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Abstract
This paper introduces a neural network approach for solving two-dimensional trav-
eltime tomography (TT) problems based on the eikonal equation. The mathematical
problem of TT is to recover the slowness field of a medium based on the boundary
measurement of the traveltimes of waves going through the medium. This inverse
map is high-dimensional and nonlinear. For the circular tomography geometry, a per-
turbative analysis shows that the forward map can be approximated by a vectorized
convolution operator in the angular direction. Motivated by this and filtered back-
projection, we propose an effective neural network architecture for the inverse map
using the recently proposed BCR-Net, with weights learned from training datasets.
Numerical results demonstrate the efficiency of the proposed neural networks.

Keywords Traveltime tomography · Eikonal equation · Inverse problem · Neural
networks · Convolutional neural network

Mathematics Subject Classification 65J22 · 65N21 · 74J25

1 Introduction

Traveltime tomography is a method to determinate the internal properties of a medium
by measuring the traveltimes of waves going through the medium. It is first motivated
in global seismology in determining the inner structure of the Earth by measuring at
different seismic stations the traveltimes of seismic waves produced by earthquakes
[5, 59]. By now, it has found many applications, such as Sun’s interior [42], ocean
acoustics [53], and ultrasound tomography [36, 62] in biomedical imaging.
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4 Y. Fan, L. Ying

Background The governing equation of first-arrival traveltime tomography (TT) is
the eikonal equation [9] and we consider the two-dimensional case in this paper for
simplicity. Let� ⊂ R

2 be an open bounded domain with Lipschitz boundary� = ∂�.
Suppose that the positive function m(x) is the slowness field, i.e., the reciprocal of
the velocity field defined in �. The traveltime u(x) satisfies the eikonal equation
|∇u(x)| = m(x). Since it is a special case of the Hamilton–Jacobi equation, the
solution u(x) can develop singularities and should be understood in the viscosity
sense [35].

A typical experimental setup of TT is as follows: For each source point xs ∈ �,
one sets up the Soner boundary condition at xs , i.e., zero value at xs , and solves for
the following the eikonal equation

|∇us(x)| = m(x), x ∈ �,

us(xs) = 0,
(1.1)

where the superscript s is to index the source point. Recording the solution of us(·)
at receiver points {xr } ⊂ � produces the whole data set {us(xr )}s,r . In practice, xr
and xs are samples from a discrete set of points on �. Here, we assume for now that
they are placed everywhere on �, for the simplicity of presentation and mathematical
analysis.

The forward problem is to compute us(xr ) given the slowness field m(x). On the
other hand, the inverse problem, at the center of the first-arrival TT, is to recoverm(x)
given us(xr ).

Both the forward and inverse problems are computationally challenging, and a lot
of efforts have been devoted to their numerical solutions. For the forward problem,
the eikonal equation, as a special case of the Hamilton–Jacobi equation, can develop
singular solutions. In order to compute the physically meaningful viscosity solution,
special care such as up-winding is required. As the resulting discrete system is non-
linear, fast iteration methods such as fast marching method [54, 64] and fast sweeping
method [38, 56, 70] have been developed. Among them, the fast sweeping methods
have been successfully applied to many traveltime tomography problems [47]. The
inverse problem is often computationally more intensive, due to the nonlinearity of the
problem. Typical methods take an optimization approach with proper regularization
[11] and require a significant number of iterations.
A deep learning approach Over the past decade or so, deep learning (DL) has become
the dominant approach in computer vision, image processing, speech recognition, and
many other applications in machine learning and data science [28, 33, 43, 45, 46,
51, 61, 65]. From a technical point of view, this success is a synergy of several key
developments: neural networks (NNs) as a flexible framework for representing high-
dimensional functions andmaps, simple algorithms such as back-propagation (BP) and
stochastic gradient descent (SGD) for tuning the model parameters, efficient general
software packages such as TensorFlow and PyTorch, and unprecedented computing
power provided by GPUs and TPUs.
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Solving Traveltime Tomography... 5

In the past several years, deep neural networks (DNNs) have been increasingly used
in scientific computing, particularly in solving PDE-related problems [4, 7, 21, 24, 30,
39, 44, 57], in two directions. In the first direction, as NNs offer a powerful tool for
approximating high-dimensional functions [14], it is natural to use them as an ansatz
for high-dimensional PDEs [10, 18, 30, 40, 60]. The second direction focuses on the
low-dimensional parameterized PDE problems, by using the DNNs to represent the
nonlinear map from the high-dimensional parameters of the PDE solution [6, 19–21,
31, 39, 48, 49].

