
Y. Ren et al. ResMath Sci (2023) 10:30
https://doi.org/10.1007/s40687-023-00395-x

RESEARCH

High-dimensional density estimation with
tensorizing flow
Yinuo Ren1* , Hongli Zhao2, Yuehaw Khoo2 and Lexing Ying3

*Correspondence:
yinuoren@stanford.edu
1Institute for Computational and
Mathematical Engineering
(ICME), Stanford University,
Stanford, CA 94305, USA
Full list of author information is
available at the end of the article

Abstract

We propose the tensorizing flow method for estimating high-dimensional probability
density functions from observed data. Our method combines the optimization-less
feature of the tensor-train with the flexibility of flow-based generative models,
providing an accurate and efficient approach for density estimation. Specifically, our
method first constructs an approximate density in the tensor-train form by efficiently
solving the tensor cores from a linear system based on kernel density estimators of
low-dimensional marginals. Subsequently, a continuous-time flow model is trained
from this tensor-train density to the observed empirical distribution using maximum
likelihood estimation. Numerical results are presented to demonstrate the performance
of our method.
Keywords: Maximum likelihood estimation, Density estimation, Tensor-train,
Flow-based generative modeling

1 Introduction
Density estimation is fundamental in statistical inference, machine learning, and data
analysis. It aims to infer the underlying probability density function directly fromobserved
data. However, estimating high-dimensional probability distributions remains a major
theoretical and computational challenge.
In recent years, deep generativemodeling has emerged as a powerfulmethod for approx-

imating high-dimensional densities from many samples [8]. Among them, flow-based
generative models [19,57] have shown promising results by constructing a parameterized
flow from a normal distribution to the target distribution. However, the limitation of con-
fining the source distribution to a normal distribution (or a mixture of Gaussians) can be
restrictive, especially when dealing with singular or multimodal distributions.
The tensor-train network [52], also known as the matrix product state (MPS) [55] in

the physics literature, is a class of tensor network structures widely used to model high-
dimensional functions in physics, such as the wavefunction of many-body quantum states
under certain correlation decay assumptions [11], and more recently in many other con-
texts [1,32,45]. Variousmethods have been proposed to efficiently obtain the tensor-train
representation of closed-form high-dimensional functions by utilizing the techniques of
linear algebra [51], optimization [60] and parallel computing [62]. More recently, [38]

123 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40687-023-00395-x&domain=pdf
http://orcid.org/0000-0002-9682-6813

 30 Page 2 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

proposed an optimization-less linear algebra framework for recovering the tensor-train
representation of a density directly from its empirical distribution. However, tensor-trains
may be inflexible when it comes tomachine learning applications. One challenge of work-
ing with tensor-trains is the need to pre-determine the ordering of the variables based
on their correlations, which can be difficult in practice. In addition, a sub-optimal order-
ing may lead to larger tensor-train ranks, increased storage, and higher computational
complexity.

1.1 Contributions

Motivated by the strengths and limitations of flow-based generative models and the
tensor-train representation, we propose a new framework that combines the benefits
of both approaches for density estimation.

• Given a set of samples, we first construct a low-rank tensor-train representation
as an approximation to the base distribution. To cope with data sparsity in high-
dimensional settings, we estimate the required low-order marginals using kernel
density estimation during the construction.

• We then adopt an ODE-based continuous-time flow model that maps the tensor-
train base distribution to the target distribution. The flow model is parameterized
by a neural network and trained using maximum likelihood estimation with both
forward and inverse maps computed efficiently.

Following [40], we refer to this two-stage method as the tensorizing flow approach for
density estimation, i.e., applying a neural network transformation to a base distribution
represented by a tensor-train.

1.2 Related works

Deep generativemodeling

Deep generative models have recently gained a lot of attention for approximating high-
dimensional probability distributions. The Boltzmannmachine [34,35], one of the earliest
deep generative models, is based on a particular energy function form of the probability
distribution. Variational autoencoders (VAEs) [43,58] encode observations in a regular-
ized latent space, while generative adversarial networks (GANs) [29] involve a generator
and a discriminator trained jointly as a minimax game [61]. Autoregressive likelihood
models [5,27,47], on the other hand, are based on the chain rule of probability.
Another popular approach is flow-based generative modeling [19,57], which is based

on a sequence of diffeomorphisms between a known base distribution and a target dis-
tribution of interest. Unlike the autoregressive models and VAEs, the transformations
performed in flow-based models must be invertible, and the determinant of its Jacobian
should be computed efficiently [44]. Several widely adopted architectures include pla-
nar flow [57], coupling flow [19,20], autoregressive flow [42,53], 1×1 convolution [41],
and spline flow [24,25]. Residual networks use residual connections to build a reversible
network, such as RevNets [28], iRevNets [39], and iResNet [4].
The idea of residual connections can be extended to continuous-time or infinitesimal

flowmodels. One type of continuous-time flowmodels is formulated by the theory of ordi-
nary differential equations (ODEs) [14,23,31], among which [74] proposes a continuous-

Y. Ren et al. ResMath Sci (2023) 10:30 Page 3 of 25 30

time gradient flow model from the perspective of optimal transport and fluid dynamics.
The other type is based on diffusion processes and formulated by stochastic differential
equations (SDEs) [13,66,69].

Tensor-train representation

The tensor-train representation originates in the density-matrix renormalization group
(DMRG) [72] from physics and has proven useful in computational mathematics [17,18,
30]. It has been successfully applied to high-dimensional scientific computing problems [1,
22,45], quantum chemistry andmolecular physics [2,12], and signal and image processing
[16,71]. Numerous methods have been proposed for constructing the low-rank tensor-
train representation of high-dimensional functions in scenarios where the function can
be evaluated at arbitrary points or with a limited number of evaluations, such as TT-cross
[51] and DMRG-cross [60], TT completion [64], and STTA [46].
In addition to its applications in function approximation, tensor-train representations

are widely used for approximating high-dimensional probability densities, closely related
to probabilistic graphical models. [59] proves a duality between the tensor networks and
graphical models, andmost notably, the hiddenMarkovmodel (HMM) can be considered
as a special version of the tensor-train representation [9]. This restricted version of the
tensor-train representation with all matrices only containing non-negative entries has
been explored by [68].
The tensor-train representation has also been recently applied to generative modeling,

where one constructs the tensor-train model directly from samples without access to
the values of the density function. Several early attempts are based on the optimization-
based DMRG scheme [10,32] and Riemannian optimization [50]. In the work by [38],
an optimization-less method is proposed for constructing the tensor-train representation
directly from samples using a sketching technique. Other works have also taken advantage
of other structures of tensor networks, including the tree tensor network [15,67], and the
projected entangled-pair state (PEPS) [70].

Variational inference with tensorizing flow

Density estimation using maximum likelihood estimation is closely connected to the
variational inference (VI) problem. VI seeks to approximate an unnormalized density with
a low-complexity ansatz by optimizing over variational parameters [7]. Early approaches
to VI include mean-field VI, coordinate ascend VI [6], stochastic VI [36], and black box
VI [56]. Deep neural networks have recently been actively applied in this field [48,49].
A concurrent work [40] proposes the combination of a tensor-based distribution and

a neural network for variational inference problems, where an unnormalized analytic
form of the density is given for constructing the approximate tensor-train representation.
In contrast, our current density estimation task involves constructing the approximate
density solely based on limited given samples, requiring different techniques to deal with
the challenges.

1.3 Organization

The paper is organized as follows. In Sect. 2, we provide an introduction to the neces-
sary background and preliminary concepts. Our proposed method is detailed in Sect. 3.

 30 Page 4 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

In Sect. 4, we demonstrate the advantages of our proposed method through numerical
experiments. Finally, we conclude in Sect. 5 with a discussion of our method.

2 Problem and background
In this section, we introduce the problem setting and the commonly used notations in
Sect. 2.1, the tensor-train representation for both tensors andgeneral functions in Sect. 2.2,
and the continuous-time flow model in Sect. 2.3.

2.1 Problem setting and notations

We consider the problem of approximating an unknown probability density function
p∗(x) on R

d , where x = (x1, . . . , xd) and xi ’s are individual coordinates. Suppose we are
givenN independent d-dimensional samples x(i) = (x(i)1 , . . . , x(i)d)1≤i≤N drawn from p∗(x),
the goal is to construct another probability density function pθ (x) with parameter θ that
can approximate p∗(x). The approximation pθ (x) is required to be normalized and easy
to sample.
Let pE(x) be the empirical distribution of the samples, i.e.,

pE(x) = 1
N

N∑

i=1
δ
(
x − x(i)

)
. (2.1)

This task is typically formulated using maximum likelihood estimation, where the param-
eter θ is obtained by

θ = argminθ DKL
(
p∗(·)‖pθ (·)

) = argminθ Ex∼p∗
[− log pθ (x)

]

≈ argminθ Ex∼pE
[− log pθ (x)

]
.

