̂

∥∥∥
L p(�,M)

. �
(3.33)

With these two lemmas, the Theorem 2 goes as follows.

Proof of Theorem 2. This proof is similar to the proof of Theorem 1. For the case p = ∞, noticing Lemma 3, and applying 
Banach’s fixed point theorem [23, Chapter 3, Theorem 3.2], we obtain that (3.10) has a unique solution �̂ ∈ L∞(�, M) if 
K ĝ ∈ L∞(�, M), which is guaranteed by (3.29).

For the case 1 ≤ p < ∞, noticing Lemma 4 and applying Banach’s fixed point theorem, we obtain that (3.30) has a 
unique solution �̂ ∈ Lp(�, M), which indicates (3.10) has a unique solution �̂ ∈ Lp(�, M). The conclusion (3.26) is a directly 
deduction of Lemma 4. This completes the proof. �

By setting p = 2 in Lemma 4, we can directly deduce the result.

Corollary 2. Under assumptions (C1), (C2) and (C3), the linear operator I −K: L2(�, M) → L2(�, M) is positive definite.

Proof. Since σ is a real function, the operator μsσ̂ is a Hermitian operator. Noticing K = K̃μsσ̂ , and K̃ is a Hermitian 
operator, for any φ ∈ L2(�, M), we have

〈φ,Kφ〉 =
〈
K̃φ,μsσ̂ φ

〉
=

〈
μsσ̂ K̃φ,φ

〉
.

Using (3.31) with p = 2 and Hölder inequality, we can obtain〈
φ,μsσ̃ K̃φ

〉
≤ C ‖φ‖2

L2(�,M)
,

so

〈φ, (I −K)φ〉 ≤ (1 − C)‖φ‖2
L2(�,M)

,

i.e. the operator I −K is positive definite. �
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3.3. Fast algorithms

In this subsection, we study the fast algorithms for the Fredholm equations (3.10) and (3.20) and take the 2D case (3.10)
as the example. The framework of the algorithm can be split into 2 steps:

T.1 Evaluate (K̃ f )(x, k);
T.2 Given r̂(x, k), solve (I −K) �̂(x, k) = r̂(x, k), or equivalently �̂(x, k) = (I −K)−1 r̂(x, k).

Following the discretization scheme used in the isotropic case, we introduce ui,k as an approximation of �̂(xi, k), μs,i =
μs(xi), and f i = f (xi). The discretization of anisotropic integral equations takes the form

ui,k =
∑

k′∈M

N∑
j=1

Ki,k, j,k′ u j,k′ +
N∑

j=1

Ki,k, j,0
f j

μs, j
. (3.34)

For Ki,k, j,k′ , where i �= j, Ki,k, j,k′ is equal to the product of K (xi, k, x j, k′) and the cell volume. When i = j, since K (x, k, y, k′)
is singular at x = y the value Ki,k,i,k′ is set to be integral of K at the i-th cell. The treatments of the line integral in E(x, y)

and the integral of K (x, y) in a cell are the same as those of the isotropic case.
If one writes ui,k as a vector u ∈C

N M and Ki,k, j,k′ into a matrix form K ∈C
N M×N M , then (3.34) can be written as

Au = K f , (3.35)

where A = I − K and f is the vector form of f iδk,0/μs,i . Corollary 2 guarantees the matrix A is positive definite.
Similar to the isotropic case, in order to solve (3.35), a direct method that factorizes A by LU or Cholesky decomposition 

takes O ((N M)3) steps and in what follows we discuss two fast algorithms for both homogeneous and inhomogeneous 
media.

3.3.1. Homogeneous media and FFT-based algorithm
For a homogeneous medium, the total transport coefficient μt and the scattering coefficient μs are independent on x. 

