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ABSTRACT
The conventional velocity scan can be computationally expensive for large-scale seis-
mic data sets, particularly when the presence of anisotropy requires multiparameter
scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan
by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon
transforms. To compute semblance in a two-parameter residual moveout domain,
the numerical complexity of our algorithm is roughly O(N3 log N) as opposed to
O(N5) of the straightforward velocity scan, with N being the representative of the
number of points in a particular dimension of either data space or parameter space.
Synthetic and field data examples demonstrate the superior efficiency of the proposed
algorithm.
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INTRODUCTION

Multiazimuth seismic data reveal the Earth’s seismic response
along different azimuthal directions. Detecting and measuring
the anisotropy in such data can be useful for characterizing
fractures or stress in the subsurface(Tsvankin and Grechka,
2011). When apparent azimuthal anisotropy is present, con-
ventional single-parameter isotropic velocity scan and nor-
mal moveout (NMO) can be inadequate. To further flat-
ten the events, a residual anisotropic moveout may be nec-
essary. This, however, makes the implementation expensive:
the computational cost increases dramatically compared with
the single-parameter case. If we assume for simplicity that
there are N sample points in every dimension of the data and
model (parameter) domains, then the numerical complexity
of a two-parameter velocity scan will be at least O(N5), i.e.,
summing over O(N2) data points for each of O(N3) values
(time plus two parameters). Furthermore, picking parame-
ters from a high-dimensional semblance volume also poses a
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challenge (Adler and Brandwood, 1999; Siliqi et al. 2003;
Arnaud et al. 2004; Tao et al. 2012).

In this paper, we introduce a fast algorithm to speed up
the velocity-scan process. The stacking procedure involved
in computing the semblance can be regarded as a version
of the generalized Radon transform (Beylkin, 1984). Fol-
lowing our previous work on 2D hyperbolic Radon trans-
form (Hu et al. 2012, 2013), we formulate the time-domain
summation as a discrete oscillatory integral in the fre-
quency domain and apply the 3D version of the Fourier
integral operator buttery algorithm (Candès, Demanet, and
Ying, 2009). As a result, computational complexity of the
velocity scan reduces to roughly O(N3 log N)1, where N

is the representative of the number of points in either
dimension of data space or model space. An alternative ap-
proach to estimating azimuthally anisotropic velocity param-
eters was developed by Burnett and Fomel (2009a, b) and
Casasanta (2011) but may not be applicable to noisy data.

The paper is organized as follows. In the theory part,
we first describe an orthogonal anisotropic velocity scan
and then give a brief description of the 3D butterfly algo-
rithm and a discussion of its numerical complexity. In the

1 The log function in this paper refers to logarithm to base 2.
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second part, we provide two synthetic and one field data
examples to test the efficiency and accuracy of the proposed
algorithm.

THEORY

As explained by Grechka and Tsvankin (1998) and Tsvankin
and Grechka (2011), a pure-mode (P or S) reflection event
in an effectively azimuthally anisotropic medium can be de-
scribed by

t =
√

τ 2 + W11x2 + W22 y2 + 2W12xy, (1)

where t is the two-way common midpoint (CMP) travel time,
τ is the two-way zero-offset travel time, (x, y) is the full
source–receiver offset in surface survey coordinates, and

W =
⎛
⎝ W11 W12

W12 W22

⎞
⎠ (2)

is the slowness squared matrix. Equation (1) follows from a
truncated 2D Taylor expansion of t2. Geometrically, it repre-
sents a curved surface that is hyperbolic in cross section and
elliptic in map view.

Ideally, one can perform a semblance scan (Taner and
Koehler, 1969) over the three parameters W11, W22, and W12

simultaneously to estimate the slowness matrix and perform
NMO correction according to equation (1). However, this
approach, if not impossible, is extremely expensive for large-
scale seismic data sets. Furthermore, since these parameters
are not orthogonal, the semblance plots might appear to be
unfocused and ambiguous, hence presenting difficulties for
picking (Fowler, Jackson, and Hootman, 2006).

Davidson et al. (2011) proposed a stable way of detect-
ing azimuthal anisotropy using orthogonal parameterization
of the moveout function, which is based on an equivalent
reformulation of equation (1):

t =
√

τ 2 + Wavg(x2 + y2) + Wcos(x2 − y2) + 2Wsinxy. (3)

The cosine- and sine-dependent slowness values Wcos and Wsin

are usually much smaller than the averaged slowness Wavg.
Therefore, a possible workflow for anisotropic velocity anal-
ysis and NMO correction can proceed in three steps.

(i) Perform an isotropic velocity scan to estimate Wavg and
flatten seismic events.
(ii) Perform a residual anisotropic moveout to account for
Wcos- and Wsin-dependent terms.