(2.2)

In the following, we use MATLAB notation to simplify the notation. For example, we
use m : n to represent m, . . . , n. For a 3-tensor A, A(:, i, :) denotes the i-th slice of the 3-
dimensional tensor A along its second dimension.We also denote 1, . . . , n as [n], variables
xm, . . . , xn as xm:n, and the corresponding infinitesimal volume dxm · · · dxn as dxm:n. The
marginal distribution of variables xm:n for a distribution p(x) is denoted as p(xm:n). In
particular, the marginal distributions of variables x1:2, x1:3, . . . , xd−2:d, xd−1:d are denoted
as

p1(x1:2), p2(x1:3), . . . , pd−1(xd−2:d), pd(xd−1:d), (2.3)

among which p1 and pd are 2-marginals and the rest are 3-marginals.
For simplicity, we assume p(x) is sufficiently smooth and supp(p) ⊂ Id for an interval

I ⊂ R. Throughout Sects. 2 and 3, we further assume I = [−1, 1], while general cases
where I = [a, b] or I = R can be handled in a similar manner through appropriate
translation and rescaling.

2.2 Tensor-train representation

Data are often represented as tensors in modern machine learning and scientific comput-
ing.Ad-dimensional tensor F inRn×···×n is a collection of numbers denoted by F(i1, . . . , id)
with 1 ≤ i1, . . . , id ≤ n.With nd elements, the computational cost increases exponentially
as the dimension d grows.
Oneway to represent or approximate high-dimensional tensors is to use the tensor-train

(TT) representation, i.e.,

F(i1, . . . , id) ≈ G1(i1, :)G2(:, i2, :) · · ·Gd(:, id), (2.4)

Y. Ren et al. ResMath Sci (2023) 10:30 Page 5 of 25 30

(a)

(b)

Fig. 1 Diagrammatic notation of the tensor-train representation: Solid lines represent discrete indices, while
dashed lines represent continuous variables

where G1 ∈ R
n×r1 ,G2 ∈ R

r1×n×r2 , . . . ,Gd ∈ R
rd−1×n are the cores, and ri for 1 ≤ i ≤ d−1

are the ranks of the TT representation.
The tensor F is then represented by the product of a sequence of corresponding slices of

the cores, which is often described in the diagrammatic notation as shown in Fig. 1. We
refer the readers to the discussions by [54] for interpreting this kind of notation. When
the ranks {ri}1≤i≤d−1 are bounded, TT format features linear cost in n and d.
The idea of tensor-train can also be generalized to obtain the low-rank approximation of

high-dimensional functions. The TT representation of a general d-dimensional function
F (x) : Id → R consists of a sequence ofd functionsG1 : I×[r1] → R,G2 : [r1]×I×[r2] →
R, . . ., Gd : [rd−1] × I → R, as

F (x1:d) ≈
r1∑

α1=1

r2∑

α2=1
· · ·

rd−1∑

αd−1=1
G1(x1,α1)G2(α1, x2,α2) · · ·Gd(αd−1, xd), (2.5)

or more compactly

F (x1:d) ≈ G1(x1, :)G2(:, x2, :) · · ·Gd(:, xd).

The diagrammatic notation of this continuous tensor-train is shown in Fig. 1.

2.3 Continuous-time flowmodel

Flow-based generative models typically aim to design a pushforward f : Rd → R
d that

maps a latent, easy-to-sample probability density q0(x) to a challenging target probability
density q1(x) that satisfies

q1(x) = q0
(
f −1(x))

∣∣∣∣det
(

∂f −1

∂x

)∣∣∣∣ . (2.6)

A continuous-time flow model is based on the perspective that regards f as the result
of a flow that pushes the density q(x, t), initialized as q(x, 0) = q0(x), over time t while
conserving total probability mass. The evolution of the density q(x, t) is characterized by
the continuity equation from fluid mechanics:

∂q(x, t)
∂t

+ ∇ · [q(x, t)v(x)] = 0, (2.7)

 30 Page 6 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

where v(x) is the velocity field of the flow. Motivated by the linearized optimal transport,
[74] assumes that the flow is irrotational, so ∇ × v(x) = 0. Consequently, v(x) can be
expressed as the gradient of a potential function φ(x), i.e., v(x) = ∇φ(x) [3].
An alternative description concerns the trajectory x(t) that follows the velocity field

∇φ(x), along which the following two ODEs hold:
dx(t)
dt

= ∇φ(x(t)), (2.8a)

dq(x(t), t)
dt

= −q(x(t), t)∇2φ(x(t)) (2.8b)

where the second equation directly follows from the continuity Eq. (2.7) and the formula
of total derivative d/dt = ∂/∂t + dx(t)/dt · ∇ [3]. This formulation provides a more
intuitive way to understand the forward map f as the map from x(0) to x(T) and the
inverse map f −1 as the map from x(T) to x(0). During the evaluation of q(y, T) for an
arbitrary y, we first compute the inverse map f −1(y) by solving (2.8a) from t = T to 0
with x(T) = y, and then solve (2.8b) from t = 0 to T with q(x(0), 0) = p0(f −1(y)). During
sampling, we first draw a sample z from the initial distribution p0 and then output f (z) by
solving (2.8a) from t = 0 to T with x(0) = z.
For a predetermined time horizon T , the flow determined by different potential func-

tions φ(x) may evolve the initial density q(x, 0) = q0(x) into a variety of densities q(x, T)
at time T . From the perspective of optimal control theory, the optimal potential function
φ(x) for approximating the target density q1(x) should be the solution to the following
optimization problem:

min
φ:Rd→R

D (q1(·), q(·, T)) , (2.9)

where D(·, ·) is a proper metric or divergence for probability measures.
The potential function φ(x) is represented by a neural network denoted as φθ (x) with

parameters θ . In what follows, the resulting pushforward f and density q(x, T) obtained
from this continuous-time flow model are denoted as fθ and qθ (x). Using the Kullback–
Leibler (KL) divergence as the metric D(·, ·), (2.9) reduces to an MLE problem as in (2.2).
Thus, the parameter θ of the neural network is trained by minimizing the negative log-
likelihood

θ = argminθ Ex∼q1

[
log

q1(x)
qθ (x)

]
= argminθ Ex∼q1

[− log qθ (x)
]
.

The mechanism of this continuous-time flow model is shown in Fig. 2.

3 Tensorizing flow
This section presents our tensorizing flow algorithm for high-dimensional density esti-
mation. While the tensor-train representation is accurate only for a limited family of
probability densities, it offers a more precise initial estimate than the normal distribution
used in most flow-based models. As a result, it is reasonable to construct a flow-based
model that maps this tensor-train density to the desired target distribution. This hybrid
approach can potentially address well-known problems of normalizing flows, including
mode collapse, limited expressivity, and difficulty in inverting a flow model with a high
condition number.
As an overview, our algorithm consists of two main stages:

pE(·) = 1
N

N∑

i=1
δ
(
· − x(i)

) 1−→ pTT(·) 2−→ pTF(·)

Y. Ren et al. ResMath Sci (2023) 10:30 Page 7 of 25 30

Fig. 2 Mechanism of the continuous-time flow model: the blue path shows the evaluation procedure, and
the red arrow shows the sampling procedure for the resulting density qθ (·)

1. Construct an approximate tensor-train representation pTT from the samples
{x(i)}1≤i≤N by combining sketching techniques with kernel density estimation
(Sect. 3.1);

2. Apply the continuous-time flow model to drive pTT toward {x(i)}1≤i≤N , resulting in
the distribution pTF (Sect. 3.2).

3.1 Stage 1: Construction of pTT

We start with a conceptual algorithm and follow with a more practical one.

3.1.1 Ideal case

Let us motivate the construction of an approximate TT representation by considering an
ideal casewhere the underlying density p has a finite-rank structure and is alsoMarkovian,
which are explained as follows.
We assume that each reshaped version p(x1:k ; xk+1:d) of p(x) for 1 ≤ k ≤ d − 1 is a

Hilbert–Schmidt kernel [63] so that we can apply singular value decomposition (SVD)
[73] (also called Schmidt decomposition) to them. For a Hilbert–Schmidt kernel K , we
define its column space by its range and its row space by the range of its adjoint.