As an extension of the second direction, DNNs have been widely applied to inverse
problems [2, 22, 23, 34, 37, 41, 50, 58, 66]. For the inverse problem, DNNs can help in
two critical ways: (1) due to its flexibility in representing high-dimensional functions,
DNNs can potentially be used to approximate the full inverse map, thus avoiding the
iterative solution process; (2) recent work in machine learning shows that DNNs often
can automatically extract features from the data and offer a data-driven regularization
prior.

This paper applies the deep learning approach to the first-arrival TT by representing
the whole inverse map using an NN. The starting point is a perturbative analysis of the
forward map, which reveals that for the circular tomography geometry, the forward
map contains a one-dimensional convolution with multiple channels, after appropriate
(polar) reparameterization. This observation motivates to represent the forward map
from 2D coefficient m(x) to the boundary data {us(xr )}s,r (with sources {xs} and
receivers {xr }) by a one-dimensional convolution neural network (with multiple chan-
nels). Further, the one-dimensional convolution neural network can be implemented
by the recently proposed multiscale neural networks [19, 21]. Following the idea of
filtered back-projection [63], the inverse map can be approximated by the adjoint map
followed by a pseudo-differential filtering step. This suggests an architecture for the
inverse map by reversing the architecture of the forward map followed with a simple
two-dimensional convolution neural network. For the test problems being considered,
the resulting neural networks have 105 parameters when the data are of size 160×160
(a fully-connected layer results in 1604 ≈ 6×108 parameters), thanks to the convolu-
tional structure and the compact multiscale neural network. This rather small number
of parameters allows for rapid and accurate training, even on rather limited data sets.

The approach followed by this paper relies on the harmonic analysis and PDE the-
ory of the wave equations. A more optimization-based deep learning approach for
inverse problems is the unrolling method [2, 15, 26, 32, 52, 55, 69], where one writes
the iterative solution algorithm as a ResNet and then trains the network parameters
to minimize the reconstruction error. In many cases, this approach also leads to high
quality reconstructions. There is also active work studying stability issues when apply-
ing deep learning to inverse problems [3, 13, 25, 29], which is particularly important
for applications with ill-posed inverse problems.
Organization This rest of the paper is organized as follows: The mathematical back-
ground is given in Sect. 2. The design and architecture of the DNNs of the forward and
inverse maps are discussed in Sect. 3. The numerical results in Sect. 4 demonstrate
the numerical efficiency and the generalization of the proposed neural networks.
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6 Y. Fan, L. Ying

2 Mathematical Analysis of Traveltime Tomography

2.1 Problem Setup

This section describes the necessarymathematical insights that motivate the NN archi-
tecture design. Let us consider the so-called differential imaging setting, where a
background slowness field m0(x) is known, and denote by us0 the solution of the
eikonal equation associated with the field m0:

|∇us0(x)| = m0(x), x ∈ �,

us0(xs) = 0.
(2.1)

Then for a perturbation m̃ to the slowness field, the difference in the traveltime ũs ≡
us − us0 naturally satisfies

|∇(us0(x) + ũs(x))| = m0(x) + m̃(x), x ∈ �,

ũs(xs) = 0.
(2.2)

The imaging data d(xs, xr ) consist of ũs(xr ) over all xs and xr : d(xs, xr ) ≡ ũs(xr ).
To better understand the dependence of ũs on m̃, we assume m̃ to be sufficient small

and carry out a perturbative analysis. Squaring Eq. 2.2 and canceling the background
using Eq. 2.1 result in

(∇ũs(x))T∇ũs(x) + 2(∇us0(x))
T∇ũs(x) = m̃(x)2 + 2m0(x)m̃(x). (2.3)

