
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 41, No. 5, pp. A3182--A3201

SWITCHNET: A NEURAL NETWORK MODEL FOR FORWARD
AND INVERSE SCATTERING PROBLEMS\ast 
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Abstract. We propose a novel neural network architecture, SwitchNet, for solving wave equation
based inverse scattering problems via providing maps between the scatterers and the scattered field
(and vice versa). The main difficulty of using a neural network for this problem is that a scatterer has
a global impact on the scattered wave field, rendering a typical convolutional neural network with
local connections inapplicable. While it is possible to deal with such a problem using a fully connected
network, the number of parameters grows quadratically with the size of the input and output data.
By leveraging the inherent low-rank structure of the scattering problems and introducing a novel
switching layer with sparse connections, the SwitchNet architecture uses far fewer parameters and
facilitates the training process. Numerical experiments show promising accuracy in learning the
forward and inverse maps between the scatterers and the scattered wave field.
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1. Introduction. In this paper, we study the forward and inverse scattering
problems via the use of artificial neural networks (NNs). In order to simplify the
discussion, we focus on the time-harmonic acoustic scattering in two-dimensional
space. The inhomogeneous media scattering problem with a fixed frequency \omega is
modeled by the Helmholtz operator

(1) Lu :=

\biggl( 
 - \Delta  - \omega 2

c2(x)

\biggr) 
u,

where c(x) is the velocity field. In many settings, there exists a known background
velocity field c0(x) such that c(x) is identical to c0(x) except in a compact domain \Omega .
By introducing the scatterer \eta (x) compactly supported in \Omega ,

(2)
\omega 2

c(x)2
=

\omega 2

c0(x)2
+ \eta (x),

we can equivalently work with \eta (x) instead of c(x). Note that in this definition \eta (x)
scales quadratically with the frequency \omega . However, as \omega is assumed to be fixed
throughout this paper, this scaling does not affect any discussion below.

In many real-world applications, \eta (\cdot ) is unknown. The task of the inverse problem
is to recover \eta (\cdot ) based on some observation data d(\cdot ). The observation data d(\cdot ) is
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SWITCHNET: A NEURAL NETWORK FOR SCATTERING PROBLEM A3183

often a quantity derived from the Green's function G = L - 1 of the Helmholtz opera-
tor L and, therefore, it depends closely on \eta (\cdot ). This paper is an exploratory attempt
to construct efficient approximations to the forward map \eta \rightarrow d and the inverse map
d\rightarrow \eta using the modern tools from machine learning and artificial intelligence. Such
approximations are highly useful for the numerical solutions of the scattering prob-
lems: an efficient map \eta \rightarrow d provides an alternative to expensive partial differential
equation (PDE) solvers for the Helmholtz equation; an efficient map d \rightarrow \eta is more
valuable as it allows us to solve the inverse problem of determining the scatterers
from the scattering field, without going through the usual iterative process (readers
interested in the inversion problem are referred to [1, 4, 2] and the references therein).

In the last several years, deep NN has become the go-to method in computer
vision, image processing, speech recognition, and many other machine learning appli-
cations [21, 32, 15, 12]. More recently, methods based on NN have also been applied
to solving PDEs. Based on the way that the NN is used, these methods for solving
the PDE can be roughly separated into two different categories. For the methods in
the first category [19, 31, 6, 13, 17, 9], instead of specifying the solution space via the
choice of basis (as in finite element method or Fourier spectral method), NN is used
for representing the solution. Then an optimization problem, for example, a varia-
tional formulation, is solved in order to obtain the parameters of the NN and hence
the solution to the PDE. Similar to the use of an NN for regression and classification
purposes, the methods in the second category such as [26, 14, 16, 11] use an NN to
learn a map that goes from the coefficients in the PDE to the solution of the PDE.
As in machine learning, the architecture design of an NN for solving PDE usually
requires the incorporation of the knowledge from the PDE domain such that the NN
architecture is able to capture the behavior of the solution process.

This paper takes a deep learning approach to learn both the forward and inverse
maps. For the Helmholtz operator (1), we propose an NN architecture for determin-
ing the forward and inverse maps between the scatterer \eta (\cdot ) and the observation data
d(\cdot ) generated from the scatterer. Although this task looks similar to computer vision
problems such as image segmentation, denoising, and super-resolution where the map
between the two images has to be determined, the nature of the map in our prob-
lem is much more complicated. In many image processing tasks, the value of a pixel
at the output generally only depends on a neighborhood of that pixel at the input
layer. However, for the scattering problems, the input and output are often defined
on different domains and, due to wave propagation, each location of the scatterer can
influence every point of the scattered field. Therefore, the connectivity in the NN
has to be wired in a nonlocal fashion, rendering a typical NN with local connectivity
insufficient. This leads to the development of the proposed SwitchNet. The key idea
is the inclusion of a novel low-complexity switch layer that sends information between
all pairs of sites effectively, following the ideas from butterfly factorizations [24]. The
same factorization was used earlier in the architecture proposed [22], but the network
weights there are hard-coded and not trainable. We note that recently, U-net [30],
a convolutional NN, was been applied to solve the full waveform inversion problem
[33]. However, in [33], U-net is used to provide a map between a low-frequency input
field to a smooth output (by a suitable preprocessing on the high-frequency full wave-
form). Our approach directly provides mappings between the high-frequency wave-
form and the scatterers. Besides the inverse mapping, we are also able to obtain the
forward mapping.

The paper is organized as follows. In section 2, we discuss about some preliminary
results concerning the Helmholtz equation. In section 3, we study the so-called far field
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A3184 YUEHAW KHOO AND LEXING YING

pattern of the scattering problem, where the sources and receivers can be regarded as
placed at infinity. We propose SwitchNet to determine the maps between the far field
scattering pattern and the scatterer. In section 4, we turn to the setting of a seismic
imaging problem. In this problem, the sources and receivers are at a finite distance
but yet well separated from the scatterer.

2. Preliminary. The discussion of this paper shall focus on the two-dimensional
case. Here, we summarize the mathematical tools and notations used in this paper.
As mentioned above, the scatterer \eta (x) is compactly supported in a domain \Omega , whose
diameter is of O(1). For example, one can think of \Omega as the unit square centered at
the origin. In (1), the Helmholtz operator is defined on the whole space \BbbR 2 with the
radiative (Sommerfeld) boundary condition [8] specified at infinity. Since the scatterer
field \eta (x) is localized in \Omega , it is convenient to truncate the computation domain
to \Omega by imposing the perfectly matched layer [3] that approximates the radiative
boundary condition.