Definition 3.1 (Finite-rank) A probability density function p(x) is finite-rank if for any
1 ≤ k ≤ d − 1, the reshaped version p(x1:k ; xk+1:d) of p(x) as a Hilbert–Schmidt kernel is
finite rank, i.e., of finite-dimensional column space.

We also assume throughout that all the marginal distributions of p(x), especially the
2- or 3-marginals pk (2.3), belong to the class of Hilbert–Schmidt kernels so we can also
perform SVD on them when necessary.

Definition 3.2 (Markovian) A probability density function p(x) isMarkovian if it can be
written as

p(x) = p(x1)p(x2|x1) · · · p(xd |xd−1).

 30 Page 8 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

Finite-rank structure
Under the finite-rank assumption, the cores of the TT representation of p(x) can be

simply obtained using the following proposition:

Proposition 3.3 (Core determining equation) Suppose that the probability density p is
finite-rank. For 1 ≤ k ≤ d − 1, denote the rank of its reshaped version p(x1:k ; xk+1:d) by rk
and let {�k (x1:k ;αk)}1≤αk≤rk be the first rk left singular vectors of p(x1:k ; xk+1:d). Then, there
exists a unique solutionG1 : I×[r1] → R, G2 : [r1]×I×[r2] → R, . . . , Gd : [rd−1]×I → R

to the following system of core determining equations (CDEs):

G1(x1;α1) = �1(x1;α1),
rk−1∑

αk−1=1
�k−1(x1:k−1;αk−1)Gk (αk−1; xk ,αk) = �k (x1:k−1; xk ,αk), 2 ≤ k ≤ d − 1,

rd−1∑

αd−1=1
�d−1(x1:d−1;αd−1)Gd(αd−1; xd) = p(x1:d−1; xd),

(3.1)

where the cores Gk give an exact TT representation of p(x):

p(x) = G1(x1, :)G2(:, x2, :) · · ·Gd(:, xd). (3.2)

We refer to Appendix 6 for the proof of this proposition.
Left-sketching technique
Unfortunately, the size of equations in (3.1) grows exponentially with the dimension d,

even after discretization. As a result, it is impossible to estimate all the coefficients �k
from finite samples. However, a key observation is that this linear system is significantly
over-determined, allowing for efficient reduction by a sketching technique.
In order to implement the sketching, we select suitable left-sketching functions

Sk−1(yk−1; x1:k−1) for 2 ≤ k ≤ d, where yk−1 ∈ Yk−1 with Yk−1 being an appropriate
set specified by themodel. By contracting themwith the left-hand sides of (3.1), we obtain
the following reduced system of CDEs:

G1(x1;α1) = B1(x1;α1),
rk−1∑

αk−1=1
Ak−1(yk−1;αk−1)Gk (αk−1; xk ,αk) = Bk (yk−1; xk ,αk), 2 ≤ k ≤ d − 1,

rd−1∑

αd−1=1
Ad−1(yd−1;αd−1)Gd(αd−1; xd) = Bd(yd−1; xd),

(3.3)

where the coefficients Bk and Ak are given by

B1(x1;α1) =�1(x1;α1),

Bk (yk−1; xk ,αk) =
∫

Ik−1
Sk−1(yk−1; x1:k−1)�k (x1:k−1; xk ,αk)dx1:k−1, 2 ≤ k ≤ d − 1

Bd(yd−1; xd) =
∫

Id−1
Sd−1(yd−1; x1:d−1)p(x1:d−1; xd)dx1:d−1,

Ak−1(yk−1;αk−1) =
∫

Ik−1
Sk−1(yk−1; x1:k−1)�k−1(x1:k−1;αk−1)dx1:k−1, 2 ≤ k ≤ d.

(3.4)

Generally, the left-sketching functions Sk−1(yk−1; x1:k−1) need to be chosen such that
the row space of �k (x1:k−1; xk ,αk) is retained, and the variance of the coefficient matrices

Y. Ren et al. ResMath Sci (2023) 10:30 Page 9 of 25 30

Fig. 3 Diagrammatic notation of the k-th equation in the reduced CDEs (3.3) for 2 ≤ k ≤ d − 1 (cf. the
corresponding equation in the original CDEs (3.1))

is reduced as much as possible [38]. For an illustration of the sketching technique, we
refer readers to Fig. 3 for the diagrammatic notation of the k-th equation in the reduced
CDEs (3.3) for 2 ≤ k ≤ d − 1 (cf. the corresponding equation in the original CDEs (3.1)).
Markovian structure
In general, it is unclear which Sk to choose to get Bk and Ak in (3.4), and it is impos-

sible to compute or estimate the singular vectors �k in practice. However, under the
extra Markovian assumption, the computation of Bk and Ak can be simplified due to the
following lemma:

Lemma 3.4 ([38, Lemma 5]) Suppose p(x) is Markovian, then for any i ≤ k ≤ j − 1,

1. p(xi:k ; xk+1:j) and p(xi:k ; xk+1) have the same column space;
2. p(xi:k ; xk+1:j) and p(xk ; xk+1:j) have the same row space.

Lemma 3.4 essentially tells us that for p(x1:k ; xk+1:d), marginalizing out xk+2:d or x1:k−1
does not affect the corresponding column or row space. Motivated by this lemma, we
can make the following two simplifications while computing the coefficients Bk and Ak
in (3.1):

1. Obtain �k (x1:k ;αk) for 1 ≤ k ≤ d − 1 by only considering the column space of the
(k+1)-dimensionalmarginal distribution p(x1:k ; xk+1) instead of the full distribution
p(x1:k ; xk+1:d);

2. Simply take Yk−1 = I and Sk−1(yk−1; x1:k−1) = δ(yk−1 − xk−1), i.e., the Schwartz
distribution that marginalizes out the first k − 2 dimensions, for 2 ≤ k ≤ d as
suggested by [38].

For k = 1, these simplifications indicate that �1(x1;α1) can be obtained directly by
applying SVD to the 2-marginal p1(x1; x2), and subsequently

A1(y1;α1) =
∫

I
δ(y1 − x1)�1(x1;α1)dx1 = �1(y1;α1) = B1(y1;α1),

where the last equality is by definition (3.4). Similarly, for k = d, Bd(yd−1; xd) =
pd(yd−1; xd).

 30 Page 10 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

For 2 ≤ k ≤ d − 1, the simplifications yield

Bk (yk−1; xk ,αk) =
∫

Ik−1
δ(yk−1 − xk−1)�k (x1:k−1; xk ,αk)dx1:k−1

=
∫

Ik−2
�k (x1:k−2; yk−1, xk ,αk)dx1:k−2.

(3.5)

A natural way to build Bk is to first calculate �k (x1:k ;αk) by performing SVD directly on
p(x1:k ; xk+1), and then apply left-sketching bymarginalizing out x1:k−2 from�k (x1:k ;αk) as
in (3.5). However, this approach is not practical because p(x1:k ; xk+1) grows exponentially
with d, and its range�k (x1:k ;αk) cannot be estimated accurately from a limited collection
of samples. Thus, instead of calculating�k by SVDandobtainingBk through (3.5) directly,
we propose the followingmethod to obtain an approximateBk implicitly: we first apply the
left-sketching functions Sk−1 to p(x1:k ; xk+1), i.e., marginalize out x1:k−2 from p(x1:k ; xk+1)
to obtain the 3-marginal pk (xk−1, xk ; xk+1), and then perform SVD on pk (xk−1, xk ; xk+1).
Then, Bk (xk−1, xk ;αk) is formed by the first rk left singular vectors of pk (xk−1, xk ; xk+1).
Moreover, since

Ak (yk ;αk) =
∫

Ik
δ(yk − xk)�k (x1:k ;αk)dx1:k =

∫

Ik−1
�k (x1:k−1; yk ,αk)dx1:k−1

=
∫

I

∫

Ik−2
�k (x1:k−2; yk−1, yk ,αk)dx1:k−2dyk−1 =

∫

I
Bk (yk−1; yk ,αk)dyk−1,

Ak is obtained by marginalizing out the first dimension of Bk .
In conclusion, we have shown that for finite-rank and Markovian distributions p(x),

an exact TT representation in the form of (3.2) can be obtained by first forming the
coefficients Bk and Ak and then solving the reduced system of CDEs (3.3).