Since m̃(x) is sufficiently small, ∇ũs(x) is also a small quantity. Keeping only linear
terms in m̃ and discarding the higher order ones yields

∇us0(x)
T∇ũs(x) ≈ m0(x)m̃(x), (2.4)

which is an advection equation. Using |∇us0(x)
T| = m0(x), one can further simplify

the upper equation as

∇̂us0(x)
T∇ũs(x) ≈ m̃(x), (2.5)

where ·̂ stands for the unit vector.
For simplicity, let C0(xs, xr ) be the unique characteristic of us0(xr ) that connects xs

and xr . Then,

d(xs, xr ) ≡ ũs(xr ) ≈
∫

C0(xs ,xr )
m̃(x) dx ≡ d1(xs, xr ), (2.6)

where d1(xs, xr ) is introduced to stand for the first-order approximation to d(xs, xr ).
Particularly, if the background slowness field is a constant, then C0(xs, xr ) is a line
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Solving Traveltime Tomography... 7

Fig. 1 Illustration of the problem
setup. The domain is a unit disk
and the light sources and the
receivers are equidistantly
placed on the boundary

segment with start and end points to be xs and xr , respectively, and

d1(xs, xr ) = |xs − xr |
∫ 1

0
m̃(xs + τ(xr − xs)) dτ.

The most relevant geometry in traveltime tomography either for medicine and
earth science is the circular geometry where � is modeled as a unit disk [11, 16,
68]. As illustrated in Fig. 1, the sources and receivers are placed on the boundary
equidistantly. More precisely, xs = (cos(s), sin(s)) with s = 2πk

Ns
, k = 0, . . . , Ns − 1

and xr = (cos(r), sin(r)) with r = 2π j
Nr

, j = 0, . . . , Nr − 1, where Ns = Nr in the
current setup.

Often in many cases, the background slowness field m0(x) is only radially depen-
dent, or even a constant [16, 68]. In what follows, m0(x) is assumed to be radially
dependent, i.e., m0(x) = m0(|x |).

2.2 Mathematical Analysis of the ForwardMap

Since the domain � is a disk, it is convenient to rewrite the problem in the polar coor-
dinates. Let xr = (cos(r), sin(r)), xs = (cos(s), sin(s)) and x = (ρ cos(θ), ρ sin(θ)),
where ρ ∈ [0, 1] is the radial coordinate and r , s, θ ∈ [0, 2π) are the angular ones.

Figure 2 presents an example of the slowness field and themeasurement data.Notice
that the main signal in us(xr ) and d(xs, xr ) concentrates on the minor diagonal part.
Due to the circular tomography geometry, it is convenient to “shear” the measurement
data by introducing a new angular variable h = r − s, where the difference here
is understood modulus 2π . As we shall see in the next section, this shearing step
significantly simplifies the architecture of the NNs. Under the new parameterization,
the measurement data are

d(s, h) ≡ d(xs, xs+h). (2.7)
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8 Y. Fan, L. Ying

(a) (b) (c)

(d) (e) (f)
Fig. 2 Visualization of the slowness field and the measurement data. The upper figures are the perturbation
of the slowness field m̃(x) (m0 = 1 and m̃ ≤ 0 in this sample), the measurement data us (xr ) and the
difference d(xs , xr ) with respect to the background measurement data. The lower-left figure is m̃(x) in the
polar coordinates and the lower-right two figures the “shear” of their corresponding upper figures

The same convention applies to its first-order approximation: d1(s, h) ≡ d1(xs, xs+h).
Bywriting m̃(θ, ρ) ≡ m̃(ρ cos(θ), ρ sin(θ)) in the polar coordinates, the linear depen-
dence of d1(s, h) on m̃ in (2.6) states that there exists a kernel distribution K (s, h, θ, ρ)

such that

d1(s, h) =
∫ 1

0

∫ 2π

0
K (s, h, θ, ρ)m̃(θ, ρ) dρ dθ. (2.8)

Convolution form of the map m(θ, ρ) → d1(s, h). Since the domain is a disk and
m0 is only radially independent, the whole problem is equivariant to rotation. In this
case, the situation can be dramatically simplified. Precisely, we have the following
proposition.