In a typical numerical solution of the Helmholtz operator, \Omega is discretized by a
Cartesian grid X \subset \Omega at the rate of a few points per wavelength. As a result, the
number of grid points N per dimension is proportional to the frequency \omega . We simply
use \{ x\} x\in X to denote the discretization points of this N \times N grid X. The Laplacian
operator  - \Delta in the Helmholtz operator is typically discretized with local numerical
schemes, such as the finite difference method [20]. Via this discretization, we can

consider the scatterer field \eta , discretized at the points in X, as a vector in \BbbR N2

and
the Helmholtz operator L as a matrix in \BbbC N2\times N2

.
Using the background velocity field c0(x), we first introduce the background

Helmholtz operator L0 =  - \Delta  - \omega 2/c20. With the help of L0, one can write L in
a perturbative way as

(3) L = L0  - E, E = diag(\eta ),

where E is viewed as a perturbation. By introducing the background Green's function

(4) G0 := L - 1
0 ,

one can write down a formal expansion for the Green's function G = L - 1 of the
\eta -dependent Helmholtz operator L:

G = (L0(I  - G0E)) - 1

\sim (I +G0E +G0EG0E + \cdot \cdot \cdot )G0

\sim G0 +G0EG0 +G0EG0EG0 + \cdot \cdot \cdot 
:= G0 +G1 +G2 + \cdot \cdot \cdot ,(5)

which is valid when the scatterer field \eta (x) is sufficiently small. The last line of the
above equation serves as the definition of the successive terms of the expansion (G1,
G2, and so on). As G0 can be computed from the knowledge of the background
velocity field c0(x), most data gathering processes (with appropriate postprocessing)
focus on the difference G - G0 = G1 +G2 + \cdot \cdot \cdot instead of G itself.

A usual experimental setup consists of a set of sources S and a set of receivers R:

S = \{ s\} s\in S , R = \{ r\} r\in R.

The data gathering process usually involves three steps: (1) impose an external force
or incoming wave field via some sources, (2) solve for the scattering field either com-
putationally or physically, (3) gather the data with receivers at specific locations or
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SWITCHNET: A NEURAL NETWORK FOR SCATTERING PROBLEM A3185

directions. The second step is modeled by the difference of the Green's function
G - G0, as we mentioned above. As for the other steps, it is convenient at this point
to model the first step with a source-dependent operator \Pi S and the third one with
a receiver-dependent operator \Pi R. We shall see later how these operators are defined
in more concrete settings. By putting these components together, one can set the
observation data d abstractly as

d = \Pi R(G - G0)\Pi S = \Pi R(G0EG0 +G0EG0EG0 + \cdot \cdot \cdot )\Pi S

= (\Pi RG0)(E + EG0E + \cdot \cdot \cdot )(G0\Pi S).(6)

In this paper, we focus on two scenarios: far field pattern and seismic imaging.
We start with far field pattern first to motivate and introduce SwitchNet. We then
move on to the seismic case by focusing on the main differences.

3. SwitchNet for far field pattern.

3.1. Problem setup. In this section, we consider the problem of determining
the map from the scatterer to the far field scattering pattern, along with its inverse
map. Without loss of generality, we assume that the diameter of the domain \Omega is of
O(1) after appropriate rescaling. The background velocity c0(x) is assumed to be 1
since the far field pattern experiments are mostly performed in free space.

In this problem, both the sources and the receivers are indexed by a set of unit
directions in \BbbS 1. The source associated with a unit direction s \in S \subset \BbbS 1 is an incoming
plane wave ei\omega s\cdot x pointing at direction s. It is well known that the scattered wave
field, denoted by us(x), at a large distance takes the following form [8]:

us(x) =
ei\omega | x| \sqrt{} 
| x| 

\biggl( 
u\infty 
s

\biggl( 
x

| x| 

\biggr) 
+ o(1)

\biggr) 
,

where the function u\infty 
s (\cdot ) is defined on the unit circle \BbbS 1. The receiver at direction

r \in R \subset \BbbS 1 simply records the quantity u\infty 
s (r) for each s. The set of observation data

d is then defined to be
d(rs) = u\infty 

s (r).

Figure 1 provides an illustration of this experimental setup. Henceforth, we assume
that both R and S are chosen to be a set of uniformly distributed directions on \BbbS 1.
Their size, denoted by M , typically scales linearly with frequency \omega .

This data gathering process can be put into the framework of (6). First, one
can think of the source prescription as a limiting process that produces in the limit

Fig. 1. Illustration of the incoming and outgoing waves for a far field pattern problem. The
scatterer \eta (x) is compactly supported in the domain \Omega . The incoming plane wave points at direction
s. The far field pattern is sampled at each receiver direction r.
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A3186 YUEHAW KHOO AND LEXING YING

the incoming wave ei\omega s\cdot x. The source can be considered to be located at the point
 - s\rho for the direction s \in \BbbS 1 with the distance \rho \in \BbbR + going to infinity. In order to
compensate for the geometric spreading of the wave field and also the phase shift, the
source magnitude is assumed to scale like

\surd 
\rho e - i\omega \rho as \rho goes to infinity. Under this

setup, we have

lim
\rho \rightarrow \infty 

(G0\Pi S)(x, s)

= lim
\rho \rightarrow \infty 

(1/
\surd 
\rho )ei\omega | x - ( - s\rho )| \surd \rho e - i\omega \rho 

= lim
\rho \rightarrow \infty 

(1/
\surd 
\rho )ei\omega (\rho +s\cdot x)\surd \rho e - i\omega \rho 

= ei\omega s\cdot x.(7)

Similarly, one can also regard the receiver prescription as a limiting process. The
receiver is located at point r\rho \prime for a fixed unit direction r \in \BbbS 1 with \rho \prime \in \BbbR + going to
infinity. Again in order to to compensate for the geometric spreading and the phase
shift, one scales the received signal with

\surd 
\rho \prime e - i\omega \rho \prime 

. As a result, we have

lim
\rho \prime \rightarrow \infty 

(\Pi RG0)(r, x)

= lim
\rho \prime \rightarrow \infty 

(1/
\sqrt{} 
\rho \prime )ei\omega | r\rho \prime  - x| 

\sqrt{} 
\rho \prime e - i\omega \rho \prime 

= lim
\rho \prime \rightarrow \infty 

(1/
\sqrt{} 
\rho \prime )ei\omega (\rho \prime  - r\cdot x)

\sqrt{} 
\rho \prime e - i\omega \rho \prime 

= e - i\omega r\cdot x.(8)

In this limiting setting, one redefines the observation data as

(9) d = lim
\rho ,\rho \prime \rightarrow \infty 

(\Pi RG0)(E + EG0E + \cdot \cdot \cdot )(G0\Pi S).