3.1.2 General case

In Sect. 3.1.1, wemake the assumption that the distribution p is finite-rank andMarkovian.
We also assume the access to the marginals pk (2.3), and the singular value decomposi-
tion for Hilbert–Schmidt kernels (rather than finite-dimensional matrices). However, in
practical applications, we often face unknown underlying distributions p∗, which may not
necessarily be low-rank or Markovian. Moreover, instead of having analytic formulae for
the marginals, we only have access to a limited set of samples {x(i)}1≤i≤N drawn from p∗.
Tobridge this gapbetween the ideal case and thepractical scenario,we adapt themethod

described in Sect. 3.1.1. The resulting TT pTT reasonably approximates the unknown
underlying distribution p∗.
Step 1
Construct kernel density estimatorspSk of themarginalsp∗

k (2.3) fromsamples {x(i)}1≤i≤N
for 1 ≤ k ≤ d.
When evaluating the coefficients Bk and Ak , one direct approach is to estimate the

marginals p∗
k by interpolating the marginal distribution pEk of the empirical distribution

pE (2.1) with polynomials, as done in [38]. Instead, we estimate p∗
k by applying kernel

density estimation (KDE) to the corresponding slices of samples. For example, for 2 ≤
k ≤ d − 1, p∗

k is estimated by kernel density estimators

pSk (xk−1:k+1) := 1
Nh

N∑

i=1
K

(
xk−1:k+1 − x(i)k−1:k+1

h

)
, (3.6)

where K (·) is the Gaussian kernel (2π)−3/2 exp
(−‖ · ‖2/2) and h is the bandwidth.

Y. Ren et al. ResMath Sci (2023) 10:30 Page 11 of 25 30

Remark 3.5 The use of KDE on marginal distributions is a crucial step in constructing
the TT representation. This is because performing SVD directly on the sparse marginal
empirical distributions pEk may lead to severe Gibbs phenomenon, posing amajor obstacle
in implementing tensorizing flow. Therefore, we first smooth pEk using KDE and perform
SVD on the resulting kernel density estimators pSk instead of pEk . It is important to note
that we only use KDE to estimate the 2- or 3-marginals p∗

k but not the full distribution
p∗, as applying KDE directly to p∗ would result in poor performance due to the curse of
dimensionality.
In general, choosing the bandwidth parameter h involves a bias-variance trade-off. As

h → 0, the kernel density estimator p̂k approaches the empirical distribution pEk , an
unbiased estimator of the true distribution pk . On the other hand, as h grows, p̂k becomes
smoother with a certain bias. When the bandwidth h is sufficiently large, p̂k is smooth
enough to be well-approximated by polynomials.

Step 2
Estimate the coefficients Bk for 1 ≤ k ≤ d andAk for 1 ≤ k ≤ d−1 from kernel density

estimators pSk .
Ideally, Bd = pSd , and for 1 ≤ k ≤ d − 1, Bk is formed by the first rk left singular vectors

by performing SVD on the d − 1 kernel density estimators

pS1(x1; x2), p
S
2(x1, x2; x3), . . . , p

S
d−1(xd−2, xd−1; xd).

Afterward, A1 = B1, and Ak is obtained by marginalizing out the first variable of Bk for
2 ≤ k ≤ d − 1.
However, since xi takes value in I = [−1, 1] and allmarginals are continuous functions, a

numerical approximation is necessary for SVD. To this end, we introduce the normalized
Legendre polynomials {Li(x)}i≥1 with deg(Li) = i − 1, which form an orthonormal basis
of L2(I). For example, when evaluating Bk for 2 ≤ k ≤ d − 1, we take tensor-product nor-
malized Legendre polynomials {Lik−1 (xk−1)Lik (xk)}1≤ik−1 ,ik≤M as the expansion basis for
variables (xk−1, xk) and {Lik+1 (xk+1)}1≤ik+1≤M for xk+1. Here,M is a constant that controls
the accuracy of the polynomial approximation. Projecting pSk (xk−1, xk ; xk+1) orthogonally
onto these two sets of basis functions gives the followingM2 ×M coefficient matrix with
entry

PSk (ik−1, ik ; ik+1)

=
∫

I×I

∫

I

(
Lik−1 (xk−1)Lik (xk)

)
pSk (xk−1, xk ; xk+1)Lik+1 (xk+1)dxk−1dxkdxk+1.

Next, we compute the truncated SVD for PSk (ik−1, ik ; ik+1) and group the first rk singular
vectors into amatrix Bk (ik−1, ik ;αk) of sizeM2×rk , where rk is the numerical rank. Finally,
Bk (xk−1, xk ;αk) is obtained by

Bk (xk−1, xk ;αk) :=
M∑

ik−1=1

M∑

ik=1
Bk (ik−1, ik ;αk)Lik−1 (xk−1)Lik (xk),

and by contracting L1(xk−1) ≡ 1/
√
2 to both sides, Ak is obtained subsequently by

Ak (xk ;αk) :=
√
2

M∑

ik=1
Bk (1, ik ;αk)Lik (xk).

The cases for k = 1 and d are handled similarly.

 30 Page 12 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

Fig. 4 Diagrammatic notation of the k-th equation in the discrete CDEs (3.7) for 2 ≤ k ≤ d − 1 (cf. the
corresponding equation in the reduced CDEs (3.3))

Step 3
Solve (3.3) using least squares for the cores G1, . . . , Gd .
Similar to the previous step, a numerical approximation is needed since (3.3) is formu-

lated in terms of functions. We again resort to polynomial approximation and expand
Gk , Bk , and Ak w.r.t. the first M normalized Legendre polynomials. For example, for
2 ≤ k ≤ d − 1, the corresponding coefficient matrices Gk , Bk , and Ak are given by

Gk (αk−1; ik ,αk) =
∫

I
Gk (αk−1; xk ,αk)Lik (xk)dxk ,

Bk (βk−1; ik ,αk) =
∫

I×I
Bk (yk−1; xk ,αk)Lβk−1 (yk−1)Lik (xk)dyk−1dxk

Ak−1(βk−1;αk−1) =
∫

I
Ak−1(yk−1;αk−1)Lβk−1 (yk−1)dyk−1.

As interpreted by diagrammatic notation in Fig. 4, the projected version of the sys-
tem (3.3) is

G1(i1;α1) = B1(i1;α1),
rk−1∑

αk−1=1
Ak−1(βk−1;αk−1)Gk (αk−1; ik ,αk) = Bk (βk−1; ik ,αk), 2 ≤ k ≤ d − 1,

rd−1∑

αd−1=1
Ad−1(βd−1;αd−1)Gd(αd−1; id) = Bd(βd−1; id).

(3.7)

The discrete cores Gk can be efficiently obtained by solving these equations using least
squares. Once Gk ’s are solved, they are combined with the normalized Legendre polyno-
mials to produce the continuous cores

Gk (αk−1; xk ,αk) ≈
M∑

ik=1
Gk (αk−1; ik ,αk)Lik (xk).

Step 4
With the cores Gk ready, the approximate TT representation pTT(x) of pE(x) can be

set to G1(x1, :)G2(:, x2, :) · · ·Gd(:, xd) as in (3.2). However, there are two extra issues to be
addressed.
First, G1(x1, :)G2(:, x2, :) · · ·Gd(:, xd) does not necessarily integrate to unity. The nor-

malization can be achieved by contracting G1(x1, :)G2(:, x2, :) · · ·Gd(:, xd) with the all-one

Y. Ren et al. ResMath Sci (2023) 10:30 Page 13 of 25 30

Fig. 5 Diagrammatic notation of the approximate TT representation pTT

function and absorbing the resulting constant into any of Gk so that pTT retains the form

pTT(x1:d) := G1(x1, :)G2(:, x2, :) · · ·Gd(:, xd), (3.8)

the diagrammatic notation is shown in Fig. 5.
The second issue is that G1(x1, :)G2(:, x2, :) · · ·Gd(:, xd) is not necessarily non-negative.

To ensure the non-negativity, we may adopt the following post-processing by following
the approach of Born machine [32], i.e., one solves

min
q(x)

∥∥∥pTT(x) − r(x)2
∥∥∥
L2(Id)

s.t. r(x) =
M∑

i1=1
· · ·

M∑

id=1
R(i1:d)Li1 (x1) · · · Lid (xd),

where R(i1:d) = H1(i1, :)H2(:, i2, :) · · ·Hd(:, id) is a discrete tensor-train with discrete cores
Hi. Noticing that

∫

Id
pTT(x)dx =

∫

Id
r(x)2dx = ‖R‖2F

by the orthogonality of Legendre polynomials, then

pTT(x) := r(x)2 (3.9)

is guaranteed to be non-negative and integrated into one by normalizing the Frobenius
norm of the discrete tensor-train R. Strictly speaking, this is not a TT representation but
the point-wise square of a TT representation.