(iii) Convert orthogonal parameters to more intuitive
anisotropy parameters. For instance, the NMO velocity at
azimuth α can be recovered by

V−2
nmo(α) = Wavg + Wcos cos 2α + Wsin sin 2α. (4)

In this procedure, the first two steps require a velocity-
scan process. Because x and y are symmetric in Wavg(x

2 + y2),
the single-parameter isotropic scan involved in the first step
can be handled efficiently by a 2D butterfly algorithm, as
discussed in our previous work (Hu et al. 2013). Our goal in
this paper is to speed up the more expensive, two-parameter
velocity scan in the second step.

To be specific, what we need for residual moveout is to
compute a semblance measure (Taner and Koehler, 1969) as
follows (assuming that the Wavg part has been detected in the
previous step):

S(τ, Wcos, Wsin) =

(∑
x,y

d(t(x, y; τ, Wcos, Wsin), x, y)

)2

NxNy

∑
x,y

d2(t(x, y; τ, Wcos, Wsin), x, y)
, (5)

where d(t, x, y) is a 3D CMP data set after isotropic moveout,
and

t(x, y; τ, Wcos, Wsin) =
√

τ 2 + Wcos(x2 − y2) + 2Wsinxy. (6)

Basic formulation

The two summations on the right-hand side of equation (5) are
two (discrete) generalized Radon transforms (Beylkin, 1984).
Each of them can be expressed generally as (to simplify the
notation, we write p = Wcos and q = Wsin here and in the
following subsections)

(Rg)(τ, p, q) =
∑
x,y

g(
√

τ 2 + p(x2 − y2) + 2qxy, x, y), (7)

where the function g = d or g = d2.
To construct the fast algorithm, we first rewrite equation

(7) in the frequency domain as

(Rg)(τ, p, q) =
∑
f,x,y

exp(2π if
√

τ 2 + p(x2 − y2) + 2qxy)

ĝ( f, x, y), (8)

where f is the frequency, and ĝ( f, x, y) is the Fourier trans-
form of g(t, x, y) in time. We next perform a linear trans-
formation to map all discrete points in ( f, x, y) and (τ, p, q)
domains to points in the unit cube [0, 1]3, i.e., a point

C© 2014 European Association of Geoscientists & Engineers, Geophysical Prospecting, 63, 368–377



370 J. Hu, S. Fomel and L. Ying

o

x3(q)

x2(p)

x1(τ)

o

k1(t)

k2(x)

k3(y)

TX

l = 0

l = 0

l = 1 l = 1

l = 2

l = 2

TK

Top down Bottom up

A

B

Figure 1 Butterfly tree structure for the special case of
N = 4. The algorithm starts at the top of TX and at
the bottom of TK . It then traverses TX top down and
TK bottom up and terminates at the level L = log N.
At each level, the computation is done pairwisely for
every pair of boxes (A, B). By construction, their side
lengths always satisfy w(A)w(B) = 1/N; thus, a low-
rank approximation is available.

Table 1 Parameters used to generate the seismic events in Fig. 2(a).

event τ Wavg Wcos Wsin

1 0.7 0.3 0 0
2 1.8 0.29 0.021 0.021
3 2.6 0.25 −0.01 −0.017
4 3.4 0.15 0 0.02

( f, x, y) ∈ [ fmin, fmax] × [xmin, xmax] × [ymin, ymax] is mapped
to k = (k1, k2, k3) ∈ [0, 1] × [0, 1] × [0, 1] = K via

f = ( fmax − fmin)k1 + fmin,

x = (xmax − xmin)k2 + xmin,

y = (ymax − ymin)k3 + ymin;

and a point (τ, p, q) ∈ [τmin, τmax] × [pmin, pmax] × [qmin, qmax]
is mapped to x = (x1, x2, x3) ∈ [0, 1] × [0, 1] × [0, 1] = X via

τ = (τmax − τmin)x1 + τmin,

p = (pmax − pmin)x2 + pmin,

q = (qmax − qmin)x3 + qmin.

If we define a phase function �(x, k) as

�(x, k) = f
√

τ 2 + p(x2 − y2) + 2qxy, (9)

then equation (8) can be recast as

(Rg)(x) =
∑
k∈K

exp(2π i�(x, k))ĝ(k), x ∈ X. (10)

Fast 3D butterfly algorithm

Equation (10) is the discretized form of a 3D oscillatory inte-
gral of the type

u(x) =
∫

K
exp(2π i�(x, k))v(k) dk, x ∈ X, (11)

whose fast evaluation can be realized by a butterfly algorithm
(Candès, Demanet, and Ying, 2009).

