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Abstract

The paper introduces the sweeping preconditioner, which is highly efficient for

iterative solutions of the variable-coefficient Helmholtz equation including very-

high-frequency problems. The first central idea of this novel approach is to

construct an approximate factorization of the discretized Helmholtz equation by

sweeping the domain layer by layer, starting from an absorbing layer or bound-

ary condition. Given this specific order of factorization, the second central idea

is to represent the intermediate matrices in the hierarchical matrix framework. In

two dimensions, both the construction and the application of the preconditioners

are of linear complexity. The generalized minimal residual method (GMRES)

solver with the resulting preconditioner converges in an amazingly small num-

ber of iterations, which is essentially independent of the number of unknowns.

This approach is also extended to the three-dimensional case with some success.

Numerical results are provided in both two and three dimensions to demonstrate

the efficiency of this new approach. © 2011 Wiley Periodicals, Inc.

1 Introduction

This is the first of a series of papers on developing efficient preconditioners

for the numerical solutions of the Helmholtz equation in two and three dimensions.

The efficiency of preconditioners for the Helmholtz equation in the important high-

frequency range are at present much lower than that of preconditioners for typical

elliptic problems. This paper develops efficient preconditioners of the Helmholtz

equation by exploiting the physical property of the wave phenomena and certain

low-rank interaction properties of the Green’s function.

Let the domain of interest be the unit box D D .0; 1/d with d D 2; 3. The

time-independent wave field u.x/ for x 2 D satisfies

(1.1) �u.x/C
!2

c2.x/
u.x/ D f .x/;
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where ! is the angular frequency, c.x/ is the velocity field, and f .x/ is the external

force. Commonly used boundary conditions are approximations of the Sommer-

feld condition, which guarantees that the wave field generated by f .x/ propagates

out of the domain to infinity. Other boundary conditions for part of the boundary

will also be considered. By appropriately rescaling the system, it is convenient to

assume that the mean of c.x/ is around 1. Then !
2�

is the typical wave number of

this problem and � D 2�
!

is the typical wavelength.

The Helmholtz equation is ubiquitous since it is the root of almost all linear

wave phenomena. Applications of the Helmholtz equation are abundant in acous-

tics, elasticity, electromagnetics, quantum mechanics, and geophysics. Therefore,

efficient and accurate numerical solutions of the Helmholtz problem is one of the

urgent problems in computational mathematics. This is, however, a very diffi-

cult problem for two main reasons. First, in a typical engineering application,

the Helmholtz equation is discretized with at least 8 to 16 points per wavelength.

Therefore, the number of samples n in each dimension is proportional to !, the to-

tal number of samples N is nd D O.!d /, and the discrete system of the Helmholtz

equation is of size N �N D O.!d / �O.!d /. In the high-frequency range when

! is large, this is an enormous system. Second, as the discrete system is highly

indefinite and has a very oscillatory Green’s function due to the wave nature of

the Helmholtz equation, most of the modern multiscale techniques developed for

elliptic or parabolic problems are no longer effective.

1.1 Approach and Contribution

In this paper, we propose a sweeping preconditioner for the iterative solution

of the Helmholtz equation. In all examples, the Helmholtz equation is discretized

by centered finite differences, i.e., the five-point stencil in 2D and the seven-point

stencil in 3D.

In the 2D case, this new preconditioner is based on a block LDLT factor-

ization of the discrete Helmholtz operator. The overall process is to eliminate

the unknowns layer by layer, starting from a layer where an approximation to

the Sommerfeld condition is specified. The main observation is that each in-

termediate n � n Schur complement matrix of this block LDLT factorization

roughly corresponds to the restriction of a half-space Green’s function to a line,

and these Schur complement matrices are highly compressible with low-rank off-

diagonal blocks. Representing and manipulating these matrices in the hierarchi-

cal matrix framework [7] requires only O.n log n/ space and O.n log2 n/ steps.

As a result, the block LDLT factorization takes O.n2 log2 n/ D O.N log2 N /

steps. The resulting block LDLT factorization serves as an excellent precondi-

tioner for the discrete Helmholtz system, and applying it to any vector takes only

O.n2 log n/ D O.N log N / steps using again the hierarchical matrix framework.

By combining this preconditioner with GMRES, we obtain iteration numbers that

are almost independent of !. In a typical example with a computational domain of



SWEEPING PRECONDITIONER FOR THE HELMHOLTZ EQUATION 699

256 wavelengths in each dimension and four million unknowns, only three to four

GMRES iterations are required (see Section 3).

We also extend this approach to the 3D case and construct an approximate block

LDLT factorization by eliminating the unknowns face by face, starting from a face

at which an approximation to the Sommerfeld condition is specified. Though each

intermediate n2 � n2 Schur complement matrix corresponds to the restriction of a

half-space Green’s function to a face, the off-diagonal parts may not be as numeri-

cally low-rank as in 2D. However, since the goal is to construct a preconditioner, we

still represent and manipulate these matrices under the hierarchical matrix frame-

work. Numerical results show that applying the resulting preconditioner is highly

efficient and the preconditioned GMRES solver converges in a small number of

iterations, weakly depending on !.

The main observation of the sweeping preconditioner comes from the analytic

low-rank property of the Green’s function of the continuous Helmholtz opera-

tor. On the other hand, the algorithms construct directly an approximation to

the Green’s function of the discrete Helmholtz operator. It is important that this

Green’s function be calculated from the discretized problem to be solved numeri-

cally and not be an independent approximation of the continuous analogue.

1.2 Related Work

There has been a vast literature on developing efficient numerical algorithms for

the Helmholtz equation. A wide class of methods for special sets of solutions are

based on asymptotic expansion of the solution u.x/. These techniques of geometric

optics type are efficient when ! is very large. A review article on these methods

can be found in [16]. There is also a class of methods based on boundary integral or

volumetric integral representations. These integral equation methods can be highly

efficient for piecewise constant velocity fields when combined with fast summation

methods such as the fast multipole methods and the fast Fourier transforms [6, 9,

17, 18, 39, 40]. Here, however, we will focus on the methods that discretize the

Helmholtz equation directly.

The most efficient direct methods for solving the discretized Helmholtz systems

are the multifrontal methods or their pivoted versions [12, 25, 33]. The multifrontal

methods exploit the locality of the discrete operator and construct an LDLT fac-

torization based on a hierarchical partitioning of the domain. Their computational

costs depend quite strongly on the dimensions of the problem. In 2D, for a prob-

lem with N D n � n unknowns, a multifrontal method takes O.N 3=2/ steps and

O.N log N / storage space. The prefactor is usually rather small, making the mul-

tifrontal methods effectively the default choice for the 2D Helmholtz problem. In

3D, for a problem with N D n � n � n unknowns, a multifrontal method takes

O.n6/ D O.N 2/ steps and O.n4/ D O.N 4=3/ storage space, making it very

costly for large-scale 3D problems.

In the setting of the elliptic operators, the intermediate matrices of the multi-

frontal methods can be well approximated using hierarchical matrix algebra, and
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this allows one to bring the cost down to linear complexity in both 2D and 3D

[36, 46]. This is, however, not true for the Helmholtz operator. The sweeping

preconditioner introduced in this paper is also based on constructing an LDLT

factorization of the Helmholtz operator. However, due to its specific sweeping (or

elimination) order, which is very different from the one of the multifrontal meth-

ods, we are able to represent the intermediate matrices in a more effective way and

obtain a highly efficient preconditioner.

There have been a number of developments on iterative methods for solving the

Helmholtz equation. The following discussion is by no means complete and more

details can be found in [20].

Standard multigrid methods do not work well for the Helmholtz equation for

several reasons. The most important one is that the oscillations on the scale of

the wavelength cannot be carried on the coarse grids. Several methods have been

proposed to remedy this [8, 13, 23, 31, 34, 45]. For example, in [8, 34] Brandt and

Livshits propose the wave-ray method. This method uses the standard smoothers

to remove the coarse and fine components of the residue and then decomposes

the component that oscillates on the scale of the wavelength into rays pointing at

different directions. Each ray is further represented as the product of a smooth

amplitude and an oscillatory phase, and the amplitude is removed by applying

relaxation on an anisotropic grid aligned with the ray direction. A limitation of

the wave-ray method, however, is that the method is essentially restricted only to

the constant-velocity field. We would like to point out that there is a connection

between the wave-ray method and the sweeping preconditioner proposed in this

paper, as both methods exploit the analytic behavior of the Green’s function of the

Helmholtz equation: the wave-ray method relies on the Green’s function over the

whole domain, while the sweeping preconditioner uses its restriction to a single

layer.

Several other methods [2, 11, 44] leverage the idea of domain decomposition.

These methods are typically quite suitable for parallel implementation, as the com-

putation in each subdomain can essentially be done independently. However, con-

vergence rates of these methods are usually quite slow [20].

Another class of methods [1, 21, 22, 30] that has attracted a lot of attention

recently seeks to precondition the Helmholtz operator with a shifted Laplacian

operator,

� �
!2

c2.x/
.˛ C iˇ/; ˛ > 0;

to improve the spectral property of the discrete Helmholtz system. Since the shifted

Laplacian operator is elliptic, standard algorithms such as multigrid can be used for

the inversion of the above operator. These methods offer quite significant improve-

ments for the convergence rate, but the reported number of iterations typically still

grows linearly with respect to ! and is much larger than the iteration numbers

produced by the sweeping preconditioner introduced in this paper.
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Several other constructions of preconditioners [3, 24, 38] are based on incom-

plete LU (ILU) decomposition, i.e., generating only a small portion of the entries

of the LU factorization of the discrete Helmholtz operator and applying this ILU

decomposition as a preconditioner. Recent approaches based on ILUT (incom-

plete LU factorization with thresholding) and ARMS (algebraic recursive multi-

level solver) have been reported in [38]. These ILU preconditioners bring down

the number of iterations quite significantly; however, the number of iterations still

scales linearly in !. In connection with the ILU preconditioners, one can in fact

view the sweeping preconditioner of this paper as an approximate LU (ALU) pre-

conditioner: instead of keeping only a few selected entries, it approximates the

whole inverse operator more accurately in a more sophisticated and effective form,

thus resulting in substantially better convergence properties.