Remark 3.6 It isworth noting that the coefficients of the Legendre expansiondecay super-
algebraically for C∞ functions [65, Theorem 9.1.1]. As a result, a moderately large value
of M can lead to an accurate approximation. The numerical ranks rk for a Markovian
model are at most M and can be determined by truncating the singular values using an
appropriate threshold. Empirically, these parameters can be selected by performing cross-
validations on marginals. Additionally, as this tensor-train approximation is used as an
initial guess in the next stage, these parameters can be kept quite small.

3.2 Stage 2: Construction of pTF

In the second stage of our method, we depart from the typical approach of using the
normal distribution as the base distribution. Instead, we begin with the approximate TT
representation pTT(x) obtained in (3.8) or (3.9) and use the continuous-time flow model
in Sect. 2.3 to improve this approximation.

 30 Page 14 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

Following the steps outlined in Sect. 2.3, we initialize the distribution q(x, 0) as pTT(x),
and then choose appropriate values for the time horizon T and step-size τ . This yields
a new density approximation qθ (x) ≡ q(x, T), where the subscript θ denotes the neural
network used to parameterize the potential function φθ (x) that guides the flow described
in (2.8).
As in the MLE setup (2.2), the loss function for training is chosen as the negative log-

likelihood:

L(θ) := −Ex∼pE log qθ (x). (3.10)

In the actual implementation, the neural network is trained on batches, which are ran-
domly selected from the full sample set {x(i)}1≤i≤N . In each training step, the loss function
is approximated by −1/Nbatch

∑Nbatch
j=1 log qθ (x(j)), where Nbatch is the batch size. Each

likelihood qθ (x(j)) is calculated by solving the dynamic system (2.8) by the fourth-order
Runge–Kutta scheme.
Once qθ (x) is learned, we use it to define the final product

pTF(x) := qθ (x)
that approximate the unknown underlying distribution p∗(x). To sample from pTF(x) =
qθ (x), we first sample from the approximate TT representation pTT(x)1 and then applying
the pushforward f again by numerically integrating (2.8a). Readers may refer to Fig. 2 for
the evaluation and sampling procedures for qθ .

Remark 3.7 In the case of normalizing flow, the base distribution is typically chosen as a
normal distribution, which does not contain any information about the target distribution
p∗. Consequently, the neural network in the flow model must be sufficiently large to
learn the complicated pushforward map from the normal distribution to p∗. In contrast,
our tensorizing flow approach uses a base distribution pTT already close to p∗, so the
pushforward is close to the identitymap. As a result, the neural network in our flowmodel
can be quite simple, making training easy and generalization robust. Furthermore, when
we initialize the potential function φθ in the continuous-time flow model as a constant
function, both the forward and inverse maps are initially the identity. This means we can
exploit pTT as prior knowledge, and the density approximation pTF is guaranteed to be
better than pTT through training.
For this near-identity flow, one may also consider using residual flows [33]. Several

related works [28,39] introduce extra variables to create a reversible network architecture
based on residual connections. However, comparedwith classical flows such asNICE [19],
Real NVP [20], MAF [53], and Glow [41], these networks cannot be inverted analytically,
which significantly affects their efficiency and feasibility. Moreover, due to the use of
convolutional layers in these networks, evaluating the Jacobian determinant in (2.6) is
expensive and often requires a biased, yet still costly, estimate of the log-Jacobian, given by
the power series for the trace of the matrix logarithm log (det(I + F)) = tr (log(I + F)) =∑∞

k=1(−1)k−1tr(F)k/k . Since we use an ODE-based continuous-time flow model, we can
obtain both the path and the log-Jacobian by numerical integrating (2.8), circumventing
the inefficiency aforementioned.

Before ending the algorithmic discussion, we summarize the method in Algorithm 1.

1Efficient sampling from a given TT representation can be achieved using algorithms presented by [21] and [50].

Y. Ren et al. ResMath Sci (2023) 10:30 Page 15 of 25 30

Algorithm 1 Tensorizing flow
Require: A collection of samples {x(i)}1≤i≤N independently drawn from an underlying distri-
bution p∗(x) : Id → R;

1. Construct the approximate TT representation pTT(x) from the samples {x(i)}1≤i≤N fol-
lowing the routine outlined in Section 3.1.2.

2. Construct a potential functionφθ (x) parameterizedby theneural network θ , setq(x, 0) =
pTT(x), and construct the density estimation qθ (x) = q(x, T) by applying Runge-Kutta
scheme to (2.8) with step-size τ for �T/τ� steps;

3. Train the neural network on the sample set {x(i)}1≤i≤N w.r.t. loss function (3.10) and
output qθ (x) as the final estimation pTF(x) for p∗(x).

Remark 3.8 Here, we would like to emphasize the distinct nature of our methodology
compared to [40]. The latter focuses on performing variational inference on a density
of the form p(x) ∝ exp(−U (x)). The explicit expression of U (x) equips [40] with the
ability to evaluate the unnormalized density exp(−U (x)) at any selected point across a
multivariate grid. Then, they utilize the TT-cross algorithm [51] to directly create the
TT representation of the unnormalized density, which is the foundation for subsequent
procedures. In contrast, our method caters to scenarios where the potential function
is undisclosed and the density can only be assessed via samples. In these instances, we
propose to build each core of the TT representation pTT of the density with the marginal
samples (cf. Sect. 3.1.2), followed by enhancing pTT using the subsequent flow model.

4 Experimental results
In this section, we present several experimental results that demonstrate the performance
of our algorithm. Our algorithm is implemented by properly transforming and scaling the
Legendre polynomials for an arbitrary interval I other than [−1, 1], under the assumption
that supp(p) ⊂ Id . We will specify the choice of I for each example presented below.
Gauss–Legendre quadrature is adopted for all numerical integration in constructing the
TT representation with l quadrature points along each dimension.
We adopt a multi-layer perceptron (MLP) structure with an input layer, two hidden

layers of width D, and an output layer, for the neural network used to parameterize the
potential function φθ : Rd → R in the flow model. To provide sufficient smoothness for
φθ and qθ , the activation functions are chosen as log cosh and the soft-plus function for the
first and second hidden layers, respectively. We use the Adam optimizer for the neural
network training with two parameters: the learning rate (LR) and weight decay (WD).
The learning rate is scaled by a multiplicative factor γ after each epoch. The choices of all
parameters are organized in Table 1 in Appendix 7. All the experiments are implemented
using PyTorch deep learning framework and conducted on a Tesla V100 GPU.
Throughout all the examples,weprovide the experimental results of our tensorizingflow

(TF) algorithm (Algorithm 1) in comparison with the normalizing flow (NF) approach,
which also allows for explicit likelihood evaluation. To ensure a fair anddirect comparison,
we utilize the continuous-time flow model of the same neural network architecture and
parameters (see Table 1) for the normalizing flow.
We would also like to emphasize that the loss (3.10) satisfies

L(θ) = −Ex∼pE log qθ (x) = DKL
(
pE(·)‖qθ (·)

)
− Ex∼pE log pE(x).

 30 Page 16 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

Fig. 6 Marginal distributions of the Rosenbrock distribution: a singular structure appears on the last two
dimensions

(a) (b)

Fig. 7 Estimating the Rosenbrock distribution of dimension d = 10 with sample size N = 105: Both the
initial loss and the final loss of TF are better than those of NF when training with the same neural network
architecture and parameters

Hence, it should not be expected for the loss to approach zero during the training process.

4.1 Rosenbrock distribution

In this example, we consider the distribution induced by the Rosenbrock function v(x),
i.e., p∗(x) ∝ exp (−v(x)/2), where

v(x) =
d−1∑

i=1

[
c2i x

2
i + (

ci+1xi+1 + 5(c2i x
2
i + 1)

)2] .

We set the dimension d = 10 and restrict all xi to the finite interval I = [−1, 1]. Following
the example of [21], we select the scaling factor ci = 2 for 1 ≤ i ≤ d − 2, cd−1 = 7, and
cd = 200. As shown in Fig. 6, the Rosenbrock distribution is relatively isotropic in the first
d − 2 variables but is concentrated along a curve on the last two dimensions.
The experiment results are shown in Fig. 7. Our algorithm starts with a significantly

lower loss when compared to normalizing flow. This observation aligns with our expec-
tation that the approximate TT representation pTT(x) serves as a much better base distri-
bution q(x, 0) than the normal distribution in the flow model, in terms of both initial and
final losses.

