
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE MODEL. SIMUL. c© 2017 Society for Industrial and Applied Mathematics
Vol. 15, No. 4, pp. 1423–1447

TENSOR NETWORK SKELETONIZATION∗

LEXING YING†

Abstract. We introduce a new coarse-graining algorithm, tensor network skeletonization, for
the numerical computation of tensor networks. This approach utilizes a structure-preserving skele-
tonization procedure to remove short-range entanglements effectively at every scale. This approach
is first presented in the setting of a two-dimensional (2D) statistical Ising model and is then extended
to higher-dimensional tensor networks and disordered systems. When applied to the Euclidean path
integral formulation, this approach also gives rise to new efficient representations of the ground states
for 1D and 2D quantum Ising models.
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1. Introduction. This paper is concerned with the numerical computation of
tensor networks (see [9] for a good introduction of tensor networks). Tensor networks
have received a lot of attention in computational statistical mechanics and quantum
mechanics as they offer a convenient and effective framework for representing essential
quantities.

For example, in classical statistical mechanics, the partition functions are defined
as a sum of discrete terms, where the number of terms typically grows exponentially
with the number of degrees of freedom. For systems with local Hamiltonians, the
tensor networks are able to represent the partition functions with a complexity that
grows linearly with the number of the degrees of freedom.

In many quantum many-body systems (especially those with gapped local Hamil-
tonians), the low energy eigenstates satisfy the area-law, i.e., the entanglement entropy
of a part of the system tends to scale linearly with the size of the boundary of the
part rather than its volume. These area-law states form an exponentially small part
of the high-dimensional Hilbert space. Tensor networks (e.g., density matrix renor-
malization group [16, 12, 11], matrix product states (MPS) [10], projected entangled
pair states [13]), which are designed to target these area-law states, have been used
extensively in variational optimizations for these low energy states. In addition, recent
work has shown that, through the Euclidean path integral formulations, the ground
and thermal states of systems with local Hamiltonians can be well approximated by
tensor networks.

1.1. Definition. A tensor network is associated with a triple (V,E, {T i}i∈V ).
Here, the following hold:

• V is a set of vertices where the degree of the vertex i ∈ V is denoted as di.
• E is a set of edges where edge e ∈ E is associated with an integer called

bond dimension χe. As we shall see, the bond dimension determines the
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1424 LEXING YING

dimensions of the tensors to be defined at the vertices. Here we allow an edge
to be linked with either two or one vertice. An edge linked with two vertices
is called interior, while an edge with only one vertex is called boundary. As
a result, the edge set E is the disjoint union E = EI ∪ EB , where EI is the
set of the interior edges and EB is the set of the boundary edges.

• For each vertex i ∈ V , T i is a tensor of order di, or in short a di-tensor, where
di is the degree of i. Each of the di directions of T i is associated with one
of the adjacent edges of vertex i and the dimension of this direction is equal
to the bond dimension of the associated edge. For example, if the adjacent
edges are denoted by e1, e2, . . . , ep with p = di, then T i is a tensor of size
χe1 × χe2 × . . .× χep .

Once the triple (V,E, {T i}i∈V ) is specified, the tensor network represents a tensor
that is obtained via contracting all interior edges in EI . The result is an |EB |-tensor,
denoted as

(1) trEI

(⊗
i∈V

T i

)
.

When the set of boundary edges EB is empty, the tensor network contracts to a
scalar. The main goal of this paper is to compute (1) in an accurate and efficient way.
Throughout the paper, we follow the following notational conventions:

• The lowercase letters i and j are used to denote vertices in V .
• The lowercase letters a, b, c, d, e, and f are used to denote the edges in E.
• The uppercase letters T , U , and V are used to denote tensors.

The framework of tensor networks is a powerful tool since mathematically it offers
efficient representations for high-dimensional functions or probability distributions
with certain underlying geometric structures. As an example, let us consider the
two-dimensional (2D) statistical Ising model on a periodic square lattice. The vertex
set V consists of the lattice points of an n × n Cartesian grid and N = n × n is
the number of vertices. The edge set E consists of the edges between horizontal and
vertical neighbors, defined using the periodic boundary condition (see Figure 1(a)).
Here |E| = 2N , EI = E, and EB = ∅.

At temperature T , the partition function ZN (β) for the inverse temperature β =
1/T is given by

Fig. 1. Representing the partition function ZN (β) of 2D statistical Ising model using a tensor
network. (a) The vertices and edges of the tensor network. (b) The 2-tensor S associated with
each edge. (c) Introducing S1/2 splits S into the product of two 2-tensors. (d) Contracting the four
2-tensors adjacent to a vertex i forms the 4-tensor T i.
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TENSOR NETWORK SKELETONIZATION 1425

ZN (β) =
∑
σ

e−βHN (σ), HN (σ) = −
∑

(ij)∈E

σiσj ,

where σ = (σ1, . . . , σN ) stands for a spin configuration at N vertices with σi = ±1
and the sum of σ is taken over all 2N configurations. Here (ij) denotes the edge
between two adjacent vertices i and j and the sum in HN (σ) is over these 2N edges.

In order to write ZN (β) in the form of a tensor network, one approach is to
introduce a 2× 2 matrix S

S =
(
eβ e−β

e−β eβ

)
,

which is the multiplicative term in ZN (β) associated with an edge between two ad-
jacent vertices. The partition function ZN (β) is built from the S matrices over all
edges in E (see Figure 1(b)). Since S is a symmetric matrix, its symmetric square
root S1/2 is well defined with the following elementwise identity:

Sij =
∑
a

S
1/2
ia S

1/2
aj ,

where a denotes the edge that connects i and j (see Figure 1(c)). Here and throughout
the paper, the lowercase letters (e.g., i, j, and k) for denoting a vertex in V are also
used for the running index associated with that vertex. The same applies to the edges:
the lowercase letters (e.g., e and f) for denoting an edge in E are also used as the
running index associated with that edge.

At each vertex i, one can then introduce a 4-tensor T i

(2) T iabcd =
∑
i

S
1/2
ia S

1/2
ib S

1/2
ic S

1/2
id ,

which essentially contracts the four S1/2 tensors adjacent to the vertex i (see Figure
1(c)). Finally, the partition function ZN (β) can be written as

ZN (β) = trE

(⊗
i∈V

T i

)
(see Figure 1(d)).

1.2. Previous work. One of the main computational tasks is to evaluate tensor
networks (1) accurately and efficiently. When the boundary edge set EB is empty,
this amounts to computing the scalar given by (1). In the general case, this means
approximating an initial tensor network with a more compact one (typically with a
small number of vertices and edges as well as with smaller bond dimensions). Naive
tensor contractions following the definition (1) are computationally prohibitive as the
bond dimensions can scale exponentially with the number of vertices. Therefore,
the key is to keep the bond dimensions low while maintaining good approximation
accuracy.