Proposition 2.1 There exists a function κ(h, ρ, ·) periodic in the last parameter such
that

d1(s, h) =
∫ 1

0

∫ 2π

0
κ(h, ρ, s − θ)m̃(θ, ρ) dρ dθ. (2.9)

Proof Let C0(s, r) ≡ C0((cos(s), sin(s)), (cos(r), sin(r))) and we parameterize the
characteristic C0(s, r) as ps,h(τ ) ≡ (θs,h(τ ), ρs,h(τ )), τ ∈ [0, 1] with ρs,h(0) =
ρs,h(1) = 1 and θs,h(0) = s, θs,h(1) = r . Then, the relationship (2.6) between d1 and
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Solving Traveltime Tomography... 9

m̃ can be written as

d1(s, h) =
∫ 1

0
m̃(θs,h(τ ), ρs,h(τ ))‖p′

s,h(τ )‖ dτ.

Since the background slowness m0 is radially independent, the characteristic
C0(s, r) is rotation invariant in the sense that for any φ ∈ [0, 2π), if (θs,h(τ ), ρs,h(τ ))

is a parameterization of C0(s, r), then (θs,h(τ ) + φ, ρs,h(τ )) is a parameterization of
C0(s + φ, r + φ). Hence, for any φ ∈ [0, 2π), if we rotate the system by a angular φ,
then

d1(s + φ, h) =
∫ 1

0
m̃(θs+φ,h(τ ), ρs+φ,h(τ ))‖p′

s+φ,h(τ )‖ dτ

=
∫ 1

0
m̃(θs,h(τ ) + φ, ρs,h(τ ))‖p′

s,h(τ )‖ dτ.

Writing this equation in the form of (2.8) directly yields K (s + φ, h, θ + φ, ρ) =
K (s, h, θ, ρ). Hence, there is a periodic κ(s, h, ·) in the last parameter such that
K (s, h, θ, ρ) = κ(h, ρ, s − θ). This completes the proof. ��

Proposition 2.1 shows that K acts on m̃ in the angular direction by a convolution,
which is, in fact, themotivation behind shearing themeasurement data d. This property
allows us to evaluate the map m̃(θ, ρ) → d(s, h) by a family of 1D convolutions,
parameterized ρ and h.
Discretization All the above analysis is in the continuous space. One can apply a
discretization on the eikonal equation Eq. 1.1 by finite difference and solve it by fast
sweeping method or fast marching method. Here, we assume that the discretization of
m̃(θ, ρ) is on a uniformmesh on [0, 2π)×[0, 1]. More details of the discretization and
the numerical solver will be discussed in the Sect. 4.With a slight abuse of notation, we
use the same letters to denote the continuous kernels, variables and their discretization.
Then, the discretization version of Eqs. 2.8,2.9 is

d(s, h) ≈
∑

ρ,θ

K (s, h, θ, ρ)m̃(θ, ρ) =
∑

ρ

(κ(h, ρ, ·) ∗ m̃(·, ρ))(s). (2.10)

3 Neural Networks for TT

In this section, we describe theNN architecture for the inversemap d(s, h) → m̃(θ, ρ)

based on the mathematical analysis in Sect. 2. To start, we first study the NN for the
forward map and then the inverse map.
Forward map The perturbative analysis in Sect. 2.2 shows that, when m̃ is sufficiently
small, the forward map m̃(θ, ρ) → d(s, h) can be approximated by Eq. 2.10. In terms
of the NN architecture, for small m̃, the forward map Eq. 2.10 can be approximated
by a (non-local) convolution on the angular direction and a fully-connected operator
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10 Y. Fan, L. Ying

on the (h, ρ) direction. In the actual implementation, it can be represented by the
convolution layer by taking h and ρ as the channel dimensions. For larger m̃, this
linear approximation is no longer accurate. In order to extend the neural network for
Eq. 2.10 to the nonlinear case, we propose to increase the number of convolution layers
and nonlinear activation functions.