Y. Ren et al. ResMath Sci (2023) 10:30 Page 17 of 25 30

Fig. 8 Sampling results projected on the d − 2 and d − 1-th dimension for Rosenbrock distribution of
dimension d = 10: Samples from tensorizing flow agree better with the original distribution

Fig. 9 Sampling results projected on the d − 1 and d-th dimension for Rosenbrock distribution of dimension
d = 10: Tensor-train has limitations in representing the tail structure which in contrast can be learned
satisfactorily by TF

Figures 8 and 9 display samples generated by our method and the given samples. It is
clear that using the approximate TT representation, in contrast to a normal distribution
as the base distribution, better captures the rough structure of the target distribution. In
[21], extra fine grids on the last two dimensions are adopted (4 and 32 times finer than
the first d − 2 dimensions, respectively) to address the singular tail structure. However,
since the empirical distribution is smoothed by kernel density estimation in our approach,
no additional specific measures are required for constructing the approximate TT rep-
resentation, and the subsequent neural network-based flow automatically corrects the
estimation.

4.2 Ginzburg–Landau distribution

The Ginzburg–Landau (GL) theory is a widely used model for studying phase transition
in statistical mechanics [37]. Let � ⊂ R

k be some domain with appropriate boundary
conditions. The general Ginzburg–Landau potential, defined for a sufficiently smooth
function x(r) : � → R, is given by

E[x(·)] =
∫

�

[
δ

2
|∇rx(r)|2 + 1

δ
V (x(r))

]
dr, (4.1)

where the potential V (x) = (
1 − x2

)2
/4.

4.2.1 1DGinzburg–Landau distribution

We consider the 1-dimensional physical domain � = [0, L]. The function x(r) is dis-
cretized using the vector x ≡ (x0, . . . , xd+1), which contains the values of x(r) on the
uniform grid (ih)d+1

i=0 , with Dirichlet boundary condition x0 = xd+1 = 0 and grid size
h = L/(d + 1). By employing the first-order finite difference scheme and estimating
the integral in (4.1) with the Riemann sum, the 1D Ginzburg–Landau potential can be

 30 Page 18 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

(a) (b)

Fig. 10 Two local minimizers of the 1D GL potential with δ = 0.05 and L = 1

(a) (b)

Fig. 11 Estimating the 1D GL distribution of dimension d = 8 with sample size N = 104

approximated by

E(x) =
d+1∑

i=1

[
δ

2

(
xi − xi−1

h

)2
+ 1

4δ
(
1 − x2i

)2
]

(4.2)

and its associated Boltzmann distribution satisfies p∗(x) ∝ exp(−βE(x)), where β is the
inverse temperature. As mentioned by [26], the majority of the states x of interest lie
within the range between x− and x+, which are the two minimizers of the 1D Ginzburg–
Landau potential (4.2), shown in Fig. 10. Therefore, we choose I = [−3, 3] as the range
for each xi in the discretization x.
The results for the case where d = 8, β = 3, δ = 0.5, and h = 1 are shown in Fig. 11.

Similar to the previous example, the tensorizing flow algorithm achieves a lower initial
loss and, eventually, a lower final loss than the normalizing flow algorithm.
To demonstrate the impact of sample size on our approach, we perform additional

experiments for the settingd = 16,β = 3, δ = 1, and h = 1with sample sizes 103, 104, and
105.We adjust the training parameters, including the number of epochs, learning rate, etc.,
proportionally to ensure a fair comparison between these experiments (see Table 1). The
results, presented in Fig. 12, depict the normalized epoch on the horizontal axis, i.e., epoch
divided by the total number of epochs, and the test loss computed using a common test set
of size 5 × 103 on the vertical axis. As the performance of the normalizing flow improves

Y. Ren et al. ResMath Sci (2023) 10:30 Page 19 of 25 30

(a) (b)

Fig. 12 Comparison of test loss for estimating 1D GL distribution of dimension d = 16 with different sample
sizes N: TF yields better results with much fewer samples than NF of the same neural network architecture

(a) (b)

Fig. 13 Estimating the 1D GL distribution of dimension d = 16 with sample size N = 1000: NF with 106

parameters overfits significantly compared with TF with 104 parameters

with an increase in sample size, a larger sample set yields a better TT representation pTT

to begin with, which ultimately results in a better density estimation pTF after training.
Furthermore, Fig. 12 reveals that our method produces a better density estimation with
104 samples than normalizing flow with 105 samples, demonstrating the efficiency of our
method in terms of samples required to reach a certain accuracy in density estimation.
In Fig. 13, we present another example with d = 16, β = 3, δ = 1, h = 1, and

N = 103, aiming to understand why normalizing flow cannot achieve the same test
loss as tensorizing flow. Normalizing flow has higher training and test losses using the
same architecture than tensorizing flow (see the red curves in Fig. 13). To improve the
training loss of normalizing flow, we use a relatively over-parameterized neural network
for normalizing flow (see the corresponding parameters in Table 1) so that its training
loss matches that of tensorizing flow (see the yellow curve in Fig. 13). With a matching
training loss, normalizing flow significantly overfits (see the yellow curve in Fig. 13). This
demonstrates that tensorizing flow provides much better generalization and is not prone
to overfitting, as it uses a relatively small and less expressive neural network.

 30 Page 20 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

Fig. 14 Periodic boundary condition of the 2D Ginzburg–Landau distribution and the “snake ordering” of
the matrix variable x of dimension d = 4 × 4: pairs of variables with energy functions between them are
connected by black lines, and the vectorization of x is along the order indicated by the red arrow path

4.2.2 2DGinzburg–Landau distribution

In the two-dimensional case, we consider the physical domain � = [0, L]2. The function
x(r) is discretized with a

√
d × √

d array x = (
xi,j

)√
d

i,j=1, where xi,j represents its value
at the grid point ((i − 1)h, (j − 1)h) with grid size h = L/(

√
d − 1). Following a similar

discretization procedure as in the one-dimensional case, we obtain the probability density
function of the 2D Ginzburg–Landau distribution, which satisfies p∗(x) ∝ exp(−βE(x)),
where

E(x) =
√
d∑

i=1

√
d∑

j=1

[
δ

2

((xi,j − xi−1,j

h

)2
+

(xi,j − xi,j−1

h

)2
)

+ 1
4δ

(
1 − x2i,j

)2
]
. (4.3)

The periodic boundary condition is adopted, i.e., x0,j = x√
d,j for 1 ≤ j ≤ √

d and
xi,0 = xi,√d for 1 ≤ i ≤ √

d, as shown in Fig. 14.
Unlike the 1D Ginzburg–Landau model, the 2D Ginzburg–Landau is not Markovian.

To obtain an approximate TT representation using the algorithm proposed in Sect. 3.1,
we adopt the “snake ordering” when vectorizing the matrix x in the order demonstrated
by the red arrow path in Fig. 14, in lieu of simply stacking the columns (or rows) of the
array x. This particular ordering helps us maintain the correlation between each pair of
adjacent variables and consequently allows us to fully exploit the Markovian structure
of (4.3).
In our example, we set the dimension d = 4 × 4, β = 1.5, δ = 1, h = 1. The range

of each xi,j is also assumed to be within I = [−3, 3]. The experiment results in Fig. 15
further confirm the effectiveness of our algorithm over either the normalizing flow or the
TT representation when dealing with more complicated, non-Markovian distributions.

5 Discussions
We propose a generative model for high-dimensional density estimation from a finite
collection of samples. By using a sketching technique, we construct an approximate
tensor-train representation efficiently. We adopt kernel density estimation to estimate
the required low-dimensional marginals to construct the tensor-train. Starting from the
tensor-train representation as the base distribution, we refine our density estimation by
performing the continuous-time flowmodel. The flowmodel features a potential function

Y. Ren et al. ResMath Sci (2023) 10:30 Page 21 of 25 30

(a) (b)

Fig. 15 Estimating the 2D Ginzburg–Landau distribution of dimension d = 4 × 4 with sample size N = 104:
TF learns a complicated non-Markovian density

parameterized by a neural network and fast calculation of both the forward and inverse
map by the Runge–Kutta scheme.
Our experiments demonstrate that our method outperforms normalizing flow with

similar architectures and can deal with distributions of certain singularities and non-
Markovianmodels, for which traditional tensor-trainmethodsmay encounter difficulties.
The near-identity nature of the tensorizing flow means that a relatively simple neural
network is sufficient for the flowmodel, which is easier to train and less prone to overfitting
than normalizing flow.
Ourmethodmakes several algorithmic choices. For example, although we use Legendre

polynomials as the expansion basis in this work, our method is open to other expansion
bases, such as the Chebyshev polynomials and Fourier bases. Furthermore, in the second
stage of the algorithm, it is possible to replace the continuous-time flow model adopted
here withmany other flow-basedmodels. A performance comparison of thesemodels will
be useful.
One limitation is the presumed Markovian structure of the distributions in the first

stage of our method. Future research may focus on designing a more adaptive scheme for
non-Markovian models with more sophisticated graph structures. While our preliminary
experimental results are promising, the potential of tensorizing flow has yet to be explored
and compared, especially for large-scale real-world datasets.