In recent years, there has been a lot of work devoted to efficient algorithms for
evaluating tensor networks. In [7], Levin and Nave introduced the tensor renormal-
ization group (TRG) as probably the first practical algorithm for this task. When
applied to the 2D statistical Ising models, this method utilizes an alternating sequence
of tensor contractions and singular value decompositions. However, one problem with
TRG is the accumulation of so-called short-range entanglement, which increases the
bond dimensions and computational costs dramatically as the method proceeds. The
concept of short-range entanglement is not precisely defined in the physics literature
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1426 LEXING YING

and for the purpose of this paper we talk about short-range entanglements associated
with a local part of the tensor network. The existence of such short-range entangle-
ment refers to the situation that the tensors in a local tensor network can be replaced
with simplified tensors (with smaller dimensions) without affecting significantly the
numerical values of the tensor represented by the local tensor network.

In a series of papers [18, 17, 21], Xiang and others introduced the higher order
tensor renormalization group (HOTRG) as an extension of TRG to address 3D clas-
sical spin systems. The same group has also introduced the second renormalization
group (SRG) based on the idea of approximating the environment of a local tensor
before performing reductions. Though SRG typically gives more accurate results,
the computation time of SRG tends to grow significantly with the size of the local
environment.

In [5], Gu and Wen introduced the method of tensor entanglement filtering renor-
malization (TEFR) as an improvement of TRG for 2D systems. Compared with TRG,
this method makes an extra effort in removing short-range entanglements and hence
produces more accurate and efficient computation.

Recently in [3, 4], Evenbly and Vidal proposed the tensor network renormalization
(TNR). The key step of TNR is to apply the so-called disentanglers to remove short-
range entanglement. These disentanglers appeared earlier in the work of the multiscale
entanglement renormalization ansatz (MERA) [15]. For a fixed bond dimension, TNR
gives significantly more accurate results compared to TRG at the cost of increasing
the computational complexity. However, at this point it is not clear how to extend
the approach of TNR to systems in higher dimensions.

More recently in [20], Yang, Gu, and Wen proposed the loop tensor network
renormalization (Loop-TNR), which improves on TEFR by removing short-range en-
tanglement more efficiently using well-developed variational MPS routines. While
producing results similar to the ones of TNR in [3], this algorithm is more efficient,
partly due to the leverage of these efficient MPS algorithms.

1.3. Contribution and outline. These recent developments have significantly
improved the efficiency and accuracy of the computation of tensor networks. From
a computational point of view, it would be great to have a general framework that
allow for extensions to

• tensor networks of 3D and 4D systems and
• systems that are not translationally invariant, such as disordered systems.

Building on top of the previous work in the physics literature, we introduce a new
coarse-graining approach, called the tensor network skeletonization (TNSK), as a first
step toward building such a general framework. At the heart of this approach is a new
procedure called the structure-preserving skeletonization, which removes short-range
entanglement efficiently while maintaining the structure of a local tensor network.
This allows us to generalize TNSK quite straightforwardly to spin systems of higher
dimensions. In addition, we also provide a simple and efficient algorithm for perform-
ing the structure-preserving skeletonization. This allows for applying TNSK efficiently
to systems that are not translationally invariant.

The rest of this paper is organized as follows. Section 2 summarizes the basic
tools used by the usual tensor network algorithms. Section 3 is the main part of
the paper and explains TNSK for 2D statistical Ising model. Section 4 extends the
algorithm to the 3D statistical Ising model. Section 5 discusses how to build efficient
representations of the ground states of 1D and 2D quantum Ising models using TNSK.
Finally, section 6 discusses some future work.
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TENSOR NETWORK SKELETONIZATION 1427

2. Basic tools.

2.1. Local replacement. The basic building blocks of all tensor network al-
gorithms are local replacements. Suppose that vertex V and edge set E of a tensor
network (V,E, {T i}i∈V ) are partitioned as follows:

V = V1 ∪ V2, E = E1 ∪ E2 ∪ E12,

where E1 and E2 are the sets of interior edges of V1 and V2, respectively, and E12 is
the set of edges that link across V1 and V2. Such a partition immediately gives an
identity

(3) trE

(⊗
i∈V

T i

)
= trE2∪E12

((⊗
i∈V2

T i

)⊗
trE1

(⊗
i∈V1

T i

))
.

Assume now that there exists another tensor network B for which the following ap-
proximation holds:

B ≈ trE1

(⊗
i∈V1

T i

)
(see Figure 2(a)). Typically B is much simpler in terms of the number of the vertices
and/or the bond dimensions of the edges. In most situations, the above approximation
refers to the Frobenius norm.

A local replacement refers to replacing trE1

(⊗
i∈V1

T i
)

in (3) with B to get a
simplified approximation

trE

(⊗
i∈V

T i

)
≈ trE2∪E12

((⊗
i∈V2

T i

)⊗
B

)

(see Figure 2(b)). Most algorithms for tensor networks apply different types of local
replacements successively until the tensor network is simplified to a scalar or left with
only boundary edges.

The simplest instance of local replacement is the tensor contraction and it simply
combines two adjacent tensors into a single one. As an example, let P be a 2-tensor

Fig. 2. Local replacement. (a) Part of the tensor network associated with vertices in V1
is approximated by a simplified tensor network B. (b) Locally replacing V1 with B results in a
approximation of the whole tensor network.
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1428 LEXING YING

adjacent to edges a and c and Q be another 2-tensor adjacent to edges c and b (see
Figure 3(a)). The resulting 2-tensor T obtained from contracting P and Q is simply
the product of P and Q, i.e.,

Tab =
∑
c

PacQcb

(see Figure 3(a)). Often when the contraction is applied, the edges a and b often come
from grouping a set of multiple edges.

A second instance is called the projection. Typically it is carried out by performing
a singular value decomposition of T followed by thresholding small singular values,
i.e.,

T ≈ USV T, Tab ≈
∑
cd

UacScdVbd

(see Figure 3(b)). Here U and V are both orthogonal matrices and S is a diagonal
matrix. Due to the truncation of small singular values, the bond dimensions at edges
c and d can be significantly smaller compared to those of a and b. Throughout this
paper, each orthogonal matrix shall be denoted by a diamond in the figures. As
with the contraction, each of the indices a and b often comes from grouping a set of
multiple edges. The SVD-based projection can also be modified slightly to give a few
equivalent forms (see Figure 3(b))

T ≈ UUTT, Tab ≈
∑
ce

UacUecTeb,

T ≈ UR, R = UTT, Tab ≈
∑
c

UacRcb.

In the rest of this paper, we refer to the first one as the UUTT -projection and the
second one as the UR-projection. In Figure 3 and the following figures, we choose
to omit the transpose sign since it can be inferred from the bond dimensions of the
adjacent edges. In addition, the transpose fails to make sense when we start working
with tensors with order greater than two.