Now taking the two limits (7) and (8) under consideration, one arrives at the following
representation of the observation data d(r, s) for r \in R and s \in S:

(10) d(r, s) =
\sum 
x\in X

\sum 
y\in X

e - i\omega r\cdot x(E + EG0E + \cdot \cdot \cdot )(x, y)ei\omega s\cdot y.

3.2. Low-rank property. The intuition behind the proposed NN architecture
comes from examining (10) when E (or \eta ) is small. In such a situation, we simply
retain the term that is linear in E. Using the fact that E = diag(\eta ), (10) becomes

d(r, s) \approx 
\sum 
x\in X

ei\omega (s - r)\cdot x\eta (x)

for r \in R \subset \BbbS 1 and s \in S \subset \BbbS 1. This linear map takes \eta (x) defined on a Cartesian
grid X \subset \Omega to d(r, s) defined on yet another Cartesian grid R\times S \subset \BbbS 1\times \BbbS 1. Recalling
that both R and S are of size M and working with a vectorized d \in \BbbC M2

, we can
write the above equation compactly as

(11) d \approx A\eta ,

where the element of the matrix A \in \BbbC M2\times N2

at (r, s) \in R\times S and x \in X is given by

(12) A(rs, x) = exp(i\omega (s - r) \cdot x).
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SWITCHNET: A NEURAL NETWORK FOR SCATTERING PROBLEM A3187

Fig. 2. Illustration of the partitions used in Theorem 1. The fine grids stand for the Cartesian
grids X and R\times S. The bold lines are the boundary of the squares of the partitions.

The following theorem concerning the matrix A plays a key role in the design
of our NN. Let us first partition \Omega uniformly into

\surd 
PX \times 

\surd 
PX Cartesian squares of

side-length equal to 1/
\surd 
\omega . Here we assume that

\surd 
PX is an integer. Note that, since

the diameter of \Omega is of O(1),
\surd 
PX \approx 

\surd 
\omega . This naturally partitions the set of grid

points X into PX subgroups depending on which square each point belongs to. We
shall denote these subgroups by X0, . . . , XPX - 1. Similarly, we also partition \BbbS 1 \times \BbbS 1
uniformly (in the angular parameterization) into

\surd 
PD\times 

\surd 
PD squares D0, . . . , DPD - 1

of side-length equal to 1/
\surd 
\omega .
\surd 
PD is also assumed to be an integer, and obviously\surd 

PD \approx 
\surd 
\omega . This further partitions the set R \times S into PD subgroups depending on

which square they belong to. We shall denote these subgroups by D0, . . . , DPD - 1.
Figure 2 illustrates the partition for

\surd 
PX =

\surd 
PD = 4.

Claim 1. For any Di and Xj, the submatrix

(13) Aij := [A(rs, x)](r,s)\in Di,x\in Xj

is numerically low-rank.

Proof. The proof of this theorem follows the same line of argument in [5, 34, 23],
and below we outline the key idea. Denote the center of Di by (ri, si) and the center
of Xj by xj . For each (r, s) \in Di and x \in Xj , we write

(14) exp(i\omega (s - r) \cdot x) = exp(i\omega ((s - r) - (si  - ri)) \cdot (x - xj))\cdot 
exp(i\omega (si  - ri) \cdot x) \cdot exp(i\omega (s - r) \cdot xj) \cdot exp( - i\omega (si  - ri) \cdot xj).

Note that for fixed Di and Xj each of the last three terms is either a constant or
depends only on x or (r, s). As a result, exp(i\omega (s - r) \cdot x) is numerically low-rank if
and only if the first term exp(i\omega ((s - r) - (si  - ri)) \cdot (x - xj)) is so. Such a low-rank
property can be derived from the conditions concerning the side-lengths of Di and
Xj . More precisely, since (r, s) resides in Di with center (ri, si), then

(15) | (s - r) - (si  - ri)| \leq 
1\surd 
\omega 
.

Similarly, as x resides in Xj with center xj , then

(16) | x - xj | \leq 
1\surd 
\omega 
.

Multiplying these two estimates results in the estimate

(17) \omega | ((s - r) - (si  - ri)) \cdot (x - xj))| \leq 1
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A3188 YUEHAW KHOO AND LEXING YING

for the phase of exp(i\omega ((s - r) - (si  - ri)) \cdot (x - xj)). Therefore,

(18) exp(i\omega ((s - r) - (si  - ri)) \cdot (x - xj))

for (r, s) \in Di or x \in Xj is nonoscillatory and hence can be approximated effectively
by applying, for example, Chebyshev interpolation in both the (r, s) and x variables.
Since the degree of the Chebyshev polynomials only increases polylogarithmically with
respect to the desired accuracy, exp(i\omega ((s  - r)  - (si  - ri)) \cdot (x  - xj)) is numerically
low-rank by construction. This proves that the submatrix Aij defined in (13) is also
numerically low-rank.

3.3. Matrix factorization. In this subsection, we show that Theorem 1 guaran-
tees a low-complexity factorization of the matrix A. Let the row and column indices
of A \in \BbbC M2\times N2

be partitioned into index sets \{ Di\} PD - 1
i=0 and \{ Xj\} PX - 1

j=0 , respec-
tively, as in Theorem 1. To simplify the presentation, we assume PX = PD = P ,
| X0| = \cdot \cdot \cdot | XP - 1| = N2/P , and | D0| = \cdot \cdot \cdot = | DP - 1| = M2/P .