FUNDING
Lexing Ying is partially supported by National Science Foundation under Award No. DMS-2011699. Yuehaw Khoo is
partially supported by National Science Foundation under Award No. DMS-2111563 and U.S. Department of Energy,
Office of Science under Award No. DE-SC0022232.

Data Availability
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable
request.

Author details
1Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, CA 94305, USA,
2Department of Statistics, University of Chicago, Chicago, IL 60637, USA, 3Department of Mathematics and ICME, Stanford
University, Stanford, CA 94305, USA.

 30 Page 22 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

6 Appendix A. Proof of Proposition 3.3
In this appendix, we prove Proposition 3.3 from Sect. 3.1:

Proof of Proposition 3.3 For 2 ≤ k ≤ d, it suffices for us to consider the k-th equation
in (3.1):

rk−1∑

αk−1=1
�k−1(x1:k−1;αk−1)Gk (αk−1; xk ,αk) = �k (x1:k−1; xk ,αk). (A.1)

By Definition 3.1, there exist orthonormal right singular vectors

{
k−1(αk−1; xk :d)}1≤αk−1≤rk−1 ⊂ L2(Id−k+1)

of p(x1:k−1; xk :d) and

{
k (αk ; xk+1:d)}1≤αk≤rk ⊂ L2(Id−k)

of p(x1:k ; xk+1:d), and corresponding singular values σk−1(1) ≥ · · · ≥ σk−1(rk−1) and
σk (1) ≥ · · · ≥ σk (rk), satisfying

p(x1:k−1; xk :d) =
rk−1∑

αk−1=1
σk−1(αk−1)�k−1(x1:k−1;αk−1)
k−1(αk−1; xk :d), (A.2)

and

p(x1:k ; xk+1:d) =
rk∑

αk=1
σk (αk)�k (x1:k ;αk)
k (αk ; xk+1:d).

Define �k (xk+1:d ;αk) = σk (αk)−1
k (αk ; xk+1:d). It is easy to check that
∫

Id−k
p(x1:k ; xk+1:d)�k (xk+1:d ;αk)dxk+1:d

=
∫

Id−k

rk∑

α′
k=1

σk (α′
k)σk (αk)−1�k (x1:k ;α′

k)
k (α′
k ; xk+1:d)
k (αk ; xk+1:d)dxk+1:d

=�k (x1:k ;αk).

Therefore, by contracting �k (xk+1:d ;αk) to both sides of (A.2), we have

�k (x1:k ;αk) =
∫

Id−k
p(x1:k−1; xk :d)�k (xk+1:d ;αk)dxk+1:d

=
rk−1∑

αk−1=1
σk−1(αk−1)�k−1(x1:k−1;αk−1)

∫

Id−k

k−1(αk−1; xk :d)�k (xk+1:d ;αk)dxk+1:d ,

and consequently,

Gk (αk−1; xk ,αk) = σk−1(αk−1)
∫

Id−k

k−1(αk−1; xk :d)�k (xk+1:d ;αk)dxk+1:d

solves equation (A.1).
The uniqueness of the solution is guaranteed by the orthogonality of the functions

{
k−1(αk−1; xk :d)}1≤αk−1≤rk−1 by definition.OnceGk is ready, it is easy to check the validity
of (3.2) by plugging the CDE in (3.1) one into the next successively.

Y. Ren et al. ResMath Sci (2023) 10:30 Page 23 of 25 30

Table 1 Hyperparameters used in the examples

Example Instance N M Nbatch D LR WD γ

Rosenbrock(Figure 7) TF/NF 1e+5 30 5e+3 64 5e-4 2e-3 0.9

1D GL(Figure 11) TF/NF 1e+4 25 5e+3 128 5e-3 1e-3 0.9

1D GL(Figure 12) TF/NF 1e+3 25 1e+3 128 5e-3 1e-3 0.9

1e+4 25 5e+3 128 5e-3 1e-3 0.9

1e+5 25 5e+3 128 2e-3 1e-3 0.85

1D GL(Figure 13) TF/NF 1e+3 25 1e+3 128 5e-3 1e-3 0.9

Overfitting NF 1e+3 25 1e+3 1024 2e-3 1e-3 0.9

2D GL(Figure 15) TF/NF 1e+4 25 5e+3 128 5e-3 1e-3 0.9

7 Appendix B. Hyperparameters
This section presents the hyperparameters of our tensorizing flow algorithmused for each
example in Sect. 4. For simplicity, we choose the internal ranks rk = 2 for 1 ≤ k ≤ d − 1,
and the number of quadrature points l = 20 for all numerical integrations involved. We
set the time horizon T = 0.2 with step-size τ = 0.01 in the flow model. We choose the
bandwidth parameter h in (3.6) to be 5%of the range of the data.We generateN/2 samples
separately from the training samples as the test samples. The rest of the hyperparameters
are organized in Table 1.

Received: 24 February 2023 Accepted: 9 June 2023

References
1. Bachmayr, M., Schneider, R., Uschmajew, A.: Tensor networks and hierarchical tensors for the solution of high-

dimensional partial differential equations. Found. Comput. Math. 16, 1423–1472 (2016)
2. Baiardi, A., Reiher, M.: The density matrix renormalization group in chemistry and molecular physics: recent develop-

ments and new challenges. J. Chem. Phys. 152, 040903 (2020)
3. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)
4. Behrmann, J., Grathwohl, W., Chen, R.T., Duvenaud, D., Jacobsen, J.-H.: Invertible residual networks. In: International

Conference on Machine Learning, PMLR, pp. 573–582 (2019)
5. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. Adv Neural Inf. Process. Syst. 13 (2000)
6. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol. 4. Springer, Cham (2006)
7. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112, 859–877

(2017)
8. Bond-Taylor, S., Leach, A., Long, Y., Willcocks, C.G.: Deep generative modelling: A comparative review of vaes, gans,

normalizing flows, energy-based and autoregressive models, arXiv preprint arXiv:2103.04922 (2021)
9. Bonnevie, R., Schmidt, M.N.: Matrix product states for inference in discrete probabilistic models, The. J. Mach. Learn.

Res. 22, 8396–8443 (2021)
10. Bradley, T.-D., Stoudenmire, E.M., Terilla, J.: Modeling sequences with quantum states: a look under the hood. Mach.

Learn. Sci. Technol. 1, 035008 (2020)
11. Brandao, F.G., Horodecki, M.: Exponential decay of correlations implies area law. Commun. Math. Phys. 333, 761–798

(2015)
12. Chan, G.K.-L., Sharma, S.: The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 62,

465–481 (2011)
13. Chen, C., Li, C., Chen, L., Wang, W., Pu, Y., Duke, L.C.: Continuous-time flows for efficient inference and density

estimation. In: International Conference on Machine Learning, PMLR„ pp. 824–833 (2018)
14. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. Adv. Neural Inf. Process.

Syst. 31 (2018)
15. Cheng, S., Wang, L., Xiang, T., Zhang, P.: Tree tensor networks for generative modeling. Phys. Rev. B 99, 155131 (2019)
16. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.-I.: Nonnegative Matrix and Tensor Factorizations: Applications to

Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, London (2009)
17. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl.