1.3 Contents

The rest of this paper is organized as follows. Section 2 presents the sweeping

preconditioner in the 2D case, and Section 3 reports the 2D numerical results. We

extend this approach to the 3D case in Section 4 and report the 3D numerical results

in Section 5. Finally, Section 6 discusses some future directions of this work.

2 Preconditioner in 2D

2.1 Discretization

Recall that the computational domain is D D .0; 1/2. Let us assume for sim-

plicity that the Sommerfeld condition is specified at all directions. One standard

way of incorporating the Sommerfeld boundary condition into (1.1) is to use the

perfectly matched layer (PML) [4, 10, 29]. Introduce

(2.1) �.t/ D

8̂<
:̂

C
�
�
� t��

�

�2
; t 2 Œ0; ��;

0; t 2 Œ�; 1 � ��;
C
�
�
� t�1C�

�

�2
; t 2 Œ1 � �; 1�;

and

s1.x1/ D

�
1C i

�.x1/

!

��1

; s2.x2/ D

�
1C i

�.x2/

!

��1

:

Here � is typically about one wavelength and C is an appropriate positive constant

independent of !. The PML approach replaces @1 with s1.x1/@1 and @2 with

s2.x2/@2, which effectively provides a damping layer of width � near the boundary

of the domain Œ0; 1�2. The resulting equation is�
.s1@1/.s1@1/C .s2@2/.s2@2/C

!2

c2.x/

�
u D f; x 2 D D Œ0; 1�2;

u D 0; x 2 @D:
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FIGURE 2.1. Left: Discretization grid in 2D. Right: Sweeping order

in 2D. The dotted grid indicates the unknowns that have already been

eliminated.

Without loss of generality, we assume that f .x/ is supported inside Œ�; 1 � ��2

(away from the PML). Dividing the above equation by s1.x1/s2.x2/ results in�
@1

�
s1

s2
@1

�
C @2

�
s2

s1
@2

�
C

!2

s1s2 � c2.x/

�
u D f:

The advantage of working with this equation is that it is symmetric, which offers

some convenience from the algorithmic point of view. We discretize the domain

with a Cartesian grid with spacing h D 1=.nC1/, where n is assumed be an integer

power of 2 for simplicity. In order to discretize each wavelength with a couple of

points, the number n of points in each dimension needs to be proportional to !.

The interior points of this grid are

P D fpi;j D .ih; jh/ W 1 � i; j � ng

(see Figure 2.1 (left)), and the total number of points N is equal to n2.

We denote by ui;j , fi;j , and ci;j the values of u.x/, f .x/, and c.x/ at point

pi;j D .ih; jh/. The standard five-point stencil finite difference method writes

down the equation at points in P using central difference. The resulting equation

at pi;j D .ih; jh/ is

1

h2

�
s1

s2

�
i�

1

2
;j

ui�1;j C
1

h2

�
s1

s2

�
iC

1

2
;j

uiC1;j

C
1

h2

�
s2

s1

�
i;j �

1

2

ui;j �1 C
1

h2

�
s2

s1

�
i;j C

1

2

ui;j C1

C

�
!2

.s1s2/i;j � c
2
i;j

� .� � �/

�
ui;j D fi;j

(2.2)

with ui 0;j 0 equal to 0 for .i 0; j 0/ that violates 1 � i 0; j 0 � n. Here .� � �/ stands

for the sum of the four coefficients appearing in the first four terms. We order ui;j

row by row starting from the first row j D 1 and denote the vector containing all

unknowns by

u D .u1;1; u2;1; : : : ; un;1; : : : ; u1;n; u2;n; : : : ; un;n/T:
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Similarly, fi;j are ordered in the same way and the vector f is

f D .f1;1; f2;1; : : : ; fn;1; : : : ; f1;n; f2;n; : : : ; fn;n/T:

By denoting the linear operator in (2.2) by A, we obtain the linear system Au D f .

We further define Pm to be the unknowns in the mth row

Pm D fp1;m; : : : ; pn;mg

and introduce

um D .u1;m; u2;m; : : : ; un;m/T and fm D .f1;m; f2;m; : : : ; fn;m/T:

Then

u D .uT
1; uT

2; : : : ; uT
n/T and f D .f T

1 ; f T
2 ; : : : ; f T

n /T:

Using this notation, the system Au D f takes the following tridiagonal block

form 0
BBBBBB@

A1;1 A1;2

A2;1 A2;2
: : :

: : :
: : :

: : :

: : :
: : : An�1;n

An;n�1 An;n

1
CCCCCCA

0
BBBBB@

u1

u2
:::
:::

un

1
CCCCCA D

0
BBBBB@

f1

f2
:::
:::

fn

1
CCCCCA ;

where Am;m are tridiagonal matrices and Am;m�1 D AT
m�1;m are diagonal matri-

ces.

We introduce the notion of sweeping factorization, which is essentially a block

LDLT factorization of A that eliminates the unknowns layer by layer. Starting the

elimination from the first row P1 gives

A D L1

0
BBBBB@

S1

S2 A2;3

A3;2
: : :

: : :

: : :
: : :

: : :

1
CCCCCALT

1;

where S1 D A1;1, S2 D A2;2 � A2;1S�1
1 A1;2, and the matrix L1 is a block

lower-triangular matrix given by

L1.P2; P1/ D A2;1S�1
1 ; L1.Pi ; Pi / D I; 1 � i � n; and zero otherwise:

Repeating this process over all Pm for m D 2; : : : ; n � 1 gives

(2.3) A D L1 � � �Ln�1

0
BBB@

S1

S2

: : :

Sn

1
CCCALT

n�1 � � �L
T
1;
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where Sm D Am;m � Am;m�1S�1
m�1AT

m�1;m for m D 2; 3; : : : ; n. The matrix Lm

is given by

Lm.PmC1; Pm/ D AmC1;mS�1
m ; Lm.Pi ; Pi / D I; 1 � i � n;

and zero otherwise:

This process is illustrated graphically in Figure 2.1 (right). Inverting this factoriza-

tion (2.3) for A gives the following formula for u:

u D .LT
1/�1 � � � .LT

n�1/�1

0
BBB@

S�1
1

S�1
2

: : :

S�1
n

1
CCCAL�1

n�1 � � �L
�1
1 f:

Algorithmically, the construction of the sweeping factorization of A can be sum-

marized as follows by introducing Tm D S�1
m .

Algorithm 2.1. Construction of the sweeping factorization of A.

1: S1 D A1;1 and T1 D S�1
1 .

2: for m D 2; : : : ; n do

3: Sm D Am;m � Am;m�1Tm�1Am�1;m and Tm D S�1
m .

4: end for

Since Sm and Tm are in general dense matrices of size n � n, the cost of the

construction algorithm is of order O.n4/ D O.N 2/. The computation of u D

A�1f is carried out in the following algorithm once the sweeping factorization is

ready.

Algorithm 2.2. Computation of u D A�1f using the sweeping factorization of A.

1: for m D 1; : : : ; n do

2: um D fm

3: end for

4: for m D 1; : : : ; n � 1 do

5: umC1 D umC1 � AmC1;m.Tmum/

6: end for

7: for m D 1; : : : ; n do

8: um D Tmum

9: end for

10: for m D n � 1; : : : ; 1 do

11: um D um � Tm.Am;mC1umC1/

12: end for

Obviously the computations of Tmum in the second and the third loops only

need to be carried out once. However, we choose to write the algorithm this way

for simplicity. The cost of computing u is of order O.n3/ D O.N 3=2/, and this is
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O.N 1=2/ times more expensive compared to the multifrontal methods. Therefore

Algorithms 2.1 and 2.2 are not very useful in this simple form.

2.2 Main Observation

Let us consider the meaning of the matrix Tm D S�1
m . Consider only the top-left

m �m blocks of the factorization (2.3).

(2.4)

0
BBBBBB@

A1;1 A1;2

A2;1 A2;2
: : :

: : :
: : :

: : :

: : :
: : : Am�1;m

Am�1;m Am;m

1
CCCCCCA
D

L1 � � �Lm�1

0
BBB@

S1

S2

: : :

Sm

1
CCCALT

m�1 � � �L
T
1;

where the Lk-matrices are taken to be their restrictions to the top-left m�m blocks.

The matrix on the left is in fact the discrete Helmholtz operator of the half-space

problem below x2 D .m C 1/h and with the zero boundary condition on x2 D

.mC 1/h. Inverting the above factorization gives

(2.5)

0
BBBBBB@

A1;1 A1;2

A2;1 A2;2
: : :

: : :
: : :

: : :

: : :
: : : Am�1;m

Am;m�1 Am;m

1
CCCCCCA

�1

D

.LT
1/�1 � � � .LT

m�1/�1

0
BBB@

S�1
1

S�1
2

: : :

S�1
m

1
CCCAL�1

m�1 � � �L
�1
1 :

The matrix on the left is the discrete half-space Green’s function of the Helmholtz

operator with zero boundary condition. On the right side, due to the definition

of the matrices L1; : : : ; Lm�1, the .m; m/th block of the whole product is exactly

equal to S�1
m . Therefore, Tm D S�1

m is the restriction to x2 D mh of the discrete

half-space Green function of the Helmholtz operator with zero boundary at x2 D

.mC 1/h.