Another instance of local replacements uses the disentanglers introduced in [15],
which are specially designed isometries (unitary operators) obtained through opti-
mization in order to isolate or remove short-range entanglements. These disentan-
glers play a key role in the work of TNR [3] as mentioned above. Since the TNSK

Fig. 3. Instances of local replacements. (a) Contraction. (b) Projection. (c) Loop skeletonization.
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TENSOR NETWORK SKELETONIZATION 1429

approach of this paper does not depend on the disentanglers, we refer to [3, 14, 2] for
more detailed discussions of them.

2.2. Loop skeletonization. At the center of the TNSK approach is a new type
of local replacement called the loop skeletonization. The overall goal is to reduce the
bond dimensions of the interior edges of a loopy local tensor network without changing
its topology. Let us consider a 3-tensor T with two of its directions marked with a
same edge e (and thus to be contracted). The loop skeletonization seeks two 2-tensors
X and Y (see Figure 3(c)) such that

(4) tre T ≈ trabc(X ⊗ T ⊗ Y ),
∑
e

Teef ≈
∑
abc

XacTabfYbc,

where the bond dimension χc of edge c should be significantly smaller compared to
χe of edge e. This is possible because there might exist short-range entanglements
within the loop that can be removed from the viewpoint of the exterior of this local
tensor network.

A convenient reformulation of the problem is to view T as a χe×χe matrix where
each entry Tab is a χf -dimensional vector and view X and Y as matrices. Then one
can rewrite the condition in (4) as

(5) tre T ≈ trc(XTTY ),

where the products between X, T , and Y are understood as matrix multiplications.
The approximation accuracy depends on the bond dimension χc where a larger value
of χc implies smaller approximation error.

As far as we know, there does not exist a simple and robust numerical linear
algebra routine that solves this approximation problem directly. Instead, we propose
to solve the following regularized optimization problem:

(6) min
X,Y
‖ tre T − trc(XTTY )‖22 + α(‖X‖2F + ‖Y ‖2F ),

where α is the regularization parameter. The value of α is chosen to balance the
magnitude of X and Y with the approximation error. In the numerical tests in this
paper, α is set to be order of 10−10.

Though this optimization problem is nonconvex, it can be solved effectively in
practice using the alternating least square algorithm once a good initial guess is avail-
able. More precisely, given a initial guess for X(0) and Y (0), one alternates the fol-
lowing two steps for n = 0, 1, . . . until convergence:

X(n+1) = argminX ‖ tre T − trc(XTTY (n))‖22 + α‖X‖2F ,
Y (n+1) = argminY ‖ tre T − trc((X(n+1))TTY )‖22 + α‖Y ‖2F .

Since each of the two steps is a least square problem in X or Y , they can be solved
efficiently with standard numerical linear algebra routines. Being a nonconvex ap-
proach, the performance of the algorithm depends significantly on the initial guess.
The following approach for choosing the initial guess works well when the tensor T is
symmetric or near symmetric in the directions associated with edge a and b:

• First, reshape T to be a matrix of size χf × χ2
e (notice χa = χb = χe).

Compute its singular value decomposition and extract the right top singular
vector (of length χ2

e).
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1430 LEXING YING

• Second, reshape the top singular vector to a χe × χe matrix. Compute now
its singular value decomposition.

• Finally, set both X and Y to be the χe × χc matrix that consists of the first
χc left singular vectors.

Our numerical experience shows that, when starting from this initial guess, the alter-
nating least square algorithm converges after a small number of iterations to nearly
optimal solutions.

The most computationally intensive steps are the assembly and solution of the
least square problems within each iteration. The assembly of the least square problem
takes O

(
χf (χeχc)2

)
steps, while the solution costs O

(
(χeχc)3

)
steps. Therefore, the

overall cost is of order O
(
χf (χeχc)2 + (χeχc)3

)
.

Other types of regularization or convex relaxation can also be used instead. In
this paper, we choose to use the Frobenius norm regularization as in (6) due to its
simplicity and efficiency (under well-chosen initial conditions).

3. TNSK for 2D statistical Ising models. We start with a 2D statistical
Ising model on an n× n lattice with the periodic boundary condition. Following the
discussion in section 1, we set the vertex set V0 to be an n× n Cartesian grid. Each
vertex i is identified with a tuple (i1, i2) with i1, i2 ∈ [n] = {0, 1, . . . , n − 1}. The
edge set E0 consists of the edges between horizontal and vertical neighbors of the
Cartesian grid modulus periodicity. This setup also gives rise to an n × n array of
plaquettes, each consisting of four vertices. For a plaquette with vertex i = (i1, i2)
at its lower-left corner, we shall index this plaquette with i = (i1, i2) as well. Here
N = n2 is the total number of spins and we assume without loss of generality that
n = 2L. The four tensors at the corner of each plaquette naturally form a local tensor
network, which will play a key role in the algorithms described below.

3.1. Partition function. Following the discussion in section 1, the partition
function ZN (β) can be represented using a tensor network (V 0, E0, {T i}i∈V0), where
T i are given in (2). Let χ be a predetermined upper bound for the bond dimension of
the edges of the tensor network. One can assume without loss of generality that the
bond dimension χe for the edge e ∈ E0 is close to this constant χ. When χ is signifi-
cantly larger than 2, this can be achieved by contracting each 2× 2 neighborhood of
tensors into a single tensor. For example, when χ = 4, one round of such contractions
brings χe = χ = 4.

3.1.1. Algorithm. The TNSK algorithm consists of a sequence of coarse-graining
iterations. At the beginning of the `th iteration, one holds a tensor network (V `, E`,
{T i}i∈V`

) at level ` with (n/2`)× (n/2`) vertices.
With the exception of the 0th iteration, we require the following iteration invari-

ance to hold at the beginning of each iteration:
• For each plaquette with index equal to (0, 0) or (1, 1) modulus 2, the short-

range entanglement within this plaquette has already been eliminated (see
Figure 4(a)).

Here the short-range entanglement within a plaquette refers to the part of its local
tensor network that can be eliminated without any boundary edge. Therefore from
the viewpoint of the boundary edges of the plaquette’s local tensor network, this
short-range entanglement is invisible. Thus it can and should be eliminated in order
to keep bond dimensions small.

In what follows, we refer to the plaquettes with index equal to (0, 0) modulus
2 as (0, 0)2 plaquettes and similarly those with index equal to (1, 1) modulus 2 as
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TENSOR NETWORK SKELETONIZATION 1431

Fig. 4. A single iteration of the tensor network skeletonization algorithm. The starting point
is a tensor network with bond dimension χ and short-range entanglement removed in the (0, 0)2 and
(1, 1)2 plaquettes. The final result is a coarse-grained tensor network with 1/4 of the vertices (or
tensors). This coarse-grained tensor network also has bond dimensions equal to χ with short-range
entanglement removed in the (larger) (0, 0)2 and (1, 1)2 plaquettes. The bold lines stand for edges
with bond dimensions equal to O(χ2).