In the (h, ρ) direction, denote the number of channels by c, whose value is problem-
dependent and will be discussed in the numerical part. In the angular direction, since
the convolution between m̃ and d is global, in order to represent global interactions
the window size of the convolution w must satisfy the following relationship

wNcnn ≥ Nθ , (3.1)

where Ncnn is the number of layers and Nθ is number of discretization points on the
angular direction. A simple calculation shows that the number of parameters of the
neural network is O(wNcnnc2) ∼ O(Nθc2).

In a recent work [19], BCR-Net has been proposed as an alternative with built-in
multiscale structure. At a high level, BCR-Net is motivated by the data-sparse non-
standard wavelet representation of the pseudo-differential operators [8]. It processes
the information at different scale separately and each scale can be understood as a
local convolutional neural network. It has been demonstrated to require fewer number
of parameters and provide better efficiency for such global interactions. Therefore, in
our architecture, we replace the convolution layers with the BCR-Net.

Data: c, Ncnn ∈ N
+, m̃ ∈ R

Nθ ×Nρ

Result: d ∈ R
Ns×Nh

/* Resampling data to fit for BCR-Net. */
ξ = Conv1d[c, 1, id](m̃) with ρ as the channel direction
/* Use BCR-Net to implement the convolutional neural network. */
ζ = BCR − Net[c, Ncnn](ξ)

/* Reconstruct the result from the output of BCR-Net. */
d = Conv1d[Nh , 1, id](ζ )

Algorithm 1: Neural network architecture for the forward map m̃ → d.

The resulting neural network architecture for the forward map is summarized in
Algorithm 1 with an estimate of O(c2 log(Nθ )Ncnn) parameters. The components are
explained in the following.

• ξ = Conv1d[c, w, φ](m) mapping m ∈ R
Nθ×Nρ to ξ ∈ R

Nθ×c is the one-
dimensional convolution layer with window size w, channel number c, activation
function φ and period padding on the first direction.

• The one-dimensional ζ = BCR − Net[c, Ncnn](ξ) maps ξ ∈ R
Nθ×c to ζ ∈

R
Nθ×c, where the number of channels and layers in the local convolutional neural

network in each scale are c and Ncnn, respectively. The readers are referred to [19]
for more details on the BCR-Net.

Inverse map The perturbative analysis in Sect. 2.2 shows that if m̃ is sufficiently small,
the forward map can be approximated by d ≈ Km̃, the operator notation of the
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Solving Traveltime Tomography... 11

discretization Eq. 2.10. Here, m̃ is a vector indexed by (θ, ρ), d is a vector indexed by
(s, h), and K is a matrix with row indexed by (s, h) and column indexed by (θ, ρ).

The filtered back-projection method [63] suggests the following formula to recover
m̃:

m̃ ≈ (K TK + ε I )−1K Td, (3.2)

where ε is a regularization parameter. The first piece K Td can also be written as a
family of convolutions

(K Td)(θ, ρ) =
∑

h

(κ(h, ρ, ·) ∗ d(·, h))(θ). (3.3)

The application of K T to d can be approximated with a similar neural network to K in
Algorithm 1. The second piece (K TK + ε I )−1 is a pseudo-differential operator in the
(θ, ρ) space and it is implemented with several two-dimensional convolutional layers
for simplicity. Then, the resulting architecture for the inverse map is summarized in
Algorithm 2 and illustrated in Figure 3. The Conv2d[c2, w, φ] used in Algorithm 2
is the two-dimensional convolution layer with window size w, channel number c2,
activation function φ and periodic padding on the first direction and zero padding on
the second direction. The selection of the hyper-parameters in Algorithm 2 will be
discussed in Sect. 4.

Data: c, c2, w, Ncnn, Ncnn2 ∈ N
+, d ∈ R

Ns×Nh

Result: m̃ ∈ R
Nθ ×Nρ

/* Application of K T to d */
ζ = Conv1d[c, 1, id](d) with h as the channel direction
ξ = BCR − Net[c, Ncnn](ζ )

ξ (0) = Conv1d[Nρ, 1, id](ξ)

/* Application of (K TK + ε I )−1 */
for k from 1 to Ncnn2 − 1 do

ξ(k) = Conv2d[c2, w, ReLU ](ξ (k−1))

end
m̃ = Conv2d[1, w, id](ξ (Ncnn2−1))

Algorithm 2: Neural network architecture for the inverse problem d → m̃.