Since the submatrix
Aij := [A(rs, x)]rs\in Di,x\in Xj

is numerically low-rank, assume that

(19) Aij \approx UijV
\ast 
ij ,

where Uij \in \BbbC M2/P\times t and Vij \in \BbbC N2/P\times t. Here t can be taken to be the maximum
of the numerical ranks of all submatrices Aij . Theorem 1 implies that t is a small
constant.

By applying (19) to each block Aij , A can be approximated by

(20)

\left[     
U00V

\ast 
00 U01V

\ast 
01 \cdot \cdot \cdot U0(P - 1)V

\ast 
0(P - 1)

U10V
\ast 
10 U11V

\ast 
11 \cdot \cdot \cdot U1(P - 1)V

\ast 
1(P - 1)

...
. . .

...
U(P - 1)0V

\ast 
(P - 1)0 U(P - 1)1V

\ast 
(P - 1)1 \cdot \cdot \cdot U(P - 1)(P - 1)V

\ast 
(P - 1)(P - 1)

\right]     .

The next step is to write (20) into a factorized form. First, introduce Ui and Vj

(21)

Ui=
\bigl[ 
Ui0, Ui1, . . . , Ui(P - 1)

\bigr] 
\in \BbbC M2/P\times tP , Vj=

\bigl[ 
V0j , V1j , . . . , V(P - 1)j

\bigr] 
\in \BbbC N2/P\times tP ,

and define in addition
(22)

U=

\left[     
U0

U1

. . .

UP - 1

\right]     \in \BbbC M2\times P 2t, V \ast =

\left[     
V0

\ast 

V1
\ast 

. . .

VP - 1
\ast 

\right]     \in \BbbC P 2t\times N2

.

In addition, introduce

\Sigma =

\left[     
\Sigma 00 \Sigma 01 \cdot \cdot \cdot \Sigma 0(P - 1)

\Sigma 10 \Sigma 11 \cdot \cdot \cdot \Sigma 1(P - 1)

...
. . .

...
\Sigma (P - 1)0 \Sigma (P - 1)1 \cdot \cdot \cdot \Sigma (P - 1)(P - 1)

\right]     \in \BbbC P 2t\times P 2t,(23)D
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where the submatrix \Sigma ij \in \BbbC Pt\times Pt itself is a P \times P block matrix with blocks of size
t\times t. \Sigma ij is defined to be zero everywhere except at the (j, i)th t\times t block, which hosts
a t\times t identity matrix. In order to help understand the NN architecture discussed in
the sections below, it is imperative to understand the meaning of \Sigma . Let us assume for
simplicity that t = 1. Then for an arbitrary vector z \in \BbbC P 2

, \Sigma z essentially performs
a ``switch"" that shuffles z as follows:

(24) (\Sigma z)(jP + i) = z(iP + j), i, j = 0, . . . , P  - 1.

In other words, the ``switch"" \Sigma z amounts to reshaping z into a square matrix and
transposing the matrix, followed by a vectorization of that matrix.

With the above definitions for U , V , and \Sigma , the approximation in (20) can be
written compactly as

(25) A \approx U\Sigma V \ast .

Notice that although A has M2 \times N2 entries, using the factorization (25), A can be
stored using tP (M2 +P +N2) entries. In this paper, P \approx max(M,N) and M and N
are typically on the same order. Therefore, instead of O(N4), one only needs O(N3)
entries to parameterize the map A approximately using (25). Such a factorization is
also used in [24] for the compression of Fourier integral operators.

We would like to comment on another property that may lead to further reduction
in the parameters used for approximating A. Let us focus on any two submatrices
Aij and Aik of A. For two regions Xj and Xk, where the center of Xj and Xk are
xj and xk, respectively, Xk = Xj + (xk  - xj). Let (r, s) \in Di. For x \in Xj and
x\prime = x+ (xk  - xj) \in Xk, we have

exp(i\omega (s - r) \cdot x) = g1(r, s)h((r, s), x),
exp(i\omega (s - r) \cdot x\prime ) = g2(r, s)h((r, s), x),(26)

where

g1(r, s) = exp(i\omega (s - r) \cdot xj), g2(r, s) = exp(i\omega (s - r) \cdot xk),

h((r, s), x) = exp(i\omega (s - r) \cdot (x - xj)).(27)

Therefore, the low-rank factorizations of Aij and Aik are solely determined by the
factorization of h(rs, x). This implies that it is possible to construct low-rank factor-
izations for Aij and Aik,

(28) Aij \approx UijV
\ast 
ij , Aik \approx UikV

\ast 
ik

such that V \ast 
ij = V \ast 

ik. Since this is true for all possible j, k, one can pick low-rank
factorizations so that V0 = V1 = \cdot \cdot \cdot = VP - 1.

As a final remark in this section, this low-complexity factorization (25) for A can
be easily converted to one for A\ast since

(29) A\ast \approx V \Sigma \ast U\ast ,

where U,\Sigma , V are provided in (21), (22), and (23).

3.4. Neural networks. Based on the low-rank property of A in section 3.2 and
its low-complexity factorization in section 3.3, we propose new NN architectures for
representing the inverse map d\rightarrow \eta and the forward map \eta \rightarrow d.
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A3190 YUEHAW KHOO AND LEXING YING

3.4.1. NN for the inverse map \bfitd \rightarrow \bfiteta . As pointed out earlier, d \approx A\eta when
\eta is sufficiently small. The usual filtered back-projection algorithm [28] solves the
inverse problem d\rightarrow \eta via

(30) \eta \approx (A\ast A+ \epsilon I) - 1A\ast d,

where \epsilon is the regularization parameter. In the far field pattern problem, (A\ast A+\epsilon I) - 1

can be understood as a deconvolution operator. To see this, a direct calculation reveals
that

(A\ast A)(x, y) =
\sum 

rs\in R\times S

ei\omega (s - r)\cdot ye - i\omega (s - r)x =
\sum 

rs\in R\times S

e - i\omega (s - r)(x - y)(31)

for x, y \in X. (31) shows that A\ast A is a translation-invariant convolution operator.
Therefore, the operator (A\ast A+\epsilon I) - 1, as a regularized inverse of A\ast A, simply performs
a deconvolution. In summary, the above discussion shows that in order to obtain \eta 
from the scattering pattern d in the regime of small \eta , one simply needs to apply
sequentially to d

\bullet the operator A\ast ,
\bullet a translation-invariant filter that performs the deconvolution (A\ast A+ \epsilon I) - 1.