(1, 1)2 plaquettes. In Figure 4(a), the dotted circles denote the existence of short-
range entanglement. Notice that these circles do not appear in the (0, 0)2 plaquettes
and (1, 1)2 plaquettes.

The `th iteration consists of the following steps:
1. Merge the tensors at the four vertices of each (0, 0)2 plaquette into a single

tensor (see Figure 4(b)). This requires a couple of contractions defined in
section 2. The (1, 1)2 plaquettes are stretched and this results in a new graph
that contains only 1/4 of the vertices. The tensors at the new vertices are
identical but the bond dimension of the new edges is equal to χ2 (shown
using the bold lines). Since these (1, 1)2 plaquettes at level ` do not contain
short-range entanglement at level `, no short-range entanglement of level `
will survive at level `+ 1. However, there are new short-range entanglement
of level `+ 1 in the tensor network and these are marked with larger dotted
circles inside the new plaquettes at level `+1. The key task for the rest of the
iteration is to remove part of these short-range entanglements at level ` + 1
and reduce the bond dimension from χ2 back to χ at the same time.

2. For each vertex i in Figure 4(b), denote the tensor at i by T iabcd, where a, b,
c, and d refer to the left, right, bottom, and top edges. Apply two UUTT -
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1432 LEXING YING

projections to T iabcd. Here the first projection is with the left edge versus the
rest edges and the second one is with the bottom edge versus the rest. These
two projections effectively insert two orthogonal (diamond) matrices in each
edge (see Figure 4(c)). Most TRG algorithms utilize this step to reduce the
bond dimension directly from χ2 back to χ, thus incurring a significant error.
Here, however, the bond dimension after the projection is kept close to χ2.
This introduces a much smaller truncation error as compared to the TRG
algorithms.

3. At each vertex i in Figure 4(c), merge the tensor T iabcd with its four adjacent
orthogonal (diamond) matrices (see Figure 4(d)). Though the tensor network
obtained after this step has the same topology as the one in Figure 4(b), the
bond dimension is somewhat reduced (less than χ2 but still on the same or-
der). Another key point is that these two recent steps effectively provide a
unitary gauge transformation for the degrees of freedoms associated with the
edges. Such a unitary transformation in a certain sense diagonalizes the inter-
action between the two tensors sharing an edge, thus making it relatively easy
to choose a good initial condition for the structure-preserving skeletonization
described in section 3.1.2.

4. For each (1, 1)2 plaquette in Figure 4(d), apply the UR-projection to the 4-
tensor at each of its corners. Here the two edges adjacent to the plaquette
are grouped together. Notice that the (round) R tensors are placed close to
the (1, 1)2 plaquette, while the (diamond) U tensors are placed away from it.
Though this projection step does not reduce bond dimensions, it allows us to
isolate each (1, 1)2 plaquette. The resulting graph is given in Figure 4(e).

5. In this key step, remove the short-range entanglement within each (1, 1)2 pla-
quette. The details of this procedure will be provided below in section 3.1.2.
The resulting (1, 1)2 plaquette has its short-range entanglement removed and
the bond dimensions of its four surrounding edges are reduced from χ2 back
to χ (see Figure 4(f)).

6. For each (1, 1)2 plaquette, contract back the UR-projections at each of its
four corners. Notice that, due to the previous step, the new R tensors have
bond dimensions equal to χ. The resulting tensor network (see Figure 4(g))
is similar to the one in Figure 4(d) but now the short-range entanglements in
the (1, 1)2 plaquettes are all removed.

7. Now repeat the previous three steps to the (0, 0)2 plaquettes. This is illus-
trated in Figure 4(h), (i), and (j). The resulting tensor network now has
short-range entanglement removed in both (0, 0)2 and (1, 1)2 plaquettes. In
addition, the bond dimension of the edges is reduced back to χ from χ2.

This finishes the `th iteration. At this point, one obtains a new tensor network
denoted by (V `+1, E`+1, {T i}i∈V`+1) that is a self-similar and coarse-grained version
of (V `, E`, {T i}i∈V`

). Since the short-range entanglements in both (0, 0)2 and (1, 1)2
plaquettes are removed, this new tensor network satisfies the iteration invariance and
can serve as the starting point of the (`+ 1)th iteration.

Following this process, the TNSK algorithm constructs a sequence of tensor net-
works

(V `, E`, {T i}i∈V`
), ` = 0, 1, 2, . . . , L.

The last one is a single 4-tensor with the left and right edges identified and similarly
with the bottom and top edges identified. Contracting this final tensor gives a scalar
value for the partition function ZN (β).
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TENSOR NETWORK SKELETONIZATION 1433

Fig. 5. The structure-preserving skeletonization procedure removes the short-range entangle-
ment within a (1, 1)2 (or (0, 0)2) plaquette. The bold lines stand for edges with bond dimensions
≥ χ2.

3.1.2. Short-range entanglement removal via structure-preserving
skeletonization. In the description of the algorithm in section 3.1.1, the missing
piece is how to remove the short-range entanglement of a (1, 1)2 plaquette and reduce
the bond dimension of its four surrounding edges (from Figure 4(e) to Figure 4(f)).

This is carried out by the structure-preserving skeletonization illustrated in Fig-
ure 5 with the four corner tensors denoted by P 00, P 10, P 01, and P 11. Instead of
replacing the four corner 3-tensors simultaneously, this procedure considers the four
interior edges one by one and inserts two tensors of size χ2 × χ in each edge.

Let us start with the bottom edge. Here we seek two 2-tensors A0 and A1 of
size χ2 × χ such that the 4-tensor represented by the new (1, 1)2-plaquette (after
inserting A0 and A1) approximates the 4-tensor represented by the original plaquette
(see Figure 5(a)).

1. Merge the two left tensors P 00 and P 01 into a 3-tensor P 0 and merge the two
right tensors P 10 and P 11 into a 3-tensor P 1. Notice that the two boundary
edges have bond dimension equal to χ4. The criteria for choosing A0 and A1

is now given in Figure 5(b).
2. Since the bond dimensions of the two edges between P 0 and P 1 will eventually

be reduced to χ, this implies that the bond dimensions of the two boundary
edges can be cut down to χ2 = χ × χ without affecting the accuracy. For
this, we perform the UUTT -projection to both P 0 and P 1. The criteria for
choosing A0 and A1 is now given in Figure 5(c).

3. Remove the two tensors U0 and U1 at the two endpoints. Merge U0 with P 0

to obtain a 3-tensor R0 and similarly merge U1 with P 1 to obtain a 3-tensor
R1. The criteria for choosing A0 and A1 is in Figure 5(d).