As a result, the kernel

K (x,k, y,k′) = μsσ̂ (k′)
|Sd−1|

exp (−μt |x − y|)
|x − y| ei(k′−k)θ := κ(x − y,k,k′) (3.36)

with θ = arccos
(

x−y
|x−y|

)
depends only on x − y, k and k′ . Hence the integral part

C(x,k,k′) :=
ˆ

�

κ(x − y,k,k′)ĝ(y,k′)d y (3.37)

of (K ĝ)(x, k) is a convolution. Similar to the isotropic case, if the domain � is rectangular, the FFT-based algorithm in 
Section 2.3.1 can be applied to the evaluation of C(x, k, k′) for each k, k′ ∈ M. Thus, in order to evaluate (K ĝ)(x, k), 
one just needs to use the FFT-based algorithm in Section 2.3.1 to calculate C(x, k, k′) for each k, k′ ∈ M and then 
(K ĝ)(x, k) = ∑

k′∈M G(x, k, k′). Once one has the algorithm of applying (K ĝ)(x, k), Step T.2 can be solved by iterative meth-
ods, for example GMRES [33].

If one discretizes the domain uniformly by n points in each direction, the computation cost to evaluate (K ĝ)(x, k) is 
reduced to O (M2N log(N)) with N = nd and M = |M|. Hence, the computation costs of Steps T.1 and T.2 are O (M2N log(N))

and (niter M2N log(N)), respectively, where niter is the number of iteration steps in the iterative method. So the total compu-
tation cost is O (niter M2N log(N)). Before the evaluation of (K ĝ)(x, k), one needs to calculate the Fourier modes of κ(x, k, k′)
for each k, k′ ∈ M, so the computation cost and storage memory of the precomputation are O (M2 N log(N)) and O (M2 N), 
respectively.

We remark that the algorithm presented above can be directly applied on (3.20). The only difference is M , which equals 
to M = ∑

l∈M(2l + 1) for 3D case.
Another issue worth to remark is that the summation with respect to k′ in the evaluation of K ĝ can be also accelerated 

by FFT if M is not small. The primary idea is that one can first calculate σ̂ ĝ and then the residue of the kernel K (x, k, y, k′)
only depends on x − y and k − k′ .

3.3.2. Inhomogeneous media and RSF-based algorithm
As is discussed in Section 2.3.2, the FFT-based algorithm requires the total transport coefficient μt be constant and the 

iterative method is used to solve Step T.2. For a inhomogeneous medium, the RSF-based algorithm in Section 2.3.2 does not 
suffer from these limitations. Here we apply RSF on the system (3.35).

One important issue is how to apply the RSF to the matrix A. RSF needs to select the skeletonization to approximate 
the factorization. A nature choice is for different Fourier modes at the same position x to use the same skeletonization. 
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Table 7
Anisotropic scattering case: computational cost of the three methods for different n and ε with constant scatter-
ing coefficient μs = 1 and transport coefficient μt = 1.2.

n ε T DIR
pre (sec) T FFT

pre (sec) T RSF
pre (sec) T DIR

sol (sec) T FFT
sol (sec) T RSF

sol (sec)

32 1E−4 2.42E+0 1.33E−3 1.84E+0 4.16E−2 2.05E−2 3.32E−2
64 1E−4 6.15E+1 1.23E−2 1.69E+1 6.28E−1 6.54E−2 6.87E−2
128 1E−4 – 7.84E−2 1.21E+2 – 1.31E−1 3.17E−1
256 1E−4 – 3.35E−1 8.24E+2 – 6.87E−1 1.53E+0

32 1E−6 2.42E+0 1.33E−3 3.57E+0 4.16E−2 2.46E−2 1.98E−2
64 1E−6 6.15E+1 1.23E−2 3.48E+1 6.28E−1 6.99E−2 1.11E−1
128 1E−6 – 7.84E−2 3.08E+2 – 1.47E−1 5.77E−1
256 1E−6 – 3.35E−1 2.71E+3 – 1.20E+0 3.29E+0