The overall structure of the 3D butterfly algorithm ba-
sically follows its 2D analog. The idea is to partition the
computational domains X and K recursively into a pair
of octrees2, TX and TK , ending at level L = log N (see
Fig. 1 for an illustration). Here N is chosen as an integer power
of two, which is on the order of the maximum of |�(x, k)| for

2 An octree is a tree data structure in which each internal node has
exactly eight children.
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(a)

(b)

Figure 2 3D synthetic CMP gather (a) before and
(b) after isotropic NMO. Nt = 1000; Nx = Ny =
100. �t = 0.004 second; �x = �y = 80 m.

all possible x and k (so it is mainly determined by the range
of variables ( f, x, y) and (τ, p, q)). A crucial property of this
structure is that, at arbitrary level l, the side lengths w(A)
of a box A in TX and w(B) of a box B in TK always sat-
isfy w(A)w(B) = 1/N. Then when x, k restricted in A and
B, respectively, one can construct a low-rank (i.e., the num-
ber of terms in the expansion is small) separated expansion

for the kernel function exp(2π i�(x, k)) (via a 3D Chebyshev
interpolation):

∣∣∣∣∣exp(2π i�(x, k)) −
rε∑

r=1

αAB
r (x)β AB

r (k)

∣∣∣∣∣ < ε, (12)

where ε is a small constant controlling the error, and rε is the
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Figure 3 Semblance plot (event 3) computed by
the fast algorithm. Nτ = 1000; NWcos

= NWsin
=

100.

Figure 4 3D synthetic CMP gather. Nt = 1000;
Nx = Ny = 400. �t = 0.004 second; �x =
�y = 25 m.

number of expansion. Hence, for x ∈ A and k ∈ B, we have

(Rg)(x) = ∑
k exp(2π i�(x, k))ĝ(k)

≈ ∑
k

∑
r αAB

r (x)β AB
r (k)ĝ(k)

= ∑
r αAB

r (x)
(∑

k β AB
r (k)ĝ(k)

)
:= ∑

r αAB
r (x)δAB

r .

(13)

The essence of the algorithm is as follows: the summation
(10) for x, k belonging to the whole computational domains

X and K is highly oscillatory (the degree of oscillations in
the kernel exp(2π i�(x, k)) is roughly determined by N as
introduced above). However, when we restrict to subdomains
A and B that satisfy a certain condition, i.e., at least one of
them is small, the kernel is less or non-oscillatory, thus low
rank. Then, locally, the summation over k can be reduced
to a small number of terms indexed by r . The quantity δAB

r

in equation (13) is the so-called equivalent sources following
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exact velocity

Figure 5 Semblance plot computed by the fast al-
gorithm. Nτ = 1000; NWcos

= NWsin
= 200. Pur-

ple curves overlaid are the exact Wcos(τ ) and
Wsin(τ ).

Table 2 CPU time of direct velocity scan and fast butterfly algorithm
for different NWcos

and NWsin
applied to the synthetic data in Fig. 4.

direct fast butterfly speedup
NWcos

× NWsin
velocity scan algorithm factor

10 × 10 1847 s 145 s 12.7
20 × 20 7394 s 146 s 50.6

100 × 100 ∼ 184700 s 159 s ∼ 1162
200 × 200 ∼ 738800 s 196 s ∼ 3769

the nomenclature introduced by Candès, Demanet, and Ying
(2009), i.e., instead of original sources g(k), one deals with
equivalent sources. In addition, if δAB

r can be found for all
boxes (A, B) with B = K, our problem will be solved. In order
to do so, we need the butterfly structure. By embedding the
low-rank expansion into the tree structure and traversing TX

from top to bottom and TK from bottom to top, we arrive at
a fast algorithm of only cubic complexity O(N3 log N) (there
are N3 pairs of boxes (A, B) at every level, and there are log N

levels in total). Detailed description of the algorithm can be
found in (Hu et al. 2013) where the difference between 2D
and 3D formulations should be clear from the context.

Considering the initial Fourier transform for preparing
data in the ( f, x, y) domain, the overall complexity of our
algorithm is roughly O(NxNy Nt log Nt) + O(c(rε)(Nf NxNy +
Nτ NpNq)) + O(C(rε)N

3 log N) (rε terms are due to low-rank
approximations, and the constant C(rε) is bigger than c(rε);

see (Hu et al. 2013) for more details). By comparison, the
conventional straightforward velocity scan requires at least
O(Nτ NpNq NxNy) computations, which may quickly become
a bottleneck as the problem size increases. Yet the efficiency
of our algorithm is controlled mainly by O(N3 log N) with
an ε-dependent constant, where N, loosely put, depends on
the maximum frequency and offset in the data set and the
range of parameters in the model space. In practice, N can
often be chosen smaller than the grid size.

The significance the above analysis for the fast algorithm
lies in the fact that the input and output data sizes Nt NxNy and
Nτ NpNq have little impact on the final computational cost; a
dense sampling therefore becomes affordable.