4 Numerical Tests

This section reports the numerical performance of the proposed neural network archi-
tecture in Algorithm 2 for the inverse map d → m̃.
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12 Y. Fan, L. Ying

Fig. 3 Neural network architecture for the inverse map of TT

4.1 Experimental Setup

In order to solve the eikonal equation Eq. 1.1 on the unit disk �, we embed � into
the square domain [−1, 1]2 by specifying sufficiently large slowness values outside
�. The domain [−1, 1]2 is discretized with a uniform Cartesian mesh with 160 points
in each direction by a finite difference scheme. The fast sweeping method proposed
in [70] is used to solve the nonlinear discrete system. In the polar coordinates, the
domain (θ, ρ) ∈ [0, 2π) × [0, 1] is partitioned by uniformly Cartesian mesh with
160 × 80 points, i.e., Nθ = 160 and Nρ = 80. As m̃(θ, ρ) used in Algorithm 2 is
in the polar coordinates while the eikonal equation is solved in the Cartesian ones,
and the perturbation of the slowness field m̃ is treated as a piecewise linear function
in the domain � and is interpolated on to the polar grid. The number of sources and
receivers as Ns = Nr = 160, and hence Nh = 160.

The NN in Algorithm 2 is implemented with Keras running on top of TensorFlow
[1]. All the parameters of the network are trainable and initialized by Xavier initializa-
tion [27]. The loss function is the mean squared error, and the optimizer is the Nadam
[17].

During the training process, the batch size and the learning rate is firstly set as
32 and 10−3, respectively, and the NN is trained 100 epochs. One then increases the
batch size by a factor 2 till 512 with the learning rate unchanged, and then decreases
the learning rate by a factor 101/2 to 10−5 with the batch size fixed as 512. In each
step, the NN is trained with 50 epochs. For the hyper-parameters used in Algorithm
2, Ncnn = 6, Ncnn2 = 5, and w = 3 × 3. The selection of the channel number c will
be studied later.

4.2 Results

For a fixed m̃, d(s, h) stands for the exact measurement data solved by numerical
discretization of Eq. 1.1. The prediction of the NN from d is denoted by m̃NN. The
metric for the prediction is the peak signal-to-noise ratio (PSNR), which is defined as
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(a) (b) (c)
Fig. 4 The test PSNR for different channel numbers c for the three types of data with Ne = 4

PSNR = 10 log10

(

Max2

MSE

)

, Max = max
i, j

(m̃i, j ) − min
i, j

(m̃i, j ), MSE

= 1

Nθ Nρ

∑

i, j

|m̃i, j − m̃NN
i, j |2. (4.1)

For each experiment, the test PSNR is then obtained by averaging Eq. 4.1 over a given
set of test samples. The numerical results presented below are obtained by repeating
the training process five times, using different random seeds for the NN initialization.

The numerical experiments focus on the shape reconstruction setting [16, 67],
where m̃ are often piecewise constant inclusions. The background slowness field is
set as m0 ≡ 1 and the slowness field m̃ is assumed to be the sum of Ne piecewise
constant ellipses. As the slowness field m is positive, it is required that m̃ > −1. For
each ellipse, the direction is uniformly random over the unit circle, the position is
uniformly sampled in the disk, and the width and height depend on the datasets. It
is also required that each ellipse lies in the disk and there is no intersection between
every two ellipses. Three types of data sets are generated to test the neural network.

• Negative inclusions. m̃, the perturbation of the slowness, is −0.5 in the ellipses
and 0 otherwise, and the width and height of each ellipse are sampled from the
uniform distributions U(0.1, 0.2) and U(0.05, 0.1), respectively.

• Positive inclusions. m̃ is 2 in the ellipses and 0 otherwise, and the width and height
of each ellipse are sampled from U(0.2, 0.4) and U(0.1, 0.2), respectively.

• Mixture inclusions. The setup of each ellipse is either a negative one in the negative
inclusions or a positive one in the positive inclusions.

For each type, we generate two datasets with the number of inclusions Ne = 2 and
4. For each test, 20480 samples {(m̃i , di )} are generated with 16384 used for training
and the remaining 4096 for testing.