32 1E−8 2.42E+0 1.33E−3 3.83E+0 4.16E−2 2.67E−2 2.60E−2
64 1E−8 6.15E+1 1.23E−2 5.93E+1 6.28E−1 8.45E−2 1.59E−1
128 1E−8 – 7.84E−2 5.80E+2 – 1.69E−1 8.62E−1
256 1E−8 – 3.35E−1 4.88E+3 – 1.67E+0 6.02E+0

Table 8
Anisotropic scattering case: relative error of the FFT-based method and RSF-based method for three source term 
in (2.26) with constant scattering coefficient μs = 1 and transport coefficient μt = 1.2. Ek is the relative error for 
the source term fk , k = 1, 2, 3.

n ε EFFT
1 ERSF

1 EFFT
2 ERSF

2 EFFT
3 ERSF

3

32 1E−4 8.15E−6 2.49E−5 2.18E−5 2.55E−5 3.11E−5 2.19E−5
64 1E−4 8.30E−6 8.28E−5 2.26E−5 8.34E−5 3.18E−5 7.67E−5
128 1E−4 2.94E−4 3.36E−4 2.28E−5 3.34E−4 3.20E−5 2.65E−4
256 1E−4 2.95E−4 1.34E−3 5.92E−4 1.23E−3 3.22E−5 9.64E−4

32 1E−6 3.75E−7 3.20E−7 7.57E−7 3.11E−7 6.11E−8 2.89E−7
64 1E−6 3.89E−7 1.06E−6 7.77E−7 1.13E−6 9.44E−7 9.54E−7
128 1E−6 3.93E−7 3.58E−6 7.78E−7 3.72E−6 9.51E−7 3.15E−6
256 1E−6 3.94E−7 1.20E−5 7.78E−7 1.16E−5 9.52E−7 9.07E−6

32 1E−8 3.20E−10 4.36E−9 1.28E−9 4.52E−9 1.88E−9 4.00E−9
64 1E−8 8.36E−9 2.18E−8 1.42E−9 2.29E−8 1.99E−9 1.99E−8
128 1E−8 8.41E−9 5.44E−8 1.45E−9 5.69E−8 2.01E−9 4.69E−8
256 1E−8 8.41e − 9 1.52E−7 5.19E−8 1.53E−7 6.07E−8 1.32E−7

However, the different Fourier modes of σ may differ from others significantly. In this case, using the same skeletonization 
at each position is not always the optimal choice. Here we regard the pair of a position and a Fourier mode as a generalized 
point, and select the skeletonization over such generalized points. As a result, the Fourier modes selected at different points 
can vary.

As the size of the matrix is now N M , the precomputation (factorization) cost of RSF is t f in (2.24), with N replaced with 
N M . The computation cost of Steps T.1 and T.2 are both ta/s in (2.24) also with N replaced with N M .

Finally, we remark that the RSF-based algorithm can be also directly applied on (3.20) without any difficulty.

3.4. Numerical results

This subsection performs numerical simulations for the anisotropic scattering case and reports the results for different n, 
different tolerance ε , and also different choices of the coefficients μs and μt .

3.4.1. Homogeneous media
Here the scattering kernel σ is chosen to be

σ(θ) = 1 + 1

5
eiθ + 1

5
e−iθ , (3.38)

and accordingly M = {−1, 0, 1}. The absorption coefficient μa = μt − μs is always set as μa = 0.2.

Computational cost Similar to the isotropic case, we perform simulations for different mesh sizes n = 32, 64, 128 and 256
and different tolerance ε as 1E−4, 1E−6 and 1E−8, for the constant scattering coefficients μs = 1 and μt = 1.2. The results 
are presented in Table 7 with the source term set to (2.26a). All the conclusions for the isotropic case hold for this case.

Relative error Table 8 presents the relative error of the FFT-based method and the RSF-based method for three source terms 
(2.26) with μs = 1 and μt = 1.2. The reference solution is obtained with the direct method if n = 32 and 64 and with the 
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Table 9
Anisotropic scattering case: computational cost and relative error for different scattering coefficient μs and ε
with n = 128 and μt = μs + 0.2.