4. Finally, contracting the top edge between R0 and R1 results in a new 3-tensor
T . The criteria for choosing A0 and A1 is now given in Figure 5(e). This
is exactly the setting of the loop skeletonization in section 2.2 and can be
solved efficiently using the alternating least square algorithm proposed there.
For the initial guess of A0 and A1, we choose them to be the matrices with
one on the diagonal and zero everywhere else because the second and third
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steps of the algorithm in section 3.1.1 “diagonalize” the interaction between
nearby tensors.

At this point, two tensors A0 and A1 are successfully inserted into the bottom edge.
One can repeat this process now for the top, left, and right edges in a sequential order.
Once this is done, merging each of the corner tensors with its two adjacent inserted
tensors gives the desired approximation (see Figure 5(f) for this whole process).

A task of reducing the bond dimensions of the four surrounding edges of a
plaquette has appeared before in the work of TEFR [5]. However, the algorithms
proposed there are different from the one described here and the resulting plaque-
tte was used in a TRG setting that does not extend naturally to 3D tensor network
problems.

3.1.3. Complexity estimate. In each iteration of the above algorithm, the
most computationally intensive parts are step 4 of the algorithm in section 3.1.1 and
step 2 of the structure-preserving skeletonization in section 3.1.2. In both steps, we
perform a singular value decomposition of size χ4 × χ4 and the computation cost
scales like O(χ12). Another key step is the alternating least square algorithm used
in the loop skeletonization. In the current setting, the parameters used in the loop
skeletonization are given by χf = χ4, χe = χ2, and χc = χ. Therefore, the overall
cost of the alternating least square algorithm scales like O(ni · χ10), where ni is the
number of alternating iterations.

As the algorithm in section 3.1.1 for computing the partition function takes L =
logN iterations, where N is the number of vertices, the overall complexity of the
algorithm scales like O

(
(χ12 + ni · χ10) · logN

)
.

We would like to remark that the physical meaning of the bond dimension χ
in TNSK is different from most of the TRG algorithms as we do not perform the
45 degree rotations. Numerical results show that, for a similar accuracy, the bond
dimension required by this algorithm is roughly the square root of the one used in most
TRG algorithms. For example, this algorithm with χ = 4 achieves better accuracy
than most TRG algorithms with χ = 16 (see the numerical results in section 3.1.5).
Therefore, the exponent of the complexity estimate for TNSK should be halved when
compared with the complexity analysis of most TRG algorithms.

3.1.4. A modified version. In terms of coarse-graining the tensor network,
each iteration of the algorithm in section 3.1.1 achieves the important goal of con-
structing a self-similar version while keeping the bond dimension constant (equal to
χ) (see Figure 4(a) and (j) for comparison).

However, for the purpose of merely computing the partition function ZN (β), one
part of the work is redundant. More specifically, at the end of the `th iteration,
the structure-preserving skeletonization is also performed for the (0, 0)2-plaquettes
at level ` + 1 to remove their short-range entanglements. However, right at the be-
ginning of the next iteration, a merging step contracts the four corner tensors of
each (0, 0)2-plaquette. By eliminating this structure-preserving skeletonization for
the (0, 0)2 plaquettes, one obtains a modified version of the algorithm (see Figure 6)
that can potentially be computationally more efficient.

Compared with the algorithm illustrated in Figure 4, the main differences are as
follows:

• The iteration invariance is that, at the beginning of each iteration, only the
short-range entanglements of the (1, 1)2 plaquettes are removed. Therefore,
the bond dimensions of the edges around a (0, 0)2 plaquette are equal to χ2.
This is not so appealing from the viewpoint of approximating a tensor network
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TENSOR NETWORK SKELETONIZATION 1435

Fig. 6. A single iteration of the modified tensor network skeletonization algorithm. The starting
point is a tensor network with short-range entanglement removed in (1, 1)2 plaquettes. The final
point is a coarse-grained tensor network with 1/4 vertices (tensors). This coarse-grained tensor also
has bond dimensions equal to χ around the (1, 1)2 plaquettes and χ2 around the (0, 0)2 plaquettes.
The short-range entanglement is removed for the (larger) (1, 1)2 plaquettes. The bold lines stand
for edges with bond dimensions χ2.

with minimal bond dimension. However, as one can see from Figure 6(a) and
(b), a contraction step is applied immediately to these (0, 0)2 plaquettes so
that the high bond dimensions do not affect subsequent computations.

• In Figure 6(e) and (f), the structure-preserving skeletonization is applied only
to the (1, 1)2 plaquettes.

• In Figure 6(g), the resulting tensor network at level ` + 1 satisfies the new
iteration invariance and hence it can serve as the starting point of the next
iteration.

As we shall see in section 3.2.1, this modified algorithm also has the benefit of incurring
minimum modification when evaluating observables using the impurity method.

3.1.5. Numerical results. Let us denote by Z̃N (β) the numerical approxima-
tion of the partition function ZN (β) obtained via TNSK. The exact free energy per
site fN (β) and the approximate free energy per site f̃N (β) are defined by

fN (β) =
(
− 1
β

logZN (β)
)
/N, f̃N (β) =

(
− 1
β

log Z̃N (β)
)
/N.

For an infinite 2D statistical Ising system, the free energy per site

f(β) = lim
N→∞

fN (β)

can be derived analytically [6]. Therefore, for sufficiently large N , fN (β) is well
approximated by f(β). In order to measure the accuracy of TNSK for computing the
partition function, we define the relative error

δfN (β) ≡ |f̃N (β)− f(β)|
|f(β)|

≈ |f̃N (β)− fN (β)|
|fN (β)|

.
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Fig. 7. Results of free energy calculation. (a) The relative error δfN (β) of the free energy
per site at temperatures around Tc for χ = 2, 4. (b) The running time per iteration of the TNSK
algorithm in section 3.1.1 for the same T and χ values.

The critical temperature of the 2D statistical Ising model is Tc = 2/ ln(1+
√

2). For a
periodic statistical Ising model on a 215× 215 lattice, Figure 7 plots the relative error
(left) and the running time per iteration of TNSK (right) for χ = 2, 4 at different
temperatures near the critical temperature Tc.

From the plots in Figure 7 one can make the following observations:
• First, TNSK removes the short-range entanglement quite effectively. With
χ = 4, it achieves five or six digits of accuracy for the relative free energy per
site. Even with χ = 2, one obtains three or four digits of accuracy.

• Second, TNSK is quite efficiently. For χ = 4, each iteration of the TNSK
takes about 0.05 seconds. The running time tends to grow a bit when T
approaches the critical temperature Tc. The explanation is that when T
is away from the critical temperature, the effective bond dimensions of the
tensors reduce to either 1 (above the critical temperature) or 2 (below the
critical temperature). Near the critical temperature, the bond dimensions
will remain as χ throughout the iterations. This is the main reason that the
computation time is higher near Tc. In addition, at criticality, the alternating
least square algorithms also take a few more iterations to converge.

• Most surprisingly, for a fixed χ value, TNSK gives more accurate results
when the temperature is close to Tc. For example, with χ = 4 at T = Tc, the
relative error is on the order of 10−8. This is quite different from most of the
TRG algorithms where the accuracy deteriorates significantly near Tc.