Although these two steps might be sufficient when \eta is small, a nonlinear solution
is needed when \eta is not so. For this purpose, we propose a nonlinear NN SwitchNet
for the inverse map. There are two key ingredients in the design of SwitchNet.

\bullet The first key step is the inclusion of a Switch layer that sends local in-
formation globally, as depicted in Figure 4. The structure of the Switch

layer is designed to mimic the matrix-vector multiplication of the operator
A\ast \approx V \Sigma \ast U\ast in (20). However, unlike the fixed coefficients in (20), as an
NN layer, the Switch layer allows for tunable coefficients and learns the right
values for the coefficients from the training data. This gives the architecture
a great deal of flexibility.

\bullet The second key step is to replace the linear deconvolution in the back-
projection algorithm with a few convolution (Conv) layers with nonlinearities.
This enriches the architecture with nonlinear capabilities when approximat-
ing the nonlinear inverse map. We use multiple layers since this enables us to
aggregate information from a larger window, in case the kernel (A\ast A+ \epsilon I) - 1

is rather global.

Algorithm 1. SwitchNet for the inverse map d\rightarrow \eta of far field pattern.

Require: t, PD, PX , N,w, \alpha , L, d \in \BbbC M\times M

Ensure: \eta \in \BbbC N\times N

1: d1 \leftarrow Vect[PD](d)
2: d2 \leftarrow Switch[t, PD, PX , N2](d1)
3: e0 \leftarrow Square[PX ](d2)
4: for \ell from 0 to L - 1 do
5: \~e\ell +1 \leftarrow Conv[w,\alpha ](e\ell )
6: e\ell +1 \leftarrow ReLU(\~e\ell +1)
7: end for
8: \eta \leftarrow Conv[w, 1](eL)
9: return \eta 
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SWITCHNET: A NEURAL NETWORK FOR SCATTERING PROBLEM A3191

The pseudocode for SwitchNet is summarized in Algorithm 1. The input d is
a \BbbC M\times M matrix, while the output \eta is a \BbbC N\times N matrix. The first three steps of
Algorithm 1 mimic the application of the operator A\ast \approx V \Sigma \ast U\ast . The Switch layer
does most of the work, while the Vect and Square layers are simply operations that
reshape the input and output data to the correct matrix form at the beginning and the
end of the Switch layer. In particular, Vect groups the entries of the two-dimensional
field d according to squares defined by the partition D0, . . . , DPD - 1, and Square does
the opposite. The remaining lines of Algorithm 1 simply apply the Conv layers with
window size w and channel number \alpha .

These basic building blocks of SwitchNet are detailed in the following subsection.
We also take the opportunity to include the details of the pointwise multiplication PM

layer that will be used in later on.

3.4.2. Layers for SwitchNet. In this section we provide the details for the
layers that are used in SwitchNet. Henceforth, we assume that the entries of a tensor
are enumerated in the Python convention, i.e., going through the dimensions from the
last one to the first. One operation that will be used often is a reshape, in which a
tensor is changed to a different shape with the same number of entries and with the
enumeration order of the entries kept unchanged.

Fig. 3. An illustration of the Vect and Square layers. Detailed descriptions of the layers are
provided in section 3.4.2. For the purpose of illustration we let P = 4. The Vect layer vectorizes a
4\times 4 matrix on the left-hand side, according to the partitioning by 2\times 2 blocks, to give the size 16
vector on the right-hand side. The Square layer is simply the adjoint map of the Vect layer.

Vectorize layer (Figure 3). zO = Vect[P ](zI) with input zI \in \BbbC n\times n. Hence-
forth we assume that

\surd 
P is an integer and

\surd 
P divides n. This operation partitions

zI into
\surd 
P \times 

\surd 
P square sub-blocks of equal size. Then each sub-block is vectorized,

and the vectorized sub-blocks are stacked together as a vector in \BbbC n2

. Intuitively,
these operations cluster the nearby entries in a sub-block together. The details of the
Vect layer are given in the following:

\bullet Reshape the zI to a
\surd 
P \times n\surd 

P
\times 
\surd 
P \times n\surd 

P
tensor.

\bullet Swap the second and the third dimensions to get a
\surd 
P \times 

\surd 
P \times n\surd 

P
\times n\surd 

P
tensor.

\bullet Reshape the result to an n2 vector and set it to zO.
Square layer (Figure 3). zO = Square[P ](zI) with input zI \in \BbbC n2

, where
\surd 
P

is an integer. The output is zO \in \BbbR n\times n. Essentially, as the adjoint operator of the
Vect layer, this layer fills up each square sub-block of the matrix zO with a segment
of entries in zI. The details are given as follows:
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A3192 YUEHAW KHOO AND LEXING YING

\bullet Reshape the zI to a
\surd 
P \times 

\surd 
P \times n\surd 

P
\times n\surd 

P
tensor.

\bullet Swap the second and the third dimensions to get a
\surd 
P \times n\surd 

P
\times 
\surd 
P \times n\surd 

P
tensor.

\bullet Reshape the result to an n\times n matrix and set it to zO.

. . . . 

. . . . 

. . . . 

!!

"#
"$ "%

"&

'(

)&
*&

)#

)#
*#

)&

Fig. 4. An illustration of the Switch layer; the detailed description of it is provided in section
3.4.2. For the purpose of illustration we let nI = nO = 20, PI = PO = 4.

Switch layer (Figure 4). zO = Switch[t, PI, PO, nO](zI) with input zI \in \BbbC nI .
It is assumed that nI and nO are integer multiples of PI and PO, respectively. This
layer consists the following steps.

\bullet Apply UT to zI:

z1 = UT zI \in \BbbC POPIt,

UT =

\left[   U
T
0

. . .

UT
PI - 1

\right]   , UT
0 , . . . , UT

PI - 1 \in \BbbC tPO\times nI
PI .

\bullet Reshape z1 to be a \BbbC PO\times PI\times t tensor. Here we follow the Python convention
of going through the dimensions from the last one to the first one. Then a
permutation is applied to swap the first two dimensions to obtain a tensor of
size \BbbC PO\times PI\times t. Finally, the result is reshaped to a vector z2 \in \BbbC PIPOt, again
going through the dimensions from the last to the first.