μs ε T FFT
pre T RSF

pre T FFT
sol T RSF

sol EFFT ERSF

1 1E−4 1.40E−2 1.78E+1 5.65E−2 7.97E−2 8.30E−6 9.70E−5
10 1E−4 1.55E−2 1.67E+1 9.29E−2 7.09E−2 4.93E−5 8.18E−4
100 1E−4 1.33E−2 1.17E+1 1.04E−1 5.74E−2 1.10E−4 5.40E−5

1 1E−6 1.34E−2 3.65E+1 5.92E−2 1.11E−1 3.89E−7 1.07E−6
10 1E−6 1.38E−2 3.75E+1 1.55E−1 1.18E−1 1.31E−7 4.73E−6
100 1E−6 1.34E−2 2.12E+1 1.63E−1 6.33E−2 8.40E−7 7.11E−7

1 1E−8 1.31E−2 6.26E+1 8.51E−2 1.64E−1 8.36E−9 1.81E−8
10 1E−8 1.51E−2 6.13E+1 1.81E−1 1.67E−1 2.64E−9 5.02E−8
100 1E−8 1.41E−2 4.02E+1 2.23E−1 1.20E−1 1.17E−8 8.48E−9

Table 10
Anisotropic scattering case: computational cost of the direct method and 
RSF-based method for different n and ε with variable scattering coefficient 
(3.39) with ρ = 1 and μt = μs + 0.2.

n ε T DIR
pre (sec) T RSF

pre (sec) T DIR
sol (sec) T RSF

sol (sec)

32 1E−4 1.84E+0 4.26E+0 4.15E−2 1.27E−2
64 1E−4 7.58E+1 4.02E+1 6.24E−1 5.68E−2
128 1E−4 – 2.43E+2 – 2.95E−1
256 1E−4 – 1.11E+3 – 1.72E+0

32 1E−6 1.84E+0 8.34E+0 4.15E−2 1.89E−2
64 1E−6 7.58E+1 1.31E+2 6.24E−1 8.12E−2
128 1E−6 – 7.64E+2 – 4.55E−1
256 1E−6 – 3.03E+3 – 2.96E+0

32 1E−8 1.84E+0 1.01E+1 4.15E−2 2.65E−2
64 1E−8 7.58E+1 1.86E+2 6.24E−1 1.46E−1
128 1E−8 – 1.68E+3 – 7.16E−1
256 1E−8 – 5.02E+3 – 4.36E+0

FFT-based method with a sufficiently small relative tolerance for GMRES if n > 64. Both methods work well in terms of the 
relative error.

Behavior for different scattering coefficients Table 9 presents the computational cost and relative error for different scattering 
coefficient μs and tolerance ε for the source term (2.26a). One can get the same conclusion as in the isotropic case that 
both the FFT-based method and RSF-based method work in the diffusive regime and the transport regime.

3.4.2. Inhomogeneous media
We test the RSF-based method for the variable transport coefficient case using two examples. The setup of the first 

example is that the absorption coefficient is μa = 0.2 and the scattering term is

μs(x)σ (x, θ) = 1 +
(

2 + eiθ + e−iθ
)
ρ exp

(
−|x − c|2

4

)
, c =

(
1

2
,

1

2

)
, (3.39)

where ρ is a constant.
Table 10 and Table 11 present the computational cost and the relative error of the RSF-based method for different mesh 

size n and different tolerance ε for the scattering term (3.39) with ρ = 1, respectively. Table 12 presents the computational 
cost and relative error for different scattering coefficient ρ and tolerance ε for the source term (2.26a) with n = 64. One 
can see that all the conclusions for the isotropic case hold for this case.

The second example is used to study the behavior for a peaked scattering phase function. We adopt the Lorenz–Mie 
phase function for 2d case with the form

σ(θ) = 4

(
1 + cos(θ)

2

)8

+ 1757

8192
, (3.40)

whose profile is depicted in Fig. 2. The scattering coefficient is same as that in (2.27), and the absorption coefficient is set 
as μa = 0.2.