The main observation of our approach is that Tm and Sm are highly compressible

with numerically low-rank off-diagonal blocks. The following theorem shows that
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FIGURE 2.2. Left: The setting of Theorem 2.4. Right: The setting of Theorem 2.3.

this is true for the continuous half-space Green’s function for the case of constant

velocity field c.x/ D 1.

THEOREM 2.3 Let

Y D
˚
pi;m D .ih; mh/; i D 1; : : : ; n

2

�
;

X D
˚
pi;m D .ih; mh/; i D n

2
C 1; : : : ; n

�
;

and G be the (continuous) half-space Green’s function of the Helmholtz operator

for the domain .�1;1/ � .�1; .mC 1/h/ with zero boundary condition. Then

.G.x; y//x2X;y2Y is numerically low-rank. More precisely, for any " > 0, there

exist a constant R D O.log !jlog "j2/ and functions f˛r.x/g1�r�R for x 2 X and

functions fˇr.y/g1�r�R for y 2 Y such thatˇ̌̌
ˇG.x; y/ �

RX
rD1

˛r.x/ˇr.y/

ˇ̌̌
ˇ � " for x 2 X; y 2 Y:

The proof of this theorem relies on the following theorem from [37]. Let H0.�/

be the zeroth-order Hankel function of the first kind.

THEOREM 2.4 Let ! be the angular frequency and � D 2�=!. Let W > 0. There

exists C.W / such that, for L > 0, " > 0, and S > C.W /jlog "j�, there exist a con-

stant J � log.!L/jlog "j2, functions f�j .x/g1�j �J , and functions f�j .y/g1�j �J

such that ˇ̌̌
ˇH0.!jx � yj/ �

JX
j D1

�j .x/�j .y/

ˇ̌̌
ˇ � "

for

y 2
�
�L;�S

2

�
�
�
�W

2
; W

2

�
and x 2

�
S
2

; L
�
�
�
�W

2
; W

2

�
:

The setting of this theorem is illustrated in Figure 2.2 (left). Using Theorem 2.4,

the proof of Theorem 2.3 goes as follows.

PROOF OF THEOREM 2.3. Let W D 2h. We partition the set X into the union

of the near set XN and the far set XF depending on the distance from Y :

XN D
˚
p D .p1; p2/ 2 X; p1 �

1
2
C 1

2
C.W /jlog. "

2
/j�
�
;

XF D
˚
p D .p1; p2/ 2 X; p1 > 1

2
C 1

2
C.W /jlog. "

2
/j�
�
:
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Similarly, Y is partitioned into the union of YN and YF :

YN D
˚
p D .p1; p2/ 2 Y; p1 �

1
2
� 1

2
C.W /jlog. "

2
/j�
�
;

YF D
˚
p D .p1; p2/ 2 Y; p1 < 1

2
� 1

2
C.W /jlog. "

2
/j�
�
:

See Figure 2.2 (right). These partitionings introduce a natural block structure for

the matrix .G.x; y//x2X;y2Y :

(2.6)

�
.G.x; y//x2XN ;y2YN

.G.x; y//x2XN ;y2YF

.G.x; y//x2XF ;y2YN
.G.x; y//x2XF ;y2YF

�
:

Let q D �
h

be the number of points per wavelength. It is clear from the definition

of XN and YN that each of them has at most 1
2
C.W /jlog "j�

h
D 1

2
C.2h/jlog "jq

points. Hence the ranks of the .1; 1/, .1; 2/, and .2; 1/ blocks of (2.6) are all

bounded from above by 1
2
C.2h/jlog "jq.

Let us consider the .2; 2/ block. Define M.YF / to be the mirror image set of the

set YF with respect to the line x2 D .mC 1/h. Due to the zero Dirichlet boundary

condition at x2 D .mC 1/h, for x 2 XF and y 2 YF

G.x; y/ D H0.!jx � yj/ �H0.!jx �M.y/j/

where M.y/ 2M.YF / is the mirror image of y. YF [M.YF / is contained in the

box �
0; 1

2
� 1

2
C.W /jlog. "

2
/j�
�
� Œmh; .mC 2/h�

and XF is in �
1
2
C 1

2
C.W /jlog. "

2
/j�; 1

�
� Œmh; .mC 2/h�:

Since the distance between these two boxes is C.W /jlog. "
2
/j� and their widths

are bounded by 1, applying Theorem 2.4 shows that there exist a constant J �

log.!/jlog. "
2
/j2, functions f�j .x/g1�j �J , and functions f�j .y/g1�j �J such thatˇ̌̌

ˇH0.!jx � yj/ �

JX
j D1

�j .x/�j .y/

ˇ̌̌
ˇ � "

2

for x 2 XF and y 2 YF [M.YF /. This implies thatˇ̌̌
ˇG.x; y/ �

JX
j D1

�j .x/.�j .y/ � �j .M.y///

ˇ̌̌
ˇ � ":

Combining this with the estimates for the other three blocks shows that there

exist R D 3
2
C.2h/jlog. "

2
/jqClog.!/jlog. "

2
/j2 D O.log.!/jlog "j2/ and functions

f˛r.x/g1�r�R for x 2 X and functions fˇr.y/g1�r�R for y 2 Y such thatˇ̌̌
ˇG.x; y/ �

RX
rD1

˛r.x/ˇr.y/

ˇ̌̌
ˇ � " for x 2 X; y 2 Y:

�
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For a fixed ", Theorem 2.3 shows that the rank R grows logarithmically with

respect to ! (and thus n). Though the theorem states the result under the case that

X contains the points on the left half and Y contains the points on the right half, it

also applies to any disjoint intervals X and Y on x2 D mh due to the translational

invariance of the kernel G.x; y/ in the x1-direction. It is also clear that when X

and Y are well separated from each other, the actual rank R should be smaller.

Theorem 2.3 can be extended to the case of smooth layered media where the

velocity variation only depends on x1. In this case, the restriction of the Green’s

function to x2 D mh does not develop caustics. Therefore, the geometric optics

representation A.x; y/ei!ˆ.x;y/ of the Green’s function for x 2 X and y 2 Y can

be made sufficiently accurate as long as X and Y are well separated. The amplitude

A.x; y/ is numerically low-rank due to its smoothness. The phase term is also

numerically low-rank since for the layered media ˆ.x; y/ D 	.x/ � 	.y/ where

	.�/ is the travel time function from a fixed point. Therefore, as their product, the

Green’s function G.x; y/ is also numerically low-rank for well-separated X and Y .

Numerical experiments confirm the statement of Theorem 2.3. For the constant-

coefficient case c.x/ D 1 with !
2�
D 32 (n D 256), Figure 2.3 (left) shows the

numerical ranks of the off-diagonal blocks of Tm for m D 128. For each off-

diagonal block, the singular values of the block are calculated and the color of the

block in Figure 2.3 indicates the number of singular values that are greater than

10�6. For nonconstant velocity fields c.x/, the rank estimate would depend on the

variations in c.x/, and numerical results suggest that the off-diagonal blocks of Tm

and Sm still admit this low-rankness property for a wide class of c.x/. An example

for the nonconstant velocity field is given in Figure 2.3 (middle).

We would like to emphasize that both the Sommerfeld boundary condition and

the layer-by-layer sweeping order are essential for this low-rank property. To illus-

trate that, we perform a test with the same threshold 10�6 but with zero Dirichlet

boundary condition. The result of Tm for m D 128 is plotted in Figure 2.3 (right).

It is clear that the ranks of the off-diagonal blocks are much higher and grow almost

linearly with respect to the size of the block. This clearly shows the importance

of the Sommerfeld boundary condition. A similar matrix Tm would also appear if

one adopts different elimination orders such as the one of multifrontal methods or

the one proposed in [36]; therefore these other elimination orders do not result in

efficient solution methods for the Helmholtz equation.

2.3 Hierarchical Matrix Representation

Since the matrices Tm and Sm are highly compressible with numerically low-

rank off-diagonal blocks, it is natural to represent these matrices using the hierar-

chical matrix (or H -matrix) framework proposed by Hackbusch et al. [7, 26, 27],

where off-diagonal blocks are represented in low-rank factorized form. The discus-

sion below is by no means original and is included for the sake of completeness.
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FIGURE 2.3. Numerical ranks of off-diagonal blocks of Tm. Left:

Constant-coefficient case with PML boundary condition. Middle:

Nonconstant-coefficient case with PML boundary condition. Right:

Constant-coefficient case with zero Dirichlet boundary condition.

For each layer m, we construct a hierarchical decomposition of the grid points

in Pm through bisection. At level 0 (the top level), the set

J 0
1 D Pm:

At level `, there are 2` sets J `
i for i D 1; 2; : : : ; 2` given by

J `
i D fpt;m W .i � 1/ � n=2` C 1 � t � i � n=2`g:

The bisection is stopped when each set J `
i contains only a small number of indices.

It is clear that the number of total levels L is equal to log2 n�O.1/ (see Figure 2.4

(left)). We often write G.J `
i ; J `

i 0/ (the restriction of a matrix G to J `
i and J `

i 0) as

G`
i;i 0 . The hierarchical matrix representation relies on the notion of well separated-

ness between different sets. If J `
i and J `

i 0 are well separated from each other, then

G.J `
i ; J `

i 0/ is allowed to be stored in a low-rank factorized form.

There are two different choices of the notion of well separatedness [7]. In the

weakly admissible case J `
i and J `

i 0 are well separated if and only if they are disjoint,

while in the strongly admissible case J `
i and J `

i 0 are well separated if and only if

the distance between them is greater than or equal to their width. Next, define the

interaction list of J `
i to be the set of all index sets J `

i 0 such that J `
i is well separated

from J `
i 0 but J `

i ’s parent is not well separated from J `
i 0’s parent. It is clear from

this definition that being a member of another set’s interaction list is a symmetric

relationship.