\bullet Apply V to z2:

zO = V z2 \in \BbbR nO ,

V =

\left[   V0

. . .

VPO - 1

\right]   , V0, . . . , VPO - 1 \in \BbbC 
nO
PO

\times tPI .

Here the nonzero entries of U, V are the trainable parameters. The Switch

layer is illustrated in Figure 4.
Convolution layer. zO = Conv[w, cO](zI) with input zI = \BbbC n\times n\times cI . Here cI, cO

denote the input and output channel numbers and w denotes the window size. In this
paper we only use the convolution layer with stride 1 and with zero padding:
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SWITCHNET: A NEURAL NETWORK FOR SCATTERING PROBLEM A3193

zO(k1, k2, k3) =

min(n - 1,k1+
w - 1

2 )\sum 
l1=max(0,k1 - w - 1

2 )

min(n - 1,k2+
w - 1

2 )\sum 
l2=max(0,k2 - w - 1

2 )

cI - 1\sum 
l3=0

W

\biggl( 
l1  - k1 +

w  - 1

2
, l2  - k2 +

w  - 1

2
, l3, k3

\biggr) 
zI(l1, l2, l3) + b(k3)(32)

with k1, k2 = 0, . . . , n  - 1, k3 = 0, . . . , cO  - 1. Here w is assumed to be odd in the
presentation. Both W \in \BbbC w\times w\times cI\times cO and b \in \BbbC cO are trainable parameters.

ReLU layer. zO = ReLU(zI) with input zI = \BbbC n\times n\times c where ReLU(zI) =
max(0, zI) pointwise.

Pointwise multiplication layer. zO = PM(zI) with input zI \in \BbbC n\times n\times cI . It is
defined as

(33) zO(k1, k2) = W (k1, k2)zI(k1, k2) + b(k1, k2),

k1, k2 = 0, . . . , n - 1. Both W \in \BbbC n\times n and b \in \BbbC n\times n are trainable parameters.
We remark that, among these layers, the Switch layer has the most parameters.

If the input and output to the Switch layer both have size n \times n, the number of
parameter is 2tPn2, where P is the number of squares that partition the input field
and t is the rank of the low-rank approximation.

3.4.3. NN for the forward map \bfiteta \rightarrow \bfitd . We move on to discuss the parame-
terization of the forward map \eta \rightarrow d. The proposal is based on the simple observation
that the inverse of the inverse map is the forward map.

More precisely, we simply reverse the architecture of the inverse map proposed in
Algorithm 1. This results in an NN presented Algorithm 2. The basic architecture of
this NN involves applying a few layers of Conv first, followed by a Switch layer that
mimics A \approx U\Sigma V \ast .

Algorithm 2. SwitchNet for the forward map \eta \rightarrow d of far field pattern.

Require: t, PD, PX ,M,w, \alpha , L, \eta \in \BbbR N\times N

Ensure: d \in \BbbR M\times M\times 2

1: \eta 0 \leftarrow \eta 
2: for \ell from 0 to L - 1 do
3: \~\eta \ell +1 \leftarrow Conv[w,\alpha ](\eta \ell )
4: \eta \ell +1 \leftarrow ReLU(\~\eta \ell +1)
5: end for
6: d1 \leftarrow Conv[w, 1](\eta L)
7: d2 \leftarrow Vect[PX ](d1)
8: d3 \leftarrow Switch[t, PX , PD,M2](d2)
9: d\leftarrow Square[PD](d3)

10: return d

We would also like to mention yet another possibility to parameterize the forward
map \eta \rightarrow d via a recurrent NN [27]. Let

(34) Eeff = E + EG0E + EG0EG0E + \cdot \cdot \cdot =: E1 + E2 + E3 + \cdot \cdot \cdot .

One can leverage the following recursion,

(35) Ek+1 = EG0Ek, k = 1, 2, . . .K,
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A3194 YUEHAW KHOO AND LEXING YING

to approximate Eeff by treating each Ek as an N2 \times N2 image and using a recur-
rent NN. At the kth level of the recurrent NN, it takes Ek and E as inputs and
outputs Ek+1. More specifically, in order to go from Ek to Ek+1, one first apply G0

to each column of the image Ek; then each row of the image is reweighted by the
diagonal matrix E. Stopping at the Kth level for a sufficiently large K, Eeff can be
approximated by

(36) Eeff \approx 
K+1\sum 
i=1

Ei.

Once holding such an approximation to Eeff , we plug it into (10):

(37) d(r, s) =
\sum 
x\in X

\sum 
y\in X

ei\omega r\cdot xEeff(x, y)e
 - i\omega s\cdot y =

\sum 
x\in X

ei\omega r\cdot x

\left(  \sum 
y\in X

Eeff(x, y)e
 - i\omega s\cdot y

\right)  .

This shows that the map from Eeff to d can be realized by applying a matrix product
to Eeff first on the y-dimension, then on the x-dimension. If we view applying the
Green's function G0 as applying a convolution layer in an NN, the above discussion
shows that the forward map can be obtained by first applying a recurrent NN followed
by a convolutional NN. The main drawback of this approach is the large memory
requirement (i.e., N2 \times N2) to store each individual Ek. In addition, the use of a
recurrent NN may lead to difficulty in training [29] due to the issue of exploding
or vanishing gradient. Moreover, since the weights for parameterizing G0 are shared
over multiple layers in the recurrent NN, one might not be able to efficiently use back-
propagation, which may lead to a longer training time. These are the main reasons
why we decided to adopt the approach in Algorithm 2.

3.5. Numerical results. In this section, we present numerical results of Switch-
Net for far field pattern at a frequency \omega \approx 60. The scatterer field \eta (x) supported in
\Omega = [ - 0.5, 0.5]2 is assumed to be a mixture of Gaussians:

(38)

ns\sum 
i=1

\beta exp

\biggl( 
 - | x - ci| 2

2\sigma 2

\biggr) 
where \beta = 0.2 and \sigma = 0.015. When preparing the training and testing examples,
the centers \{ ci\} ns

i=1 of the Gaussians are chosen to be uniformly distributed within \Omega .
The number ns of the Gaussians in the mixture is set to vary between 2 and 4. In
the numerical experiments, the domain \Omega = [ - 0.5, 0.5]2 is discretized by an 80 \times 80
Cartesian grid X. To discretize the source and receiver directions, we set both R and
S to be a set of 80 equally spaced unit directions on \BbbS 1. Therefore, in this example,
N = M = 80.