Table 13 presents the computational cost and relative error for different scattering coefficient ρ and tolerance ε for the 
source term (2.26a) with n = 32. One can see that the conclusions for the isotropic case also hold for this example.
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Fig. 2. Profile of Lorenz–Mie phase function (3.40).

Table 11
Anisotropic scattering case: relative error of the RSF-based method for three 
source terms (2.26) with variable scattering term (3.39) with ρ = 1 and 
μt = μs + 0.2. Ek is the relative error for the source term fk .

n ε ERSF
1 ERSF

2 ERSF
3

32 1E−4 4.45E−5 4.49E−5 4.01E−5
64 1E−4 1.16E−3 9.95E−4 8.94E−4

32 1E−6 2.27E−7 2.02E−7 1.65E−7
64 1E−6 6.11E−6 5.00E−6 3.53E−6

32 1E−8 1.00E−9 9.41E−10 7.88E−10
64 1E−8 1.58E−8 1.51E−8 1.28E−8

Table 12
Anisotropic scattering case: computational cost and relative error for differ-
ent ρ in (3.39) and ε with n = 64 and μt = μs + 0.2.

ρ ε T RSF
pre T RSF

sol ERSF

1 1E−4 2.37E+1 7.66E−2 4.80E−5
10 1E−4 2.48E+1 7.30E−2 9.25E−5
100 1E−4 1.28E+1 4.07E−2 4.46E−6

1 1E−6 4.93E+1 1.18E−1 4.99E−7
10 1E−6 4.81E+1 1.16E−1 1.75E−6
100 1E−6 2.08E+1 5.58E−2 3.60E−7

1 1E−8 7.41E+1 1.63E−1 3.49E−9
10 1E−8 6.92E+1 1.59E−1 1.09E−8
100 1E−8 3.33E+1 6.82E−2 1.21E−9

4. Conclusion

In this paper, we discussed the integral equation formulations and fast algorithms for the RTE with homogeneous and 
inhomogeneous media and for isotropic and anisotropic scattering. The primary observation is that a smooth scattering term 
can be approximated with a short convolution on unit sphere. Numerical simulations show both the FFT-based method and 
the RSF-based method work well. For a homogeneous medium, the FFT-based method is the method of choice due to the 
efficiency of the FFT. For an inhomogeneous medium, the RSF-based method requires less solution time. Moreover, numerical 
simulations show that the RSF-based method can be used in both transport and diffusive regimes.

To simplify the discussion, we have only studied the vacuum boundary condition and assumed that the source term 
f depends only on the spatial variable x. The proposed algorithm remains valid for other boundary conditions and for 
anisotropic source terms f (x, v). As the boundary condition can be treated as a source term on the boundary, it is sufficient 
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Table 13
Anisotropic scattering case: computational cost and relative error of the 
Lorenz–Mie phase function (3.40) for different ρ and ε with n = 32 and 
μt = μs + 0.2.

ρ ε T RSF
pre T RSF

sol ERSF

1 1E−4 1.06E+2 3.15E−1 2.04E−6
10 1E−4 1.84E+2 4.80E−1 1.26E−6
100 1E−4 2.04E+2 2.14E−1 1.68E−9

1 1E−4 3.16E+2 8.02E−1 2.44E−8
10 1E−4 3.63E+2 8.38E−1 1.53E−8
100 1E−4 2.83E+2 5.33E−1 1.69E−11

1 1E−4 4.50E+2 8.93E−1 3.16E−10
10 1E−4 4.76E+2 8.64E−1 2.22E−10
100 1E−4 3.29E+2 5.06E−1 1.99E−13

to just treat the anisotropic source term. The only extra effort is the calculation (FT −1 f )(x, k), and this can be treated by 
solving

v · ∇x�(x, v) + μt(x)�(x, v) = f (x, v), in � × S
d−1,

�(x, v) = 0, on �−,
(4.1)

which can be solved by existing methods, for example in [15,18].
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