The first numerical study is concerned with the choice of channel number c in
Algorithm 2. Figure 4 presents the test PSNR and the number of parameters with
different channel number c for three types of data sets with Ne = 4. As the channel
number c increases, the test PSNR first consistently increases and then saturates for all
the three types of data. Notice that the number of parameters of the neural network is
O(c2 log(Nθ )Ncnn). The choice of c = 30 is a reasonable balance between accuracy
and efficiency and the total number of parameters is 684K.
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14 Y. Fan, L. Ying

Fig. 5 NN prediction of a sample in the test data for negative (first row) / positive (second row) / mixture
(third row) inclusions with Ne = 4 for different noise level δ = 0, 2% and 10%

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 6 NN generalization test for the negative inclusions. The upper (or lower) figures: the NN is trained
by the data of the number of ellipses Ne = 2 (or 4) with noise level δ = 0, 1% or 2% and test by the data
of Ne = 4 (or 2) with the same noise level
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Solving Traveltime Tomography... 15

Fig. 7 NN generalization test for different types of data sets. The first column is the reference solution. In
each column of the last three columns, the NN is trained with one data type (negative, positive, or mixed)
and is tested on all three data types with Ne = 4 and without noise

To model the uncertainty in the measurement data, we introduce noises to the
measurement data by defining us,δ(xr ) ≡ (1 + Ziδ)us(xr ), where Zi is a Gaussian
random variable with zero mean and unit variance and δ controls the signal-to-noise
ratio. In terms of the actual data d of the differential imaging, dδ(s, h) ≡ (1 +
Ziδ)d(s, h) + Ziδus0(xr ). Notice that, since the mean of

‖us0(xr )‖‖d(s,h)‖ for all the samples
lies in [15, 30] in these experiments, the signal-to-noise ratio for d is in fact more than
15 · δ. For each noisy level δ = 0, 2%, 10%, an independent NN is trained and tested
with the noisy data set {(dδ

i , m̃i )}.
Figure 5 collects, for different noise level δ, samples for all three data types: (1)

negative inclusions with Ne = 4, (2) positive inclusions with Ne = 4, and (3) mixture
inclusions with Ne = 4. The NN is trained with the datasets generated in the sameway
as the test data. When there is no noise in the measurement data, the NN consistently
gives accurate predictions of the slowness field m̃, in the position, shape, and direction
of the ellipse. For the small noise levels, for example, δ = 2%, the boundary of the
shapes slightly blurs while the position and direction of the ellipse are still correct. As
the noise level δ increases, the shapes become fuzzy but the position and number of
shapes are always correct. This demonstrates the proposed NN architecture is capable
of learning the inverse problem.

The next test is about the generalization of the proposed NN. We first train the NN
by the data set of the negative inclusions with Ne = 2 (or 4) with noise level δ = 0,
1% or 2% and test by the data of the negative inclusions with Ne = 4 (or 2) with
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the same noise level. The results, presented in Figure 6, indicate that the NN trained
by the data with two inclusions is capable of recovering the measurement data of the
case with four inclusions and vice versa. This shows that the trained NN is capable of
predicting beyond the training scenario.

The last test is about the prediction power of the NN on one data type while trained
with another. In Figure 7, the first column is the reference solution. In each of the rest
three columns, the NN is trained with one data type (negative, positive, or mixed) and
is tested on all three data types, with Ne = 4 and without noise. The figures in the
second column show that the NN trained by negative inclusions fails to capture the
information of the positive inclusions, and vice versa, the third column demonstrates
that the NN trained with positive inclusions fails for the negative inclusions. On the
other hand, the NN trained with mixed inclusions is capable of predicting reasonably
well for all three data types.

5 Discussions

This paper presents a neural network approach for the inverse problems of first-arrival
traveltime tomography, by using the NN to approximate the whole inverse map from
the measurement data to the slowness field. The perturbative analysis, which indicates
that the linearized forward map can be represented by a one-dimensional convolution
withmultiple channels, inspires the design of thewholeNN architectures. The analysis
in this paper can also be extended to the three-dimensional TT problems by leveraging
recent work such as [12].
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