In Algorithm 1, the parameters are specified as t = 3 (rank of the low-rank
approximation), PX = 82, PD = 42, w = 10 (window size of the convolution layers),
\alpha = 18 (channel number of the convolution layers), and L = 3 (number of convolution
layers), resulting in 3100K number of parameters. The parameters for Algorithm 2
are chosen to be t = 4, PX = 82, PD = 42, w = 10, \alpha = 24, and L = 3, with a total
of 4200K parameters. Note that for both algorithms the number of parameters is
significantly less than those of a fully connected NN, which has at least 804 = 40960K
parameters.

SwitchNet is trained with the ADAM optimizer [18] in Keras [7] with a step size
of 0.002 and a mini-batch size of size 200. The optimization is run for 2500 epochs.
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Both the training and testing data sets are obtained by numerically solving the forward
scattering problem with an accurate finite difference scheme with a perfectly matched
layer. In the experiment, 12.5K pairs of (\eta , d) are used for training, and another 12.5K
pairs are reserved for testing. The errors are reported using the mean relative errors

(39)
1

Ntest

Ntest\sum 
i=1

\| dNN
i  - di\| F
\| di\| F

,
1

Ntest

Ntest\sum 
i=1

\| \eta NN
i  - \eta i\| F
\| \eta i\| F

,

where dNN
i and di denote the predicted and ground truth scattering patterns, respec-

tively, for the ith testing sample, and \eta NN
i and \eta i denote the predicted and ground

truth scatterer field, respectively. Here \| \cdot \| F is the Frobenius norm.
Table 1 summarizes the test errors for Gaussian mixtures with different choices

of ns. For the purpose of illustration, we show the predicted d and \eta by SwitchNet
along with the ground truth in Figure 5 for one typical test sample.

Table 1
Prediction error of SwitchNet for the maps \eta \rightarrow d and d \rightarrow \eta for far field pattern.

ns Forward map Inverse map

2 9.4e-03 1.2e-02
3 4.0e-02 1.4e-02
4 4.8e-02 2.4e-02

(a) Ground truth scattering pattern d. (b) Predicted scattering pattern dNN.

(c) Ground truth scatterers \eta = \omega 2(1/c2  - 
1/c20).

(d) Predicted scatterers \eta NN.

Fig. 5. Results for a typical instance of the far field pattern problem with ns = 4. (a) The
ground truth scattering pattern. (b) The scattering pattern predicted by SwitchNet with a 4.9e-02
relative error. (c) The ground truth scatterers. (d) The scatterers predicted by SwitchNet with a
2.4e-02 relative error.
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A3196 YUEHAW KHOO AND LEXING YING

Fig. 6. Illustration of a simple seismic imaging setting. The sources (S) and receivers (R) are
located near the surface level (top) of the domain \Omega . The scatterer field \eta (x) is assumed to be well
separated from the sources and the receivers.

4. SwitchNet for seismic imaging.

4.1. Problem setup. This section considers a two-dimensional model problem
for seismic imaging. The scatterer \eta (x) is again assumed to be supported in a domain
\Omega with an O(1) diameter, after appropriate rescaling. \Omega is discretized with a Cartesian
grid X = \{ x\} x\in X at the rate of at least a few points per wavelength. Compared to
the source and receiver configurations in section 3.1, the experiment setup here is
simpler. One can regard both S = \{ s\} s\in S and R = \{ r\} r\in R to be equal to a set of
uniformly sampled points along a horizontal line near the top surface of the domain.
The support of \eta is at a certain distance below the top surface so that it is well
separated from the sources and the receivers (see Figure 6 for an illustration of this
configuration).

The source and receiver operators in (6) take a particularly simple form. For the
sources, the operator (G0\Pi S) is simply given by sampling:

(G0\Pi S)(x, s) = G0(x, s).

Similarly for the receivers, the operator (\Pi T
RG0) is given by

(\Pi RG0)(r, y) = G0(r, y).

After plugging these two formulas back into (6), one arrives at the following repre-
sentation of the observation data d(r, s) for r \in R and s \in S:

d(r, s) =
\sum 
x\in X

\sum 
y\in X

G0(r, x)(E + EG0E + \cdot \cdot \cdot )(x, y)G0(y, s).

4.2. Low-rank property. Following the approach taken in section 3.2, we start
with the linear approximation under the assumption that \eta (x) is weak. Since E =
diag(\eta ), the first-order approximation is

(40) d(r, s) \approx 
\sum 
x\in X

G0(r, x)G0(x, s)\eta (x).
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By regarding \eta as a vector in \BbbR N2

and d as a vector \in \BbbC M2

, one obtains the linear
system

(41) d \approx A\eta , A \in \BbbC M2\times N2

,

where the element A at (r, s) \in R\times S and x \in X is given by

(42) A(rs, x) = G0(r, x)G0(x, s) = G0(r, x)G0(s, x).

Under the assumptions that the sources S and receivers R are well separated from
the support of \eta (x) and that c0(x) varies smoothly, the matrix A satisfies a low-rank
property similar to Theorem 1. To see this, we again partition X into Cartesian
squares X0, . . . , XPX - 1 of side-length equal to 1/

\surd 
\omega . Since R = S is now the restric-

tion ofX on the surface level, this partition also induces a partitioning forR\times S. When
c0(x) varies smoothly, it is shown (see, for example, [10]) that the restriction of the
matrix [G0(r, x)]r\in R,x\in X (or [G0(s, x)]s\in S,x\in X) to each piece of the partitioning is nu-
merically low-rank. Since the matrix A is obtained by taking the Khatri--Rao product
[25] of [G0(r, x)]r\in R,x\in X , [G0(s, x)]s\in S,x\in X , the low-rank property is preserved with
the guarantee that the rank at most squares in the worst case.