3.2. Observables. The TNSK algorithm described in section 3.1 for computing
the partition function (and equivalently the free energy) can be extended to compute
observables such as the average magnetization and the internal energy per site.

The internal energy UN (β) of the whole system and the internal energy per site
uN (β) are defined as

UN (β) = ∂β(− logZN (β)) = −∂βZN (β)
ZN (β)

, uN (β) =
UN (β)
N

.

A direct calculation shows that
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∂βZN (β)=
∑
σ

e−βHN (σ)(−HN (σ))=
∑
σ

∑
(ij)

σiσj

 e−βHN (σ)=Ne
∑
σ

(σiσj)e−βHN (σ),

where in the last formula (i, j) can be any edge due to the translational invariance
of the system and Ne = 2N . This gives the following formula for the internal energy
per site:

(7) uN (β) =
UN (β)
N

=
Ne
N
·
∑
σ(σiσj)e−βHN (σ)∑

σ e
−βHN (σ) = 2

∑
σ(σiσj)e−βHN (σ)∑

σ e
−βHN (σ) .

To define the average magnetization, one introduces a small external magnetic
field B and defines the partition function of the perturbed system

ZN,B(β) =
∑
σ

e−βHN,B(σ), HN,B(σ) = −

∑
(ij)

σiσj +B
∑
i

σi

 .

The magnetization at a single site i is equal to

(8) 〈σi〉N,B (β) =
∑
σ σie

−βHN,B(σ)∑
σ e
−βHN,B(σ) ,

and the average magnetization mN,B(β) is equal to the same quantity since

mN,B(β) =
1
N

∑
i

〈σi〉N,B (β) = 〈σi〉N,B (β),

where in the last formulation i can be any site in the periodic Ising model due to the
translational invariance of the system.

3.2.1. Algorithm. The computation of the quantities mentioned above requires
the evaluation of the following sums:

(9)
∑
σ

(σiσj)e−βHN (σ),
∑
σ

σie
−βHN,B(σ),

where i is any site in the first formula while (i, j) is any bond in the second. Both
sums can also be represented using tensor networks using the so-called impurity tensor
method.

Recall that the 2D periodic statistical Ising model considered here is of size n×n,
where n = 2L. Without loss of generality, one can assume that the sites i and j in (9)
are located inside the 2×2 sublattice at the center of the whole computation domain.
Following the same reasoning in section 1, one can represent

∑
σ(σiσj)e−βHN (σ) and∑

σ σie
−βHN,B(σ) as tensor networks. The only difference between them and the tensor

network of ZN (β) is a single tensor located inside this 2× 2 sublattice at the center.
The algorithm for computing these new tensor networks are quite similar and it

becomes particularly simple when the modified TNSK algorithm in section 3.1.4 is
used. The whole algorithm is illustrated in Figure 8 and here we only highlight the
main differences.

• In addition to the iteration invariance of the modified algorithm in section
3.1.4, one also requires that only the four tensors at the center (marked in
gray in Figure 8(a)) can be different from the ones used for ZN (β).

D
ow

nl
oa

de
d 

10
/2

4/
17

 to
 1

71
.6

7.
21

6.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1438 LEXING YING

Fig. 8. Impurity method for computing the spontaneous magnetization and the internal energy
per site. The iteration invariance also requires that at the beginning of each iteration only the four
tensors near the center can be different from the ones used in ZN (β). These four special tensors
are marked in gray. At the end of each iteration, one obtains a coarse-grained tensor network that
also satisfies this condition.

• Because the four special tensors are at the center at the tensor network at
level `, after contraction there are exactly four special tensors at the center
of the tensor network at level `+ 1 (marked in gray in Figure 8(b)). The rest
are identical to those used for ZN (β).

• In Figure 8(b) and (c), the UUTT -projections at the four surrounding edges
of the center plaquette are computed from the four special corner tensors.
The resulting orthogonal U matrices are marked in gray as well. The UUTT -
projection at all other edges is inherited from the algorithm for the partition
function ZN (β). When contracting the tensor at each vertex with its four
adjacent orthogonal (diamond) matrices (see Figure 8(c) and (d)), this en-
sures that only the four tensors at the center are different from those used
for ZN (β).

• In the structure-preserving skeletonization step for the (1, 1)2 plaquettes (see
Figure 8(e) and (f)), only the center (1, 1)2 plaquette is different from the
one appeared in ZN (β). Therefore, this is the only one that requires an extra
structure-preserving skeletonization computation.

• When contracting the tensors at the corners of the (1, 1)2 plaquettes to get
back the 4-tensors in Figure 8(g), again only the four tensors at the center
(marked in gray) are different. This ensures that the tensor network at the
beginning of the next iteration satisfies the iteration invariance mentioned
above.

At each iteration of this impurity method, the algorithm performs a few extra UUTT -
projection and one extra structure-preserving skeletonization for the (1, 1)2 plaquette
at the center. As a result, once the computational result for ZN (β) is ready the extra
cost from the impurity method is comparable to that for computing the partition
function.
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Fig. 9. Numerical results for computing the observables using the impurity method for χ = 2, 4.
(a) Internal energy. (a) Average magnetization.

3.2.2. Numerical results. For the internal energy uN (β), we denote by ũN (β)
its TNSK approximation. When N approaches infinity, the limit

u(β) = lim
N→∞

uN (β)

is given analytically, for example, in [6]. Therefore for N sufficiently large, u(β) serves
as a good benchmark for measuring the accuracy of the TNSK algorithm.

For the averaged magnetization, let us denote by m̃N,B(β) the TNSK approxima-
tion of mN,B(β). For the 2D statistical Ising model, the spontaneous magnetization
m+(β) is defined as

m+(β) = lim
B→0+

lim
N→∞

mN,B(β)

and this can be written down analytically as well [6, 19]. When B is a small pos-
itive number, by setting N to be sufficiently large, one can treat m+(β) as a good
approximation of mN,B(β) and use it as a benchmark for measuring the accuracy of
m̃N,B(β).

Figure 9(a) shows the computed internal energy per site ũN (β) for χ = 2, 4
along with u(β). On the right, Figure 9(b) gives the computed average magnetization
m̃N,B(β) along with the spontaneous magnetization m+(β). Though the computation
with χ = 2 has a significant error, it does exhibit the phase-transition clearly. Once
χ is increased to 4, the numerical results and the exact curve match very well.