Weakly Admissible Case

In the weakly admissible case, the interaction list of J `
2i contains only J `

2i�1
and vice versa.
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FIGURE 2.4. Hierarchical matrix representation. Left: Hierarchical par-

titioning of the index set Pm for each layer. Right: Induced partitioning

of the matrix Tm in the weakly admissible case. Off-diagonal blocks (in

white) are stored in low-rank factorized form. Diagonal blocks (in gray)

are stored densely.

Matrix representation. First fix an error threshold ". Let R D O.log !/ D O.log n/

be the maximum over the ranks of the off-diagonal blocks on all levels. For a

given matrix G, the hierarchical matrix framework represents all blocks G`
i;i 0 D

G.J `
i ; J `

i 0/ with J `
i and J `

i 0 in each other’s interaction list in the factorized form

with rank less than or equal to R. For example, at the first level, the two off-

diagonal blocks G1
1;2 D G.J 1

1 ; J 1
2 / and G1

2;1 D G.J 1
2 ; J 1

1 / are represented by

G1
1;2 � U 1

1;2.V 1
1;2/T and G1

2;1 � U 1
2;1.V 1

2;1/T;

where each of U 1
1;2, U 1

2;1, V 1
1;2, and V 1

2;1 has at most R columns. At the second

level, the new off-diagonal blocks are G2
1;2, G2

2;1, G2
3;4, and G2

4;3, each repre-

sented in a similar way. Finally, at level L � 1, all diagonal blocks GL�1
i;i for

i D 1; : : : ; 2L�1 are stored densely. This representation is illustrated in Figure 2.4

(right). The total storage cost is O.Rn log n/.

Matrix-vector multiplication. Let us consider the product Gf where f is a vector

of size n. Denote by f `
i the part of f restricted to J `

i . Using the block matrix

form, the product is 
G1

1;1 G1
1;2

G1
2;1 G1

2;2

! 
f 1

1

f 1
2

!
D

 
G1

1;1f 1
1 CG1

1;2f 1
2

G1
2;1f 1

1 CG1
2;2f 1

2

!
:

First, the product G1
1;2f 1

2 is computed with G1
1;2f 1

2 � U 1
1;2..V 1

1;2/Tf 1
2 /. The

same is carried out for the product G1
2;1f 1

1 . Second, the computation of G1
1;1f 1

1

and G1
2;2f 1

2 is done recursively since both G1
1;1 and G1

2;2 are in the hierarchical

matrix form. We denote by hmatvec.G; f / this matrix-vector multiplication pro-

cedure, and its computational cost is equal to O.Rn log n/.
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Matrix addition and subtraction. Consider the sum of two matrices G and H with

their off-diagonal blocks given in the factorized form by G`
i;j � U `

i;j .V `
i;j /T and

H `
i;j � X`

i;j .Y `
i;j /T. Under the block matrix notation, the sum is 

G1
1;1 G1

1;2

G1
2;1 G1

2;2

!
C

 
H 1

1;1 H 1
1;2

H 1
2;1 H 1

2;2

!
D

 
G1

1;1 CH 1
1;1 G1

1;2 CH 1
1;2

G1
2;1 CH 1

2;1 G1
2;2 CH 1

2;2

!
:

First, consider the off-diagonal block

G1
1;2 CH 1

1;2 � U 1
1;1.V 1

1;2/T CX1
1;2.Y 1

1;2/T D
�
U 1

1;2; X1
1;2

��
V 1

1;2; Y 1
1;2

�T
:

One needs to recompress the last two matrices in order to prevent the rank of the

low-rank factorization from increasing indefinitely. This can be done by computing

the QR decomposition of .U 1
1;2; X1

1;2/ and .V 1
1;2; Y 1

1;2/, followed by a truncated

SVD of a matrix of small size. The same procedure is carried out for G1
2;1CH 1

2;1 to

compute the necessary factorization. Second, consider the diagonal blocks. G1
1;1C

H 1
1;1 and G1

2;2 C H 1
2;2 are done recursively since they are two sums of the same

nature but only half the size. This additional procedure is denoted by hadd.G; H/.

The subtraction procedure is almost the same and is denoted by hsub.G; H/. Both

of them take O.R2n log n/ steps.

Matrix multiplication. Let us consider the sum of two matrices G and H with their

off-diagonal blocks represented by G`
i;j � U `

i;j .V `
i;j /T and H `

i;j � X`
i;j .Y `

i;j /T.

Under the block matrix form, the product is 
G1

1;1 G1
1;2

G1
2;1 G1

2;2

!
�

 
H 1

1;1 H 1
1;2

H 1
2;1 H 1

2;2

!
D

 
G1

1;1H 1
1;1 CG1

1;2H 1
2;1 G1

1;1H 1
1;2 CG1

1;2H 1
2;2

G1
2;1H 1

1;1 CG1
2;2H 1

2;1 G1
2;1H 1

1;2 CG1
2;2H 1

2;2

!
:

First, the off-diagonal block

G1
1;1H 1

1;2 CG1
1;2H 1

2;2 � G1
1;1X1

1;2.Y 1
1;2/T C U 1

1;2.V 1
1;2/TH 1

2;2:

The computation G1
1;1X1

1;2 and .V 1
1;2/TH 1

2;2 are essentially matrix-vector multi-

plications. Once they are done, the remaining computation is then similar to the

off-diagonal part of the matrix addition algorithm. The other off-diagonal block

G1
2;1H 1

1;1 CG1
2;2H 1

2;1 is done in the same way.

Next, consider the diagonal blocks. Take G1
1;1H 1

1;1 CG1
1;2H 1

2;1 as an example.

The first part G1
1;1H 1

1;1 is done using recursion. The second part is G1
1;2H 1

2;1 �

U 1
1;2.V 1

1;2/TX1
2;1.Y 1

2;1/T, where the middle product is carried out first in order to

minimize the computational cost. The final sum G1
1;1H 1

1;1 C G1
1;2H 1

2;1 is done

using the matrix addition algorithm described above. The same procedure can be
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carried out for G1
2;1H 1

1;2 C G1
2;2H 1

2;2. This matrix multiplication procedure is

denoted by hmul.G; H/ and its computational cost is O.R2n log2 n/.

Matrix inversion. The inverse of G is done by performing a 2 � 2 block matrix

inversion: 
G1

1;1 G1
1;2

G1
2;1 G1

2;2

!�1

D

 
.G1

1;1/�1 C .G1
1;1/�1G1

1;2S�1G1
2;1.G1

1;1/�1 �.G1
1;1/�1G1

1;2S�1

�S�1G1
2;1.G1

1;1/�1 S�1

!

where S D G1
2;2 � G1

2;1.G1
1;1/�1G1

1;2. The computation of this formula requires

matrix addition and multiplication, along with the inversion of two matrices S and

G1
1;1, half of the original size. The matrix addition and multiplication is carried

out by the above procedures, while the inversions are done recursively. This matrix

inversion procedure is denoted by hinv.G/ and its cost is O.R2n log2 n/.

Multiplication with a diagonal matrix. Finally, we consider the multiplication of G

by a diagonal matrix D. Denote the two diagonal blocks of D on the first level by

D1
1;1 and D1

2;2, both of which are diagonal matrices. In the block matrix form, the

product becomes 
G1

1;1 G1
1;2

G1
2;1 G1

2;2

!
�

 
D1

1;1

D1
2;2

!
D

 
G1

1;1D1
1;1 G1

1;2D1
2;2

G1
2;1D1

1;1 G1
2;2D1

2;2

!
:

Consider the off-diagonal blocks first. For example,

G1
1;2D1

2;2 � U 1
1;2.V 1

1;2/TD1
2;2;

and this is done by scaling each column of .V 1
1;2/T by the corresponding diag-

onal entries of D1
2;2. The same is true for G1

2;1D1
1;1. For the diagonal blocks,

say G1
1;1D1

1;1, we simply apply recursion since G1
1;1 is itself a hierarchical matrix

and D1
1;1 is itself diagonal. This special multiplication procedure is denoted by

hdiagmul.G; D/ if D is on the right or hdiagmul.D; G/ if D is on the left. The

cost of both procedures is O.Rn log n/.

Strongly Admissible Case

The matrix representation and operations in the strongly admissible case are

similar to the ones in the weakly admissible case. The only one that requires signif-

icant modification is the matrix multiplication procedure R D hmul.G; H/, where

the most common step is the calculation of

(2.7) R`
i;i 00  G`

i;i 0H
`
i 0;i 00 :

In order to simplify the discussion, we denote a matrix symbolically by H if it is

in hierarchical form and by F if it is represented in a factorized form. The product
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(2.7) can then take one of the following eight forms:

H D H � H; H D H � F; H D F � H; H D F � F;

F D H � H; F D H � F; F D F � H; F D F � F:

All of them except one have already appeared in the matrix multiplication proce-

dure of the weakly admissible case, and the only one that is new is F D H �H. This

new kind of product is implemented using the randomized SVD algorithm pro-

posed recently in [28, 32] for numerically low-rank matrices. The main idea of this

randomized algorithm is to capture the column (or row) space of the matrix by mul-

tiplying the matrix with a small number of Gaussian random test vectors. Results

from random matrix theory guarantee that the column space of the product matrix

approximates accurately the span of all dominant singular vectors of the original

(numerically low-rank) matrix. Since the product matrix has far fewer columns,

applying singular value decompositions to it gives rise to an accurate and efficient

way to approximate the SVD of the original matrix. Notice that this randomized

approach only requires a routine to apply the original matrix to an arbitrary vector;

everything else is just standard numerical linear algebra. In our setting, applying

H � H to a vector is simply equal to two hmatvec operations.