21, 1253–1278 (2000)
18. De Lathauwer, L., DeMoor, B., Vandewalle, J.: On the best rank-1 and rank-(r1 , r2 , . . . , rn) approximation of higher-order

tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)
19. Dinh, L., Krueger, D., Bengio, Y.: Nice: non-linear independent components estimation. arXiv preprint arXiv:1410.8516

(2014)
20. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. arXiv preprint arXiv:1605.08803 (2016)
21. Dolgov, S., Anaya-Izquierdo, K., Fox, C., Scheichl, R.: Approximation and sampling of multivariate probability distribu-

tions in the tensor train decomposition. Stat. Comput. 30, 603–625 (2020)

http://arxiv.org/abs/2103.04922
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1605.08803

 30 Page 24 of 25 Y. Ren et al. Res Math Sci (2023) 10:30

22. Dolgov, S.V., Khoromskij, B.N., Oseledets, I.V., Savostyanov, D.V.: Computation of extreme eigenvalues in higher dimen-
sions using block tensor train format. Comput. Phys. Commun. 185, 1207–1216 (2014)

23. Dupont, E., Doucet, A., Teh, Y.W.: Augmented neural odes. Adv. Neural Inf. Process. Syst. 32 (2019)
24. Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: Cubic-spline flows, arXiv preprint arXiv:1906.02145 (2019)
25. Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: Neural spline flows. Adv. Neural Inf. Process. Syst. 32 (2019)
26. Ren, W., Vanden-Eijnden, E.: Minimum action method for the study of rare events. Commun. Pure Appl. Math. 57,

637–656 (2004)
27. Germain, M., Gregor, K., Murray, I., Larochelle, H.: Made: masked autoencoder for distribution estimation. In: Interna-

tional Conference on Machine Learning, PMLR, pp. 881–889 (2015)
28. Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network: backpropagation without storing

activations. Adv. Neural Inf. Process. Syst. 30 (2017)
29. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative

adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)
30. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31, 2029–2054 (2010)
31. Grathwohl,W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.: Ffjord: free-formcontinuous dynamics for scalable

reversible generative models. arXiv preprint arXiv:1810.01367 (2018)
32. Han, Z.-Y., Wang, J., Fan, H., Wang, L., Zhang, P.: Unsupervised generative modeling using matrix product states. Phys.

Rev. X 8, 031012 (2018)
33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
34. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800

(2002)
35. Hinton, G.E., Sejnowski, T.J.: Optimal perceptual inference. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, vol. 448, Citeseer, pp. 448–453 (1983)
36. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J. Mach. Learn. Res. (2013)
37. Hohenberg, P., Krekhov, A.: An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium

patterns. Phys. Rep. 572, 1–42 (2015)
38. Hur, Y., Hoskins, J.G., Lindsey, M., Stoudenmire, E., Khoo, Y.: Generative modeling via tensor train sketching. arXiv

preprint arXiv:2202.11788 (2022)
39. Jacobsen, J.-H., Smeulders, A., Oyallon, E.: i-revnet: deep invertible networks. arXiv preprint arXiv:1802.07088 (2018)
40. Khoo, Y., Lindsey, M., Zhao, H.: Tensorizing flows: a tool for variational inference. arXiv preprint arXiv:2305.02460 (2023)
41. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. Adv. Neural Inf. Process. Syst. 31

(2018)
42. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inferencewith inverse

autoregressive flow. Adv. Neural Inf. Process. Syst. 29 (2016)
43. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
44. Kobyzev, I., Prince, S.J., Brubaker, M.A.: Normalizing flows: an introduction and review of current methods. IEEE Trans.

Pattern Anal. Mach. Intell. 43, 3964–3979 (2020)
45. Kressner, D., Uschmajew, A.: On low-rank approximability of solutions to high-dimensional operator equations and

eigenvalue problems. Linear Algebra Appl. 493, 556–572 (2016)
46. Kressner, D., Vandereycken, B., Voorhaar, R.: Streaming tensor train approximation. arXiv preprint arXiv:2208.02600

(2022)
47. Larochelle, H., Murray, I.: The neural autoregressive distribution estimator. In: Proceedings of the Fourteenth Interna-

tional Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, pp. 29–37
(2011)

48. Miao, Y., Yu, L., Blunsom, P.: Neural variational inference for text processing. In: International Conference on Machine
Learning, PMLR, pp. 1727–1736 (2016)

49. Mnih, A., Gregor, K.: Neural variational inference and learning in belief networks. In: International Conference on
Machine Learning, PMLR, pp. 1791–1799 (2014)

50. Novikov, G.S., Panov, M.E., Oseledets, I.V.: Tensor-train density estimation. In: Uncertainty in Artificial Intelligence, PMLR,
pp. 1321–1331 (2021)

51. Oseledets, I., Tyrtyshnikov, E.: Tt-cross approximation for multidimensional arrays. Linear Algebra Appl. 432, 70–88
(2010)

52. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011)
53. Papamakarios, G., Pavlakou, T., Murray, I.: Masked autoregressive flow for density estimation. Adv. Neural Inf. Process.

Syst. 30 (2017)
54. Penrose, R.: Applications of negative dimensional tensors. Combinat. Math. Appl. 1, 221–244 (1971)
55. Perez-Garcia, D., Verstraete, F., Wolf, M.M., Cirac, J.I.: Matrix product state representations. arXiv preprint quant-

ph/0608197 (2006)
56. Ranganath, R., Gerrish, S., Blei, D.: Black box variational inference. In: Artificial Intelligence and Statistics, PMLR, pp. 814–

822 (2014)
57. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference on Machine

Learning, PMLR, pp. 1530–1538 (2015)
58. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative

models. In: International Conference on Machine Learning, PMLR, pp. 1278–1286 (2014)
59. Robeva, E., Seigal, A.: Duality of graphical models and tensor networks. Inf. Inference J. IMA 8, 273–288 (2019)
60. Savostyanov, D., Oseledets, I., Fast adaptive interpolation of multi-dimensional arrays in tensor train format. In: The

International Workshop on Multidimensional (ND) Systems. IEEE pp. 1–8 (2011)
61. Schmidhuber, J.: Generative adversarial networks are special cases of artificial curiosity (1990) and also closely related

to predictability minimization (1991). Neural Netw. 127, 58–66 (2020)

http://arxiv.org/abs/1906.02145
http://arxiv.org/abs/1810.01367
http://arxiv.org/abs/2202.11788
http://arxiv.org/abs/1802.07088
http://arxiv.org/abs/2305.02460
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2208.02600

Y. Ren et al. ResMath Sci (2023) 10:30 Page 25 of 25 30

62. Shi, T., Ruth, M., Townsend, A.: Parallel algorithms for computing the tensor-train decomposition. arXiv preprint
arXiv:2111.10448 (2021)

63. Stein, E.M., Shakarchi, R.: Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton University Press,
Princeton (2009)

64. Steinlechner, M.: Riemannian optimization for high-dimensional tensor completion. SIAM J. Sci. Comput. 38, S461–
S484 (2016)

65. Szeg, G.: Orthogonal Polynomials., vol. 23, American Mathematical Society (1939)
66. Tabak, E.G., Vanden-Eijnden, E.: Density estimation by dual ascent of the log-likelihood. Commun.Math. Sci.8, 217–233

(2010)
67. Tang, X., Hur, Y., Khoo, Y., Ying, L.: Generative modeling via tree tensor network states. arXiv preprint arXiv:2209.01341

(2022)
68. Temme, K., Verstraete, F.: Stochastic matrix product states. Phys. Rev. Lett. 104, 210502 (2010)
69. Tzen, B., Raginsky, M.: Neural stochastic differential equations: deep latent Gaussianmodels in the diffusion limit. arXiv

preprint arXiv:1905.09883 (2019)
70. Vieijra, T., Vanderstraeten, L., Verstraete, F.: Generative modeling with projected entangled-pair states. arXiv preprint

arXiv:2202.08177 (2022)
71. Wang, W., Aggarwal, V., Aeron, S.: Tensor train neighborhood preserving embedding. IEEE Trans. Signal Process. 66,

2724–2732 (2018)
72. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993)
73. Young, N.: An Introduction to Hilbert Space. Cambridge University Press, Cambridge (1988)
74. Zhang, L., Wang, L., et al.: Monge-ampère flow for generative modeling. arXiv preprint arXiv:1809.10188 (2018)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this
article is solely governed by the terms of such publishing agreement and applicable law.

http://arxiv.org/abs/2111.10448
http://arxiv.org/abs/2209.01341
http://arxiv.org/abs/1905.09883
http://arxiv.org/abs/2202.08177
http://arxiv.org/abs/1809.10188

	High-dimensional density estimation with tensorizing flow
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related works
	Deep generative modeling
	Tensor-train representation
	Variational inference with tensorizing flow

	1.3 Organization

	2 Problem and background
	2.1 Problem setting and notations
	2.2 Tensor-train representation
	2.3 Continuous-time flow model

	3 Tensorizing flow
	3.1 Stage 1: Construction of pTT
	3.1.1 Ideal case
	3.1.2 General case

	3.2 Stage 2: Construction of pTF

	4 Experimental results
	4.1 Rosenbrock distribution
	4.2 Ginzburg–Landau distribution
	4.2.1 1D Ginzburg–Landau distribution
	4.2.2 2D Ginzburg–Landau distribution

	5 Discussions
	6 Appendix A. Proof of Proposition 3.3
	7 Appendix B. Hyperparameters
	References