By following the same argument in section 3.3, one can show that the matrix A
has a low-complexity matrix factorization A \approx U\Sigma V \ast of exactly the same structure
as (20). The corresponding factorization for A\ast is A\ast \approx V \Sigma \ast U\ast .

4.3. Neural networks. Based on the low-rank property in section 4.2, we pro-
pose here SwitchNet for seismic imaging.

4.3.1. NN for the inverse map \bfitd \rightarrow \bfiteta . When the linear approximation is
valid (i.e., (41) holds), \eta can be obtained from d via a filtered projection approach
(called migration in the seismic community),

(43) \eta \approx (A\ast A+ \epsilon I) - 1A\ast d,

where \epsilon I is a regularizing term. Since A\ast has a low-complexity factorization A\ast \approx 
V \Sigma \ast U\ast , the application A\ast to a vector can be represented by a Switch layer.

Concerning the (A\ast A+ \epsilon I) - 1 term, note that

(44) (A\ast A)(x, y) \approx 
\sum 

rs\in R\times S

G0(x, r)G0(x, s)G0(r, y)G0(s, y),

which, unlike (31), is no longer a translation-invariant kernel as the data gathering
setup is not so. For example, even when the background velocity c0(x) = 1, the
different terms of the Green's function G0(\cdot ) in (44) scale like

1\sqrt{} 
| x - r| 

,
1\sqrt{} 
| x - s| 

,
1\sqrt{} 
| y  - r| 

,
1\sqrt{} 
| x - s| 

,

which fail to give a translation-invariant kernel of form K(x - y). As a direct conse-
quence, the operator (A\ast A+ \epsilon I) - 1 is not translation-invariant either.

In order to capture the loss of translation invariance, we include an extra pointwise
multiplication layer PM (defined in section 3.4.2) when dealing with the inverse map.
The pseudocode of the NN for the inverse map is given in Algorithm 3.
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Algorithm 3. SwitchNet for the inverse map d\rightarrow \eta of seismic imaging.

Require: t, PD, PX , N,w, \alpha , L, d \in \BbbC M\times M

Ensure: \eta \in \BbbR N\times N

1: d1 \leftarrow Vect[PD](d)
2: d2 \leftarrow Switch[t, PD, PX , N2](d1)
3: e0 \leftarrow Square[PX ](d2)
4: for \ell from 0 to L - 1 do
5: \~e\ell +1 \leftarrow Conv[w,\alpha ](e\ell )
6: e\ell +1 \leftarrow ReLU(\~e\ell +1)
7: end for
8: \eta \leftarrow Conv[w, 1](eL)
9: \eta \leftarrow PM(\eta )

10: return \eta 

Algorithm 4. SwitchNet for the forward map \eta \rightarrow d of seismic imaging.

Require: t, PD, PX ,M,w, \alpha , L, \eta \in \BbbC N\times N

Ensure: d \in \BbbC M\times M

1: \eta 0 \leftarrow PM(\eta )
2: for \ell from 0 to L - 1 do
3: \~\eta \ell +1 \leftarrow Conv[w,\alpha ](\eta \ell )
4: \eta \ell +1 \leftarrow ReLU(\~\eta \ell +1)
5: end for
6: d1 \leftarrow Conv[w, 1](\eta L)
7: d2 \leftarrow Vect[PX ](d1)
8: d3 \leftarrow Switch[t, PX , PD,M2](d2).
9: d\leftarrow Square[PD](d3)

10: return d

4.3.2. NN for the forward map \bfiteta \rightarrow \bfitd . As in section 3.4.3, for the forward
map from \eta \rightarrow d, we simply reverse the architecture of the NN for the inverse map
in Algorithm 3. For completeness we detail its structure in Algorithm 4. The main
difference between Algorithm 2 and Algorithm 4 is again the inclusion of an extra
pointwise multiplication layer.

4.4. Numerical results. In the numerical experiments, we set \Omega = [ - 0.5, 0.5]2
and discretize it by a 64\times 64 Cartesian grid. As mentioned before, the sources S and
the receivers R are located on a line near the top surface of \Omega , similar to the setting in
Figure 6. This line is discretized uniformly with M = 80 points. Therefore, the size
of \eta and d are 64\times 64 and 80\times 80, respectively. We assume a Gaussian mixture model
for \eta as in (38), where \beta = 0.2, \sigma = 0.015. Unlike before, the centers \{ ci\} ns

i=1 are kept
away from the top surface of \Omega in order to ensure that they are well separated from
the sources and receivers.

In Algorithm 3 and Algorithm 4, the parameters are set to be t = 3, PX = 82,
PD = 42, N = 64, M = 80, w = 8, \alpha = 18, and L = 3, resulting in NNs with 2900K
parameters. The procedure of training the NNs is the same as the one used in section
3.5. Table 2 presents the test errors for this model problem. The predicted and the
ground truth d, \eta are visually compared in Figure 7 for one typical test sample.
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Table 2
Prediction error of SwitchNet for the maps \eta \rightarrow d and d \rightarrow \eta for seismic imaging.

ns Forward map Inverse map

2 5.6e-02 2.1e-02
3 7.7e-02 2.2e-02
4 8.0e-02 5.1e-02

(a) Ground truth scattering pattern d. (b) Predicted scattering pattern dNN.

(c) Ground truth scatterers \eta = \omega 2(1/c2  - 
1/c20).

(d) Predicted scatterers \eta NN.

Fig. 7. Results for a typical instance of the seismic imaging setting with ns = 4. (a) The
ground truth scattering pattern. (b) The scattering pattern predicted by SwitchNet with a 7.7e-02
relative error. (c) The ground truth scatterers. (d) The scatterers predicted by SwitchNet with a
6.9e-02 relative error.

5. Discussion. In this paper, we introduce an NN, SwitchNet, for approximat-
ing forward and inverse maps arising from the time-harmonic wave equation. For
these maps, local information at the input has a global impact at the output; there-
fore, they generally require the use of a fully connected NN in order to parameterize
them. Based on certain low-rank property that arises in the linearized operators, we
are able to replace a fully connected NN with the sparse SwitchNet, thus reducing
complexity dramatically. Furthermore, unlike convolutional NNs with local filters, the
proposed SwitchNet connects the input layer with the output layer globally. This en-
ables us to represent a highly oscillatory wave field resulting from scattering problems
and to solve for the associated inverse problems.
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