2.4 Approximate Inversion and Preconditioner

Let us denote the approximations of Sm and Tm in the hierarchical matrix repre-

sentation by zSm and zTm, respectively. The construction of the approximate LDLT

factorization of A takes the following steps:

Algorithm 2.5. Construction of the approximate sweeping factorization of A in the

hierarchical matrix framework.

1: zS1 D A1;1 and zT1 D hinv. zS1/.

2: for m D 2; : : : ; n do

3: zSm D hsub.Am;m; hdiagmul.Am;m�1; hdiagmul. zTm�1; Am�1;m/// and
zTm D hinv. zSm/.

4: end for

The cost of Algorithm 2.5 is O.R2n2 log2 n/ D O.R2N log2 N /. The compu-

tation of u � A�1f using this approximate factorization is summarized as follows.

Algorithm 2.6. Computation of u � A�1f using the approximate sweeping factor-

ization of A in the hierarchical matrix framework.

1: for m D 1; : : : ; n do

2: um D fm

3: end for

4: for m D 1; : : : ; n � 1 do

5: umC1 D umC1 � AmC1;m � hmatvec. zTm; um/

6: end for

7: for m D 1; : : : ; n do

8: um D hmatvec. zTm; um/
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9: end for

10: for m D n � 1; : : : ; 1 do

11: um D um � hmatvec. zTm; Am;mC1umC1/

12: end for

The cost of Algorithm 2.6 is O.Rn2 log n/ D O.RN log N /. Algorithm 2.6

defines an operator

M W f D .f T
1 ; f T

2 ; : : : ; f T
n /T ! u D .uT

1; uT
2; : : : ; uT

n/T;

which is an approximate inverse of the discrete Helmholtz operator A. When the

threshold " is set to be sufficiently small, M can be used directly as the inverse

of A, and u can be taken as the solution. However, a small "-value means that

the rank R of the low-rank factorized form needs to be fairly large, thus resulting

in large storage and computation cost. On the other hand, when R is kept rather

small, Algorithms 2.5 and 2.6 become efficient both in terms of storage and time.

Though the resulting M is not accurate enough as the inverse of A, it serves as an

excellent preconditioner. Therefore, we solve the preconditioner system

MAu DMf

using iterative solvers such as GMRES and TFQMR [41, 42]. Since the cost of

applying M to any vector is O.RN log N /, the total cost of the iterative solver

is O.NI RN log N /, where NI is the number of iterations. The numerical results

in Section 3 demonstrate that NI is in practice very small, thus resulting in an

algorithm for almost linear complexity.

Theorem 2.3 shows that in the constant-coefficient case the hierarchical matrix

representation of Tm is accurate. Therefore, the preconditioner M well approxi-

mates the inverse of A, and the number of iterations NI is expected to be small. The

numerical results in Section 3 demonstrate that NI is also small for a general veloc-

ity field such as found in converging lenses, wave guides, and random media. Here

we provide a heuristic explanation for this phenomena. For the variable-coefficient

case, the numerical rank of the off-diagonal blocks of Tm can potentially increase

mainly due to the turning rays, i.e., the rays that leave the mth layer downward,

then travel horizontally in x1-direction, and finally come upward back to the mth

layer. The interactions related to turning rays are difficult to capture in the hier-

archical matrix representation of Tm if R is small. However, the iterative solver

addresses this interaction in several steps as follows: the downward part of the ray

is processed by a first few sweeps, the horizontal part is then captured by the Tm

matrix of the next sweep, and finally the upward part of the ray is processed by a

couple of extra sweeps.

In the presentation of the sweeping preconditioner, we choose the sweeping di-

rection to be in the positive x2-direction. It is clear that sweeping along either

one of the other three directions also gives a valid but slightly different sweep-

ing preconditioner. Due to the variations in the velocity field and, more precisely,
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FIGURE 2.5. Mixed boundary conditions. Left: Depth extrapolation

problem in seismology. Middle and right: Problems with a partly zero

Dirichlet boundary condition and nonzero f .x/.

the existence of the turning rays, a carefully selected sweeping direction can of-

ten result in a significantly smaller number of GMRES iterations than the other

directions. We will give one numerical example to demonstrate this in Section 3.

2.5 Other Boundary Conditions

So far, we have discussed the case with the Sommerfeld boundary condition

specified over the whole boundary. From the above discussion, it is clear that the

success of the preconditioner relies exclusively on the fact that Sm and Tm are

compressible. For many other boundary conditions, the matrices Sm and Tm also

have this property, as long as the Helmholtz problem is not close to resonance.

Here, we mention three representative cases.

In the first case (see Figure 2.5 (left)), the PML boundary condition at x2 D 1 is

replaced with a Dirichlet boundary condition u.x1; 1/ D b.x1/ and f is equal to

0. This problem is known as depth extrapolation [5, 35] in reflection seismology.

The proposed algorithm proceeds exactly the same way; the only modification is

that the boundary condition b.x1/ is transformed into an appropriate forcing term

at the last layer of unknowns (i.e., the index set Pn). We would like to mention

that in depth extrapolation the hierarchical matrix representation is used in [43] to

approximate 1D spectral projectors.

In the second case, the zero boundary condition is mixed with the PML condi-

tion. In Figure 2.5 (middle)) the zero Dirichlet boundary condition is specified on

x1 D 0 and x1 D 1. The matrix Tm then corresponds to the restriction (to an edge)

of the Green’s function of the discrete Helmholtz operator in a half-strip. By us-

ing the imaging method also in the x1-direction, one can show that the ranks of the

off-diagonal blocks are bounded by O.log !jlog "j2/ with a slightly larger constant

due to the mirror images. In Figure 2.5 (right)), the zero Dirichlet boundary condi-

tion is specified on x1 D 1 and x2 D 1; here Tm corresponds to the restriction of

the Green’s function of the discrete Helmholtz operator in a quadrant in this case.

Finally, the PML boundary condition is by no means the only approximation to

the Sommerfeld condition. As the essential requirement is that the problem should

not be close to resonance (i.e., a wave packet escapes the domain without spending
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too much time inside), the sweeping preconditioner should work with any rea-

sonable approximations to the Sommerfeld boundary condition such as absorbing

boundary conditions (ABCs) [14, 15] and damping/sponge layers. We focus on the

PML due to its simplicity, its low nonphysical reflections, and the symmetry of its

discrete system.

3 Numerical Results in 2D

In this section, we present several numerical examples to illustrate the properties

of the sweeping preconditioner described in Section 2. The implementation is

done in C++ and the results in this section are obtained on a computer with a 2.6-

GHz CPU. The GMRES method is used as the iterative solver with relative residue

tolerance set to 10�3.

3.1 PML

The numerical examples in this section have the PML boundary condition spec-

ified at all sides.

Dependence on !

First, we study how the sweeping preconditioner behaves when ! varies. Con-

sider three velocity fields in the domain .0; 1/2:

(1) a converging lens with a Gaussian profile at the center of the domain (see

Figure 3.1(a)),

(2) a vertical waveguide with a Gaussian cross section (see Figure 3.1(b)), and

(3) a random velocity field (see Figure 3.1(c)).

For each velocity field, we perform two tests with different external forces f .x/.

(1) f .x/ is a Gaussian point source located at .x1; x2/ D .0:5; 0:125/. The

response of this forcing term generates circular waves propagating at all

directions. Due to the variations of the velocity field, the circular waves

should bend, form caustics, and intersect.

(2) f .x/ is a Gaussian wave packet with a wavelength comparable to the typ-

ical wavelength of the Helmholtz equation. This packet is centered at

.x1; x2/ D .0:125; 0:125/ and points in the .1; 1/ direction. The response

of this forcing term generates a Gaussian beam initially pointing in the

.1; 1/ direction. Due to the variations of the velocity field, this Gaussian

beam should bend and scatter.

For each velocity field, we discretize with q D 8 points per wavelength and

perform calculations for !
2�
D 16; 32; : : : ; 256. Therefore, the number of points

for each dimension is n D 8 � !
2�
D 128; 256; : : : ; 2048. The strongly admissible

case is used in the implementation of the hierarchical matrix representation. Recall

that R is the rank of the off-diagonal blocks in the hierarchical matrix, and we fix

it to be a uniform constant 2. In all tests, the sweeping direction is bottom-up from

x2 D 0 to x2 D 1.
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FIGURE 3.1. Test velocity fields.

The results of the first velocity field are summarized in Table 3.1. Tsetup denotes

the time used to construct the preconditioner in seconds. For each external force,

Niter is the number of iterations of the preconditioned GMRES solver and Tsolve

is the solution time. When n doubles, N quadruples and the setup cost Tsetup in-

creases by a factor of 5 or 6, which is consistent with the O.N log2 N / complexity

of Algorithm 2.5. A remarkable feature of the sweeping preconditioner is that the

number of iterations is extremely small. In fact, in all cases, the preconditioned

GMRES solver converges in less than three iterations. As a result of the constant

iteration number, the solution time increases by a factor of 4 or 5 when N quadru-

ples, which is also consistent with the O.N log N / complexity of Algorithm 2.6.

Finally, we would like to point out that our algorithm is extremely efficient: for

a problem with N D n2 D 20482 unknowns, the solution time is only about 30

seconds.

The results of the second and third velocity fields are summarized in Tables 3.2

and 3.3, respectively. The behaviors of these tests are similar to that for the first

velocity field. In all cases, the GMRES solver converges in less than five iterations

when combined with the sweeping preconditioner.