NUMERICAL EXAMPLES

In this section, we present several numerical examples to illus-
trate the empirical properties of the proposed fast algorithm.
The emphasis will be put in comparing its performance with
the straightforward velocity scan. Therefore, we deliberately
neglect the choice of parameters in the algorithm to avoid too
much detail3. In practice, there is no general rule to select
N and the number of Chebyshev points used for low-rank
approximation. They are usually set by trial and error. For
instance, if the frequency bandwidth of the data is large, then

3 All the examples will be made reproducible in Madagascar software
package (Fomel et al. 2013).
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(a)

(b)

Figure 6 Synthetic gather (a) before and (b) af-
ter residual moveout using picked velocities from
the semblance scan.

one may need more Chebyshev points in that direction. More
discussions about the parameter choice are provided by Hu
et al. (2013). To get a general idea, in the following examples,
i.e., N = 16 or 32, the number of Chebyshev points in each
dimension of data or model domain is taken as 5, 7, or 9.

Example 1

We first consider a simple 3D synthetic CMP gather consist-
ing of four isolated events, each with a different degree of
azimuthal anisotropy (Fig. 2(a)). The moveout parameters τ ,

C© 2014 European Association of Geoscientists & Engineers, Geophysical Prospecting, 63, 368–377
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Figure 7 An isotropically NMO-corrected supergather
from the McElroy data set, West Texas. Nt = 400; Nx =
Ny = 297. �t = 0.002 second; �x = �y = 25 m.

Figure 8 Semblance plot computed by the fast algorithm. Nτ = 400; NWcos
= NWsin

= 200.

Wavg, Wcos, and Wsin used to generate the events are specified in
Table 1. Figure 2(b) shows the data after isotropic NMO using
the exact Wavg. Except for the first flattened isotropic event,
the other three events clearly require an additional moveout.

The computed semblance by the fast algorithm is shown in
Fig. 3, where manually picked parameters coincide well with
exact values. In addition to accuracy, what is remarkable is
that, even for this moderate-sized problem (Nt = Nτ = 1000,

C© 2014 European Association of Geoscientists & Engineers, Geophysical Prospecting, 63, 368–377
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Nx = Ny = NWcos
= NWsin

= 100), the CPU time4 of the butter-
fly algorithm (for a single stack) is about 139 second whereas
the direct velocity scan takes 4681 second.

Example 2

We now further investigate the properties of the fast algorithm
using a more realistic 3D synthetic CMP gather (Fig. 4). The
semblance plot computed by the fast algorithm is shown in
Fig. 5. Figure 6(a) is the isotropically NMO-corrected data.
After residual moveout using picked velocities from the sem-
blance, curved events are flattened to the right position (Fig.
6(b)). We used an automatic picking algorithm from Fomel
(2009) and Tao et al. (2012).

We next fix Nt = Nτ = 1000, Nx = Ny = 400 and com-
pare CPU time of the fast algorithm and the direct velocity
scan for different NWcos

and NWsin
(Table 2). When NWcos

and
NWsin

increase by a factor of 2, computation time of the direct
velocity scan increases nearly by a factor of 4, which is con-
sistent with our previous discussion on numerical complexity.
On the other hand, CPU time of the fast algorithm is not af-
fected much by the size of output sampling, again confirming
our expectations.

Example 3

Finally we consider a field data example. A subset of the
McElroy data set from West Texas was formed in a super-
gather (Fig. 7). This data set was studied by Burnett and
Fomel (2009a), in which they proposed a velocity-independent
moveout correction to avoid costly velocity scan. With the
fast algorithm, we are now able to compute the semblance
efficiently: only 45 second for a single Radon transform when
Nt = Nτ = 400, Nx = Ny = 297, and NWcos

= NWsin
= 200; di-

rect computation at this sampling would take approximately
30 hour.

Although the original data have been isotropically NMO
corrected, the time slice still shows a subtle directional trend
to flatness (Fig. 7). From the semblance plot (Fig. 8), we can
observe some nonzero values of anisotropic parameters.

CONCLUSIONS

We have introduced a fast approximate algorithm for az-
imuthally anisotropic 3D velocity scan. Compared with O(N5)

4 Single-core performance on an Apple Macintosh equipped with 2.2-
GHz Intel Core i7. Same for other examples.

of the straightforward computation, our algorithm runs in
O(N3 log N) time with a constant prefactor depending on the
desired accuracy. The synthetic and field data experiments
show that the method can be orders of magnitude faster than
the conventional velocity scan, especially for large seismic data
sets and dense parameter sampling. This, as a result, provides
great potential to obtain better resolution for velocity picking.

To illustrate the proposed approach, we used a particular
residual moveout function throughout the paper. The appli-
cability of the butterfly algorithm is not limited to this form as
long as the transform can be written in an oscillatory integral
as demonstrated in the theory part. Possible additional ap-
plications include converted wave analysis and multifocusing
analysis or common reflection surface.
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