3.3. Extension to disordered systems. The tensor network skeletonization
algorithm can also be extended easily to disordered systems and we briefly sketch how
this can be done. For example, consider the 2D Edwards–Anderson spin-glass model
(see [8], for example) where the spins are arranged geometrically in the same fashion
as the classical Ising model but each edge (i, j) is associated with a parameter Jij .
For a fixed realization of J ≡ {Jij}, the partition function is given by

ZN,J(β) =
∑
σ

e−βHN,J (σ), HN,J(σ) = −
∑
(ij)

Jijσiσj .
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At a fixed realization of Jij , the order parameter of the model is defined as

qN,J(β) =
1
N

N∑
i=1

〈σi〉2N,J (β), 〈σi〉N,J (β) =
∑
σ σie

−βHN,J (σ)∑
σ e
−βHN,J (σ) .

The computation of the order parameter qN (β) first requires the evaluation of
ZN,J(β). Similar to the standard Ising model, this can be represented with a tensor
network. The TNSK algorithm remains the same, except that the computation at
each plaquette has to be performed separately since the system is not translation-
ally invariant anymore. The computational complexity for ZN,J(β) then scales like
O
(
(χ12 + ni · χ10) ·N

)
, where N is the number of spins.

It also requires the evaluation of
∑
σ σie

−βHJ (σ) for each i. The discussion in
section 3.2 shows that for each i it takesO

(
(χ12 + ni · χ10) · logN

)
steps, since most of

the computation of ZN,J(β) can be reused. Therefore, the computation of 〈σi〉2N,J (β)
for all spins i takes O

(
(χ12 + ni · χ10) ·N logN

)
steps. Putting this and the cost

of evaluating ZN,J(β) together shows that the computation of the order parameter
qN,J(β) can be carried out in O

(
(χ12 + ni · χ10) ·N logN

)
steps.

4. TNSK for 3D statistical Ising model. In this section, we describe how to
extend the tensor network skeletonization algorithm to the 3D statistical Ising model.
One key feature that has not been emphasized is that TNSK preserves the Cartesian
structure of the problem. This allows for a natural generalization to 3D systems.
Let us consider a 3D periodic statistical Ising model on an n× n× n Cartesian grid.
N = n3 is the number of total spins and we assume without loss of generality n = 2L

for an integer L.

4.1. Partition function. The partition function ZN (β) can be represented with
a tensor network (V 0, E0, {T i}i∈V 0), where V 0 is the set of vertices of the Cartesian
grid, the edge set E0 contains the edges between two adjacent sites in the x, y, and
z directions, and T i is a 6-tensor at site i. This gives rise to an n × n × n array of
small cubes, each with its eight vertices in V0. If a cube has vertex i = (i1, i2, i3) at
its lower-left-front corner, then we shall index this cube with i as well. We refer to
the cubes with index equal to (0, 0, 0) modulus 2 as (0, 0, 0)2 cubes and those with
index equal to (1, 1, 1) modulus 2 as (1, 1, 1)2 cubes. As with the 2D case, we let χ be
a predetermined upper bound for the bond dimension and without loss of generality
one can assume that χe ≈ χ for each e ∈ E0.

4.1.1. Algorithm. The TNSK algorithm consists of a sequence of coarse-graining
iterations. At the beginning of each iteration (except the 0th iteration), we require
the following iteration invariance to hold:

• For each of the (0, 0, 0)2 and (1, 1, 1)2 cubes, the short-range entanglement
has already been eliminated.

At the beginning of the `th iteration, one holds a tensor network (V `, E`, {T i}i∈V`
)

at level ` with (n/2`) × (n/2`) × (n/2`) vertices. The `th iteration consists of the
following steps:

1. Contract the tensors at the eight vertices of each (0, 0, 0)2 cube into a single
tensor (see Figure 10(b)). The (1, 1, 1)2 cubes are stretched and this results
a new tensor network that contains 1/8 of the vertices. The tensors at the
new vertices are identical and the bond dimension of the new edges is equal
to χ4 (shown with bold lines in the figure). Similar to the 2D case, the
short-range entanglements at level ` do not survive to level ` + 1 due to the
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TENSOR NETWORK SKELETONIZATION 1441

Fig. 10. A single iteration of the tensor network skeletonization algorithm. The starting point
is a tensor network with bond dimension χ and short-range entanglement removed in (0, 0, 0)2 and
(1, 1, 1)2 cubes. The final point is a coarse-grained tensor network with 1/8 vertices (tensors). This
coarse-grained tensor also has bond dimensions equal to χ and has short-range entanglement removed
for the (larger) (0, 0, 0)2 and (1, 1, 1)2 cubes.

iteration invariance. However, there are short-range entanglements for the
cubes at level ` + 1. The key task is to remove some of these short-range
entanglements and reduce the bond dimension back to χ.

2. At each vertex i in Figure 10(b), denote the tensor by T iabcdef , where a, b, c,
d, e, and f are the left, right, bottom, top, front, and back edges, respectively.
By invoking three UUTT -projection steps (one for each of the left, bottom,
and front edges), one effectively inserts two orthogonal (diamond) matrices in
each of these edges. At each vertex i, further merge the tensor T iabcdef with
the six adjacent orthogonal (diamond) matrices. This step does not change
the topology of the tensor network but the T i tensor has been modified.

3. For each (1, 1, 1)2 cube in Figure 10(b), apply the UR-projection to the 6-
tensor at each of its corners. Here the three edges adjacent to the cube are
grouped together. Notice that the round R tensors are placed close to the
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(1, 1, 1)2 cube. This projection step keeps only the top χ3 singular values,
i.e., the bond dimension of the diagonal edges is equal to χ3. The resulting
graph is given in Figure 10(c).

4. In this key step, apply structure-preserving skeletonization to each of the
(1, 1, 1)2 cubes. The details of this procedure will be provided in section 4.1.2.
The resulting (1, 1, 1)2 plaquette has short-range entanglement removed and
the bond dimensions of its 12 surrounding edges is reduced from χ4 to χ (see
Figure 10(d)). One then merges back the UR-projections at its eight corners.
The resulting tensor network in Figure 10(e) is similar to the one in Figure
10(b) but the short-range entanglements in the (1, 1, 1)2 plaquettes are now
removed.

5. Now repeat the previous two steps for the (0, 0, 0)2 plaquettes. This is il-
lustrated in Figure 10(f), (g), and (h). The resulting tensor network has
short-range entanglement removed in both (0, 0, 0)2 and (1, 1, 1)2 plaquettes
and the bond dimension of the edges is reduced back to χ from χ4.

This finishes the `th iteration. At this point, one obtains a new tensor network
denoted by (V `+1, E`+1, {T i}i∈V`+1) that is a self-similar and coarse-grained version
of (V `, E`, {T i}i∈V`

). This network satisfies the iteration invariance and can serve as
the starting point of the next iteration of the algorithm.

The last tensor network (V L, EL, {T i}i∈VL
) contains only a single 6-tensor with

the left and right edges identified and similarly for the bottom/top edges and front/
back edges. Contracting this final tensor gives an approximation for the partition
function. Similar to the 2D case, one can also introduce a modified version of this
algorithm by removing short-range entanglement for the (1, 1, 1)2 cubes.