Dependence on q

Next, we study how the sweeping preconditioner behaves when the number of

discretization points per wavelength q varies. We fix !
2�

at 32 and R at 2, and let

q be 8; 16; : : : ; 64. In the following tests, R is again equal to 2. The sweeping

direction is bottom-up from x2 D 0 to x2 D 1. The test results for the three ve-

locity fields are summarized in Tables 3.4, 3.5, and 3.6, respectively. These results

again show that the number of iterations remains extremely small and the overall

solution time scales roughly linearly with respect to the number of unknowns.

Dependence on Sweeping Direction

Finally, we study how the sweeping directions affect the convergence rate of the

GMRES algorithm. The velocity field is given by c.x1; x2/ D 1
2
C x2, and the ex-

ternal force is a a narrow Gaussian point source centered at .x1; x2/ D .0:125; 0:5/.
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Test 1 Test 2

!=.2�/ q N D n2 R Tsetup Niter Tsolve Niter Tsolve

16 8 1282 2 6.50e–01 2 5.00e–02 2 5.00e–02

32 8 2562 2 5.05e+00 2 2.50e–01 2 2.50e–01

64 8 5122 2 3.44e+01 3 1.45e+00 3 1.42e+00

128 8 10242 2 2.16e+02 3 7.37e+00 3 7.36e+00

256 8 20482 2 1.24e+03 3 3.31e+01 3 3.28e+01

TABLE 3.1. Results of velocity field 1 for different !. Top: Solutions

for two external forces with !
2�
D 64. Bottom: Results for different !.

Two sweeping directions are tested here: the first one sweeps in the positive x2-

direction while the second sweeps in the negative x2-direction. For the first sweep-

ing direction, the matrix Tm approximates the Green’s function of the lower half-

space .�1;1/ � .�1; mh/. Since the velocity field decreases in the negative

x2-direction, in a geometric optics argument the rays emanating from the x2 D mh

plane do not travel back to the same plane. Therefore, we expect the numerical rank

of the off-diagonal blocks of Tm to be low, the preconditioner to be quite accurate,

and the number of iterations to be small. The geometric theory of diffraction indi-

cates that the coupling between points on the plane x2 D mh is via exponentially

decaying creeping rays and thus very weak.

For the second sweeping direction, the matrix Tm approximates the Green’s

function of the upper half-space .�1;1/� .1�mh;1/. Since the velocity field

increases in the positive x2-direction, the rays emanating from x2 D 1 � mh can

shoot back to the same plane. As a result, the hierarchical matrix representation of

Tm would incur a larger error for the same R-value and the number of iterations

would become larger.

Table 3.7 reports the results of these two sweeping directions for different !-

values. As expected by the above argument, the number of iterations for the first

sweeping preconditioner (in the positive x2-direction) remains very small, while
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Test 1 Test 2

!=.2�/ q N D n2 R Tsetup Niter Tsolve Niter Tsolve

16 8 1282 2 6.70e–01 2 5.00e–02 2 6.00e–02

32 8 2562 2 4.97e+00 2 2.30e–01 2 2.30e–01

64 8 5122 2 3.43e+01 3 1.39e+00 3 1.39e+00

128 8 10242 2 2.13e+02 4 8.43e+00 4 8.38e+00

256 8 20482 2 1.25e+03 5 4.65e+01 4 3.93e+01

TABLE 3.2. Results of velocity field 2 for different !. Top: Solutions

for two external forces with !
2�
D 64. Bottom: Results for different !.

the number of iterations for the second one (in the negative x2-direction) increases

slightly with N .

3.2 Other Boundary Conditions

Here we report numerical examples with different boundary conditions.

Depth Extrapolation

In this example (see Figure 2.5 (left)), the velocity field is a vertical wave guide.

We specify a Dirichlet boundary condition u.x1; 1/ D b.x1/ at the top edge x2 D 1

and the PML at the other three edges. This is the depth extrapolation problem in

reflection seismology and we report the results of two tests:

(1) b.x1/ D 1. This corresponds to a plane wave entering the wave guide.

The center part of the plane wave should start to bend and eventually form

multiple caustics.

(2) b.x1/ D exp.i !
2

x1/. This corresponds to a slant wave entering the wave

guide.

The sweeping direction is bottom-up from x2 D 0 to x2 D 1; the results are

summarized in Table 3.8. The running time again closely follows the analytical

estimate, and the number of GMRES iterations are bounded by 4.
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Test 1 Test 2

!=.2�/ q N D n2 R Tsetup Niter Tsolve Niter Tsolve

16 8 1282 2 6.50e–01 2 5.00e–02 2 5.00e–02

32 8 2562 2 5.10e+00 2 2.50e–01 3 3.00e–01

64 8 5122 2 3.48e+01 3 1.49e+00 3 1.48e+00

128 8 10242 2 2.16e+02 4 8.99e+00 3 7.37e+00

256 8 20482 2 1.26e+03 5 4.64e+01 3 3.25e+01

TABLE 3.3. Results of velocity field 3 for different !. Top: Solutions

for two external forces with !
2�
D 64. Bottom: Results for different !.

Test 1 Test 2

!=.2�/ q N D n2 R Tsetup Niter Tsolve Niter Tsolve

32 8 2562 2 4.93e+00 2 2.30e–01 2 2.30e–01

32 16 5122 2 3.42e+01 2 1.11e+00 2 1.09e+00

32 32 10242 2 2.13e+02 2 5.45e+00 2 5.45e+00

32 64 20482 2 1.23e+03 2 2.50e+01 2 2.49e+01

TABLE 3.4. Results of velocity field 1 for different q.

Test 1 Test 2

!=.2�/ q N D n2 R Tsetup Niter Tsolve Niter Tsolve

32 8 2562 2 4.93e+00 2 2.30e–01 2 2.30e–01

32 16 5122 2 3.42e+01 2 1.11e+00 2 1.09e+00

32 32 10242 2 2.13e+02 2 5.45e+00 2 5.37e+00

32 64 20482 2 1.23e+03 2 2.50e+01 2 2.49e+01

TABLE 3.5. Results of velocity field 2 for different q.
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Test 1 Test 2

!=.2�/ q N D n2 R Tsetup Niter Tsolve Niter Tsolve

32 8 2562 2 5.13e+00 2 2.40e–01 3 3.10e–01

32 16 5122 2 3.47e+01 2 1.21e+00 2 1.20e+00

32 32 10242 2 2.14e+02 2 5.87e+00 2 5.84e+00

32 64 20482 2 1.23e+03 2 2.52e+01 2 2.51e+01

TABLE 3.6. Results of velocity field 3 for different q.
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Positive x2 Negative x2

!=.2�/ q N D n2 R Tsetup Niter Tsolve Niter Tsolve

16 8 1282 2 6.80e–01 1 4.00e–02 2 5.00e–02

32 8 2562 2 4.95e+00 2 2.50e–01 3 3.00e–01

64 8 5122 2 3.40e+01 2 1.13e+00 4 1.86e+00

128 8 10242 2 2.14e+02 2 5.82e+00 6 1.21e+01

256 8 20482 2 1.25e+03 2 2.64e+01 6 5.49e+01

TABLE 3.7. Results of the positive and negative x2 sweeping directions.

Top row: the velocity field (left) and the solution for the external force

(right). Bottom row: results for different !.

Mixed PML-Dirichlet Boundary Condition

Here the velocity field c.x/ is equal to the constant 1 and we perform two tests

with mixed boundary conditions.

(1) In the first test (see Figure 2.5 (middle)), we specify the zero Dirichlet

boundary condition at x1 D 0 and x1 D 1 and the PML condition at

the other two sides. The external force f .x/ is a Gaussian wave packet

with a wavelength comparable to the typical wavelength of the Helmholtz

equation. This packet centers at .x1; x2/ D .0:5; 0:125/ and points to
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Test 1 Test 2

!=.2�/ q N D n2 R Tsetup Niter Tsolve Niter Tsolve

16 8 1282 2 6.60e–01 2 4.00e–02 2 4.00e–02

32 8 2562 2 5.07e+00 3 3.20e–01 3 3.00e–01

64 8 5122 2 3.45e+01 3 1.48e+00 3 1.46e+00

128 8 10242 2 2.15e+02 3 7.29e+00 3 7.30e+00

256 8 20482 2 1.25e+03 4 3.92e+01 4 3.94e+01

TABLE 3.8. Results of the depth-stepping example for different !. Top:

Solutions for two test cases with !
2�
D 64. Bottom: Results for differ-

ent !.

the direction .cos.�=8/; sin.�=8//. The Gaussian beam generated by this

forcing term should bounce back from the edge x1 D 1 and then from the

edge x1 D 0.

(2) In the second test (see Figure 2.5 (right)), we specify the zero Dirichlet

boundary condition at x1 D 1 and x2 D 1 and the PML condition at

the other two sides. The external force f .x/ is a Gaussian wave packet

with a wavelength comparable to the typical wavelength of the Helmholtz

equation. This packet centers at .x1; x2/ D .0:5; 0:125/ and points to the

direction .1; 1/. The Gaussian beam generated by the external force should

bounce back from the edge x1 D 1 and then from the edge x2 D 1.

The sweeping direction is bottom-up from x2 D 0 to x2 D 1, and the results

of these tests are summarized in Table 3.9. The running time again follows the

analytical estimate. In the first test, due to the reason mentioned in Section 2.5, the

rank of the off-diagonal blocks of the Schur complement matrices is slightly higher.

Hence, with the same R-value the number of iterations is expected to increase

slightly. In all cases, the number of GMRES iterations is bounded by 10.
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Test 1 Test 2

!=.2�/ q N D n2 R Tsetup Niter Tsolve Niter Tsolve

16 8 1282 2 6.80e–01 2 5.00e–02 2 5.00e–02

32 8 2562 2 5.00e+00 3 3.10e–01 2 2.50e–01

64 8 5122 2 3.47e+01 6 2.70e+00 2 1.27e+00

128 8 10242 2 2.16e+02 9 1.80e+01 2 6.19e+00

256 8 20482 2 1.26e+03 10 8.52e+01 2 2.69e+01

TABLE 3.9. Results of the mixed boundary condition example for dif-

ferent !. Top: Solutions for two test cases with !
2�
D 64. Bottom:

Results for different !.

Absorbing Boundary Condition

In the last example, we replace the PML with the second-order absorbing bound-

ary condition (ABC). The velocity field c.x/ is taken to be 1, and we perform tests

with two different external forces, which are similar to the ones given at the begin-

ning of Section 3.1.

(1) The first external force f .x/ is a Gaussian point source located at .x1; x2/

D .0:5; 0:25/.

(2) The second external force f .x/ is a Gaussian wave packet with a wave-

length comparable to the typical wavelength of the Helmholtz equation.

This packet centers at .x1; x2/ D .0:25; 0:25/ and points in the direction

.1; 1/.

Notice that since the low-order ABCs generate more nonphysical reflections at the

domain boundaries, here we move the support of these external forces closer to the

center of the computational domain.

Due to the same nonphysical reflections, the discrete Green’s function associ-

ated with a low-order ABC often has off-diagonal blocks with higher numerical

ranks compared to the discrete Green’s function associated with the PML. As a

result, we let R increase slightly with !. The sweeping direction is bottom-up
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Test 1 Test 2

!=.2�/ q N D n2 R Tsetup Niter Tsolve Niter Tsolve

16 8 1282 2 6.70e–01 7 1.30e–01 6 1.50e–01

32 8 2562 2 4.98e+00 7 4.80e–01 6 4.30e–01

64 8 5122 3 5.10e+01 8 3.16e+00 6 2.42e+00

128 8 10242 4 4.65e+02 10 2.06e+01 6 1.33e+01

256 8 20482 5 3.84e+03 13 1.59e+01 6 8.49e+01

TABLE 3.10. Results of the absorbing boundary condition (ABC) test

for different !. Top: Solutions for two test cases with !=.2�/ D 64.

Bottom: Results for different !.

from x2 D 0 to x2 D 1, and the results are summarized in Table 3.10. The setup

time grows slightly higher than linear complexity due to the increase of R, and

the number of iterations increases roughly logarithmically with respect to !. In all

cases, the number of GMRES iterations is bounded by 13. Overall, the results for

the ABC are slightly worse than the ones for the PML, suggesting that, in order for

the sweeping preconditioner to work well, it is essential to minimize nonphysical

reflections at the domain boundary.

4 Preconditioner in 3D

4.1 Discretization

The computational domain is D D .0; 1/3. Using the same �.t/ introduced in

(2.1), we define

s1.x1/ D

�
1C i

�.x1/

!

��1

; s2.x2/ D

�
1C i

�.x2/

!

��1

;

s3.x3/ D

�
1C i

�.x3/

!

��1

:
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FIGURE 4.1. Left: Discretization grid in 3D. Right: Sweeping order in

3D. The remaining grid shows the unknowns yet to be processed.

The PML replaces @1 with s1.x1/@1, @2 with s2.x2/@2, and @3 with s3.x3/@3. This

effectively provides a damping layer of width � near the boundary of D D .0; 1/3.
The resulting equation is�

.s1@1/.s1@1/C .s2@2/.s2@2/C .s3@3/.s3@3/C
!2

c2.x/

�
u D f ; x 2 D D Œ0; 1�3;

u D 0; x 2 @D:

Without loss of generality, we assume that f .x/ is supported inside Œ�; 1 � ��3

(away from the PML). Dividing the above equation by s1s2s3 yields�
@1

�
s1

s2s3
@1

�
C @2

�
s2

s1s3
@2

�
C @3

�
s3

s1s2
@3

�
C

!2

s1s2s3c2.x/

�
u D f:

The domain Œ0; 1�3 is discretized with a Cartesian grid with spacing h D 1
nC1

,

where n is again assumed to be a power of 2. As we discretize the equation with

a few of points per wavelength, the number n of samples in each dimension is

proportional to !. The interior points of this grid are

P D fpi;j;k D .ih; jh; kh/ W 1 � i; j; k � ng

(see Figure 4.1 (left)), and the total number of points is equal to N D n3.

We denote by ui;j;k , fi;j;k , and ci;j;k the values of u.x/, f .x/, and c.x/ at

point pi;j;k D .ih; jh; kh/. Once we discretize the problem at points in P with

the seven-point central difference scheme, at pi;j;k D .ih; jh; kh/ the resulting

equation is

1

h2

�
s1

s2s3

�
i�

1

2
;j;k

ui�1;j;k C
1

h2

�
s1

s2s3

�
iC

1

2
;j;k

uiC1;j;k(4.1)

C
1

h2

�
s2

s1s3

�
i;j �

1

2
;k

ui;j �1;k C
1

h2

�
s2

s1s3

�
i;j C

1

2
;k

ui;j C1;k C
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C
1

h2

�
s3

s1s2

�
i;j;k�

1

2

ui;j;k�1 C
1

h2

�
s3

s1s2

�
i;j;j C

1

2

ui;j;kC1

C

�
!2

.s1s2s3/i;j;k � c
2
i;j;k

� .� � �/

�
ui;j;k D fi;j;k

with ui 0;j 0;k0 equal to 0 for .i 0; j 0; k0/ that violates 1 � i 0; j 0; k0 � n. Here .� � �/

stands for the sum of the six coefficients appearing in the first six terms. We order

ui;j;k by going through the dimensions in order and denote the vector containing

all unknowns by

u D .u1;1;1; u2;1;1; : : : ; un;1;1; : : : ; u1;n;n; u2;n;n; : : : ; un;n;n/T:

Similarly, the fi;j;k are ordered in the same way and the vector f is

f D .f1;1;1; f2;1;1; : : : ; fn;1;1; : : : ; f1;n;n; f2;n;n; : : : ; fn;n;n/T:

By denoting the linear operator in (4.1) by A, we obtain a linear system Au D f .

We further introduce a block version by defining Pm to be the indices in the mth

row

Pm D fp1;1;m; p2;1;m; : : : ; pn;n;mg

and introducing

um D .u1;1;m; u2;1;m; : : : ; un;n;m/T; fm D .f1;1;m; f2;1;m; : : : ; fn;n;m/T:

Then

u D .uT
1; uT

2; : : : ; uT
n/T; f D .f T

1 ; f T
2 ; : : : ; f T

n /T:

Using this notation, the system Au D f takes the following block tridiagonal

form: 0
BBBBBB@

A1;1 A1;2

A2;1 A2;2
: : :

: : :
: : :

: : :

: : :
: : : An�1;n

An;n�1 An;n

1
CCCCCCA

0
BBBBB@

u1

u2
:::
:::

un

1
CCCCCA D

0
BBBBB@

f1

f2
:::
:::

fn

1
CCCCCA

where each block Ai;j is of size n2�n2 and Am;m�1 D AT
m�1;m are diagonal ma-

trices. Similar to the 2D case, the sweeping factorization eliminates the unknowns

face by face, starting from the face next to x3 D 0 (illustrated in Figure 4.1 (right)).

The algorithms for constructing and applying the sweeping factorization are ex-

actly the same as Algorithms 2.1 and 2.2). The matrix Tm D S�1
m is the restriction

to x3 D mh of the discrete half-space Green’s function with zero boundary condi-

tion at x3 D .mC1/h. Recall that in the 2D case the off-diagonal blocks of Tm are

numerically low-rank. In the 3D case, the rank may be somewhat higher. On the

other hand, since we only aim at constructing a preconditioner for the Helmholtz

problem, it is still reasonable to introduce a hierarchical structure on the unknowns

on the face x3 D mh and use the hierarchical matrix framework to approximate

Tm and Sm.
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FIGURE 4.2. Hierarchical matrix representation. Left: hierarchical de-

composition of the index set J for each layer. Right: Induced partition-

ing of the matrix Tm in the strongly admissible case. Blocks in white are

stored in low-rank factorized form. Blocks in gray are stored densely.

4.2 Hierarchical Matrix Representation

At the mth layer for any fixed m, we build a hierarchical structure for the grid

points in Pm through bisections in both the x1- and x2-directions. At the top level

(level 0), we set

J 0
11 D Pm:

At level `, there are 2` � 2` index sets J `
ij with i; j D 1; : : : ; 2`:

J `
ij D fps;t;m W .i � 1/ � n=2` C 1 � s � i � n=2`; .j � 1/ � n=2` C 1 � t � j � n=2`g:

The bisection is stopped when each set J `
ij contains only a small number of indices.

Hence, the total number of levels L is equal to log2 n � O.1/. This hierarchical

partition is illustrated in Figure 4.2 (left).

We write G.J `
ij ; J `

i 0j 0/ (the restriction of a matrix G to J `
ij and J `

i 0j 0) as G`
ij;i 0j 0 .

The strongly admissible case is used here, and two index sets J `
ij and J `

i 0j 0 on the

same level ` are considered well separated from each other if max.ji � i 0j; jj �

j 0j/ > 1. Recall that the interaction list of J `
ij is the set of all index sets J `

i 0j 0 such

that J `
ij is well separated from J `

i 0j 0 but J `
ij ’s parent is not well separated from

J `
i 0j 0’s parent. When J `

ij and J `
i 0j 0 are well-separated from each other, the numeri-

cal rank of their interaction G`
ij;i 0j 0 is of order O.n=2`/. As the number of indices

in J `
ij and J `

i 0j 0 is equal to .n=2`/2, the numerical rank scales like the square root

of the number of indices in each set. Therefore, it is still favorable to store the

interaction G`
ij;i 0j 0 in a factorized form. In principle, the rank R of the factorized

form should scale like O.n=2`/. However, since the construction cost of the ap-

proximate sweeping factorization scales like O.R2n3 log2 n/ D O.R2N log2 N /,

following this scaling can be rather costly in practice. Instead, we choose R to be
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(a) (b) (c)

FIGURE 5.1. Test velocity fields. For each velocity field, the cross sec-

tions at x1 D 0:5, x2 D 0:5, and x3 D 0:5 are shown.

a rather small constant, since our goal is only to construct a preconditioner. An

illustration of this hierarchical representation is given in Figure 4.2 (right).