4.1.2. Short-range entanglement removal via structure-preserving
skeletonization. For the 3D cubes, the structure-preserving skeletonization pro-
cedure is similar to the one introduced for the 2D plaquette in section 3.1.2. This
procedure is illustrated in Figure 11 with the eight corner 4-tensors denoted by P 000,
P 100, P 010, P 110, P 001, P 101, P 011, and P 111.

Instead of replacing the eight corner 4-tensors of the gray cube simultaneously,
this procedure considers the 12 interior edges one by one and inserts within each edge
two tensors of size χ4 × χ. Starting from the bottom front edge, the procedure seeks
two 2-tensors A0 and A1 of size χ4 × χ so that the 8-tensor of the new (1, 1, 1)2 cube
after the insertion approximates the original 8-tensors (see Figure 11(a)).

1. Merge the two left tensors P 000, P 001, P 010, and P 011 into a 5-tensor P 0 and
merge the four right tensors into a 5-tensor P 1. After that, the criteria for
choosing A0 and A1 are given in Figure 11(b), where the two boundary edges
have bond dimension equal to (χ3)4 = χ12.

2. Since the bond dimensions of the two edges between P 0 and P 1 are to be
reduced to χ, this implies that the bond dimensions of the two boundary
edges can be reduced to χ4 instead of χ12. As a result, one can perform the
UUTT -projection to both P 0 and P 1. This gives rise to the criteria for A0

and A1 in Figure 11(c).
3. Remove the two tensors U0 and U1 at the two endpoints, contract U0 with P 0

to get a 3-tensor R0, and contract U1 with P 1 to get R1. The approximation
criteria for A0 and A1 can now be written in terms of R0 and R1 as in Figure
11(d).

4. Finally, contracting the three other edges between R0 and R1 results in a new
3-tensor T . The approximation criteria for A0 and A1 now takes the form
in Figure 11(e). This is now exactly the setting of the loop skeletonization
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Fig. 11. The structure-preserving skeletonization removes the short-range entanglement within
a (1, 1, 1)2 or (0, 0, 0)2 cube.

and can be solved using the alternating least square algorithm proposed in
section 2.2.

At this point, two tensors A0 and A1 are successfully inserted into the bottom front
edge. One can repeat this process also for the other three edges in the x direction.
Once this is done, we repeat this for the edges in the y direction and then for the
edges in the z direction. At this point, there are in total 24 tensors inserted in the 12
surrounding edges of the cube. Finally, merging each of the corner tensors with its
three adjacent tensors gives the desired approximation (see Figure 11(f) for the whole
process).

4.1.3. Numerical results. The critical temperature of the 3D statistical Ising
model is Tc ≈ 4.5115 but the free energy per site is not known explicitly. For a
3D periodic Ising model on a 26 × 26 lattice, Figure 12 shows the free energy per site
obtained through TNSK for χ = 2 at different temperatures near the Tc. The obtained
values of the free energy are close to the results obtained from other calculations using
HOTRG or Monte Carlo calculations.

4.2. Extensions. Similar to the 2D case, the 3D algorithm can be used to com-
pute the average magnetization and the internal energy per site. When representing
these quantities through tensor networks, one finds that only the eight tensors at the
center of the computational domain are different from those used in the partition func-
tion calculation. Therefore, the impurity tensor method can be applied as expected
and the extra computational cost grows like O(logN) for any fixed χ.

For disordered systems, the same discussion for the 2D systems applies. For
example, for computing the order parameter of the 3D Edwards–Anderson model,
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Fig. 12. The free energy per site obtained through TNSK at temperatures around Tc for χ = 2
for the 3D periodic statistical Ising model.

one only needs to perform one impurity tensor computation for each site and thus the
overall complexity grows like O(N logN) for any fixed χ.

5. Ground state for quantum Ising models. In this section, we briefly ex-
plain how to use TNSK to efficiently represent the ground states of certain quantum
many body systems. Consider, for example, a 1D periodic quantum Ising model.
One can represent the ground state up to a constant factor using the Euclidean path
integrals [1]. After some preliminary tensor manipulations, this turns into a tensor
network that is periodic in the spatial dimension and semi-infinite in the imaginary
time dimension (see Figure 13(a)).

In the same fashion that the TNR gives rise to the MERA [4] for the ground
state, TNSK generates a new representation of the ground state as well. Illustrated
in Figure 13, this process consists of the following steps:

1. First, contract each group of 2× 2 tensors (see Figure 13(b)). The new edges
marked with bold lines have bond dimension equal to χ2.

2. Perform the structure-preserving skeletonization to all (0, 0)2 and (1, 1)2 pla-
quettes to remove the short-range entanglements and reduce the bond dimen-
sion back to χ. Notice that after the structure-preserving skeletonization, the
resulting tensors at the bottom level are different from the ones above due
to their adjacency to the boundary. These special bottom level tensors are
marked in gray (see Figure 13(c)).

3. Repeat this process for the remaining tensors above the bottom level. Con-
tracting each group of 2× 2 tensors results in a tensor network illustrated in
Figures 13(d) and 13(e).

4. One can repeat this process until reaching a half-infinite string of identical
matrices. By extracting its top eigenvector, one can reduce this (up to a
constant factor) to a 1-tensor at the top (see Figure 13(f)).

The final product is a hierarchical structure shown in Figure 13(f). Though somewhat
different from MERA, this new structure also has the capability to represent strongly
entangled 1D quantum systems.

For the 2D periodic quantum Ising model, the ground state can be represented
via a Euclidean path integral with a 3D tensor network which is periodic in the x and
y directions but semi-infinite in the imaginary time direction. The above algorithm
(with necessary modifications for the 3D TNSK) can be applied to this tensor network
and the result is a hierarchical structure shown in Figure 14.
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Fig. 13. When applied to a Euclidean path integral formulation, TNSK yields a new represen-
tation of the ground state of 1D quantum Ising model.

Fig. 14. When applied to a Euclidean path integral formulation, TNSK yields a new represen-
tation of the ground state of 2D quantum Ising model.
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6. Conclusion. This paper introduced TNSK as a new coarse-graining process
for the numerical computation of tensor networks. At the heart of TNSK is a new
structure-preserving skeletonization procedure that removes short-range entanglement
effectively.

As to future work, an immediate task is to investigate other algorithms for the
structure-preserving skeletonization problem (4) and (5). The alternating least square
algorithm adopted here works quite well in practice. However, it would be interesting
to understand why and also to consider other alternatives without using the somewhat
artificial regularization parameter.

Most TNSK algorithms introduced here are presented in their simplest forms in
order to illustrate the main ideas. They are not necessarily the most efficient imple-
mentations in practice. For example, in the TNSK algorithm for partition functions,
one performs the contractions over all directions simultaneously and then applies the
UUTT -projections to these directions. However, in practice, it is much more efficient
to iterate over the directions and apply a UUTT -projection right after the contraction
of each direction.
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