Once the details of the hierarchical matrix representation are determined, the

construction of the approximate LDLT factorization and the application of its in-

verse take the same form as Algorithms 2.5 and 2.6, respectively. The operator

M W f D .f T
1 ; f T

2 ; : : : ; f T
n /T ! u D .uT

1; uT
2; : : : ; uT

n/T

defined by Algorithm 2.6 is an approximate inverse and a good preconditioner of

the discrete Helmholtz operator A. Therefore, we solve the preconditioner system

MAu DMf

using GMRES or TFQMR. Since the cost of applying M to an arbitrary vector is

O.Rn3 log n/ D O.RN log N /, the total cost is

O.NI Rn3 log n/ D O.NI RN log N /;

where NI is the number of iterations. The numerical results in Section 5 demon-

strate that NI and R are in practice rather small.

5 Numerical Results in 3D

In this section, we present several numerical examples to illustrate the properties

of the sweeping preconditioner described in Section 4. We use the GMRES method

as the iterative solver with relative residue tolerance set to 10�3. The examples in

this section have the PML boundary condition specified at all sides.

We consider three velocity fields in the domain Œ0; 1�3:

(1) a converging lens with a Gaussian profile at the center of the domain (see

Figure 5.1(a)),

(2) a vertical waveguide with Gaussian cross section (see Figure 5.1(b)), and

(3) a random velocity field (see Figure 5.1(c)).

For each problem, we perform two tests with different external forces f .x/.
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(1) f .x/ is a Gaussian point source that is located at the point .x1; x2; x3/ D

.0:50; 0:50; 0:25/. The response of this forcing term generates spherical

waves propagating in all directions. Due to the variations of the velocity

field, the circular waves should bend and form caustics.

(2) f .x/ is a Gaussian wave packet whose wavelength is comparable to the

typical wavelength of the domain. This packet is centered at .x1; x2; x3/ D

.0:50; 0:25; 0:25/ and points in the direction .0; 1; 1/. The response of this

forcing term generates a Gaussian beam initially pointing in the direction

.0; 1; 1/.

For each velocity field, we discretize with q D 8 points per wavelength and

perform calculations for !
2�

equal to 5; 10; 20. Hence, in these tests the number of

points in each dimension is n D 40; 80; 160. Recall that R is the rank of the factor-

ized form of the hierarchical matrix representation. It is clear from the discussion

of Section 4.2 that the value of R should grow with ! (and n). Here, we choose

R D 2; 3; 4 for ! D 5; 10; 20, respectively. The sweeping direction is bottom-up

from x3 D 0 to x3 D 1.

The results of the first velocity field are reported in Table 5.1. The two plots

show the solutions of the two external forces on an .x0; x2/-plane near x1 D
1
2

.

Tsetup is the time used to construct the preconditioner in seconds, Niter is the number

of iterations of the preconditioned GMRES solver, and Tsolve is the solution time.

The analysis in Section 4.2 shows that the setup time scales like O.R2n3 log2 n/ D

O.R2N log2 N /. When ! grows from 5 to 20, since R increases from 2 to 4, Tsetup

increases by a factor of 20 times each time ! doubles. Though the setup cost grows

significantly faster than the linear scaling O.N /, it is still much better than the

O.N 2/ scaling of the multifrontal method. Notice that the number of iterations of

the sweeping preconditioner is extremely small. In fact, in all cases, the GMRES

solver converges in at most seven iterations. Finally, we would like to point out

that our algorithm is quite efficient once the preconditioner is constructed: for the

case with !
2�
D 20 with more than four million unknowns, the solution time is

only about three minutes.

The results of the second and the third velocity fields are reported in Tables 5.2

and 5.3, respectively. In all cases, the GMRES solver converges in at most five

iterations when combined with the sweeping preconditioner.

6 Conclusion and Future Work

In this paper, we have proposed a sweeping preconditioner for the iterative solu-

tion of variable-coefficient Helmholtz equations in two and three dimensions. The

construction of the preconditioner is based on an approximate block LDLT fac-

torization that eliminates the unknowns layer by layer starting from an absorbing
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Test 1 Test 2

!=.2�/ q N D n3 R Tsetup Niter Tsolve Niter Tsolve

5 8 403 2 8.99e+01 3 7.10e–01 3 7.20e–01

10 8 803 3 2.30e+03 7 1.87e+01 5 1.40e+01

20 8 1603 4 4.73e+04 6 1.90e+02 5 1.61e+02

TABLE 5.1. Results of velocity field 1 for different !. Top: Solutions

for two external forces with !
2�
D 20 on an .x0; x2/-plane near x1 D

0:5. Bottom: Results for different !.
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Test 1 Test 2

!=.2�/ q N D n3 R Tsetup Niter Tsolve Niter Tsolve

5 8 403 2 8.95e+01 3 7.10e–01 3 7.00e–01

10 8 803 3 2.35e+03 5 1.40e+01 3 9.38e+00

20 8 1603 4 4.73e+04 4 1.38e+02 4 1.34e+02

TABLE 5.2. Results of velocity field 2 for different !. Top: Solutions

for two external forces with !
2�
D 20 on an .x0; x2/-plane near x1 D

0:5. Bottom: Results for different !.
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Test 1 Test 2

!=.2�/ q N D n3 R Tsetup Niter Tsolve Niter Tsolve

5 8 403 2 9.00e+01 3 7.20e–01 3 7.20e–01

10 8 803 3 2.37e+03 4 1.22e+01 3 9.90e+00

20 8 1603 4 4.74e+04 4 1.37e+02 3 1.07e+02

TABLE 5.3. Results of velocity field 3 for different !. Top: Solutions

for two external forces with !
2�
D 20 on an .x0; x2/-plane near x1 D

0:5. Bottom: Results for different !.

layer. By representing and manipulating the intermediate Schur complement matri-

ces in the hierarchical matrix framework, we have obtained preconditioners with al-

most linear cost. Numerical examples demonstrate that, when combined with stan-

dard iterative solvers, these new preconditioners result in almost !-independent

iteration numbers.

Some questions remain open. First, in the 2D case, we have proved the com-

pressibility result under the constant-coefficient case. A natural question is to what

extent this is still true for a general velocity field.

The hierarchical matrix representation may not be very accurate for the Schur

complement matrices in 3D, since some high-rank off-diagonal blocks are stored in

a low-rank factorized form. Yet our algorithm works well with very small iteration

numbers. It is important to understand why this is the case and also to investi-

gate whether other matrix representations would be able to provide more accurate

approximations for Tm.

The memory space required by the sweeping preconditioners is linear with re-

spect to the number of unknowns. However, the prefactor is higher compared to

the shifted Laplacian preconditioners and the ILU preconditioners. Most of the

memory space is in fact used to store the diagonal part of Tm, which corresponds

to the local part of the half-space Green’s function. One improvement is to use the



732 B. ENGQUIST AND L. YING

asymptotic formula of the Green’s function to represent the local part of Tm analyt-

ically; this can eliminate the need for storing the diagonal part of the hierarchical

matrices.

The matrix representation used here is often referred to as the H 1 form of the

hierarchical matrix algebra. More efficient and sophisticated versions are the uni-

form H 1 form and the H 2 form. For our problem, Algorithm 2.5 requires the

matrices to be represented in the H 1 form since it uses the matrix inversion pro-

cedure. However, Algorithm 2.6 for applying the sweeping preconditioner can

potentially speed up dramatically when the H 2 form is used.

We have chosen the PML for the numerical implementation of the Sommerfeld

condition. Many other boundary conditions are available and commonly used. The

sweeping approach should work for these boundary conditions, as we have briefly

demonstrated for the second-order ABC. The design and implementation of these

other boundary conditions should minimize nonphysical reflections in order for the

sweeping preconditioner to perform well.

The second-order central difference scheme is used to discretize the Helmholtz

equation in this paper. We would like to investigate other more accurate stencils

and other types of discretizations such as h=p finite elements, spectral elements,

and discontinuous Galerkin methods.

Since high-frequency fields typically oscillate rapidly on a similar scale through-

out the computational domain, uniform grids are quite common. There are, how-

ever, situations where unstructured grids would be natural. The sweeping approach

and more general hierarchical matrix representations can also be used in this con-

text. The challenge here is to maintain compatibility between the matrix represen-

tation and the geometry as one sweeps through the computational domain. In a

second paper [19] another variant of sweeping preconditioning is presented, which

is more flexible with respect to unstructured and adaptive grids.

The sequential nature of the sweeping approach complicates parallelization of

the algorithm. One possibility is to use a parallel hierarchical matrix representation

for each layer, which would parallelize an inner part of the algorithm. Another

technique would leverage the idea of domain decomposition and use the sweeping

preconditioner within each subdomain. The subdomains should then be coupled

with absorbing boundary conditions.

The Helmholtz equation is only the simplest example of time-harmonic wave

equations. Other cases include various elasticity equations and Maxwell equations.

For these more complicated systems, multiple wave numbers coexist even for the

constant-coefficient case. The basic idea of the sweeping preconditioner should

apply but the details need to be worked out.
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