
STATS 306B: Unsupervised Learning Spring 2014

Lecture 11 — May 5

Lecturer: Lester Mackey Scribe: Sidd Jagadish, Ben Nachman

11.1 Linear Gaussian State Space Model

Last time we introduced the following linear Gaussian state space model:

• z0 ∼ N(0,Σ0)

• zt = Azt−1 + wt−1 for independent wt−1 ∼ N (0, Q) for all t ≥ 1

• xt = Czt + vt for independent vt ∼ N (0, R) for all t ≥ 0.

11.2 Kalman Filter

Under the LGSSM, we can use the Kalman filter to compute the inferential quantity p(zt|x0:t)
recursively assuming θ = (Σ0, A,Q,C,R) known. We define the following shorthand notation
to help us derive the recursive updates:

• ẑs|t = E[zs|x0:t]

• Ps|t = E[(zs − ˆzs|t)(zs − ˆzs|t)
T |x0:t]

Last time, we described a two-step approach to deriving the Kalman filter consisting of a
time update and a

11.2.1 Time Update

The first of our two updates computes the prediction distribution p(zt+1|x0:t) given the last
filtered distribution p(zt|x0:t). Last time, we leveraged the fact that we know zt+1|x0:t will
take a normal distribution, and thus it is sufficient to calculate ẑt+1 and Pt+1|t. Last lecture,
we found the following two update formulas.

ẑt+1 = Aẑt (11.1)

Pt+1|t = APt|tA
T +Q. (11.2)

11.2.2 Measurement Update

The second of our two recursive updates computes the new filtered distribution p(zt+1|x0:t+1)
given the prediction distribution p(zt+1|x0:t). We will do so by first computing the joint
conditional density p(xt+1, zt+1|x0:t). To do so, we need the mean and covariance of xt+1|x0:t.

11-1

STATS 306B Lecture 11 — May 5 Spring 2014

Expectation of xt+1

First, let’s calculate E[xt+1|x0:t]

x̂t+1|t = E[xt+1|x0:t]
= E[Czt+1 + vt+1|x0:t]
= CE[zt+1|x0:t] = Cẑt+1|t

Covariance of xt+1

Now, let’s calculate Cov(xt+1, xt+1|x0:t)

Cov(xt+1, xt+1|x0:t) = E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
T |x(0:t)]

= E[(Czt+1 + vt+1 − cẑt+1)(Czt+1 + vt+1 − Cẑt+1)
T |x0:t]

= CPt+1|tC
T +R

The final line makes use of the fact that zt+1 and vt+1 are independent, and the fact that
Pt+1|t = E[(zt+1 − ẑt+1|t)(zt+1 − ẑt+1|t)

T].

We also need the “cross” covariance Cov(xt+1, zt+1|x0:t)

Cov(xt+1, zt+1|x0:t) = E[(xt+1 − x̂t+1|t)(zt+1 − ẑt+1|t)
T |x0:t]

= E[(Czt+1 + vt+1 − Cẑt+1|t)(Zt+1 − ẑt+1|t)
T |X0:t]

= CPt+1|t

Thus, we have all we need for the joint distribution of zt+1, xt+1|x0:t

[
zt+1

xt+1

]
∼ N

([
ẑt+1|t
Cẑt+1|t

]
,

[
Pt+1|T Pt+1|tC

T

CPt+1|t CPt+1|tC
T +R

])
Now we take advantage of our knowledge of Gaussian conditional distributions to get

p(zt+1|x0:t, xt+1) (again, it suffices to know ẑt+1|t+1 and Pt+1|t+1). Our update formulas are

ẑt+1|t+1 = ẑt+1|t + Pt+1|tC
T (CPt+1C

T +R)−1(xt+1 − Cẑt+1|t) (11.3)

Pt+1|t+1 = Pt+1|t − Pt+1|tC
T (CPt+1C

T +R)−1CPt+1|t (11.4)

We see now that equations 11.1 through 11.4 together constitute an algorithm, the
Kalman filter. We summarize the complete algorithm here

1. Initialize with P0|−1 = Σ0, ẑ0|−1 = 0

2. Time Update

ẑt+1 = Aẑt+1

Pt+1|t = APt|tA
T +Q

11-2

STATS 306B Lecture 11 — May 5 Spring 2014

3. Measurement Update

ẑt+1|t+1 = ẑt+1|t + Pt+1|tC
T (CPt+1C

T +R)−1(xt+1 − Cẑt+1|t)

Pt+1|t+1 = Pt+1|t − Pt+1|tC
T (CPt+1C

T +R)−1CPt+1|t

Kalman Gain Matrix

The matrix
Kt+1 = Pt+1|tC

T (CPt+1C
T +R)−1 (11.5)

appearing in the measurement update is known as the Kalman gain matrix. Note that
the current expression involves a p×p matrix inversion. However, due to Sherman-Morrison-
Woodbury, we can rewrite the Kt+1 as follows:

Kt+1 = (P−1t+1|t + CTRC)−1CTR−1 (11.6)

We may initially worry that since R is a p×p matrix, we have not reduced our computational
work; however, we note that R is fixed, and thus we only need to compute its inverse once.
As such, for all iterations other than the first, we have reduced our work from inverting p x
p matrix to inverting two q x q matrices.

11.3 Smoothing

The Kalman filter taught us how to recursively calculate p(zt|x0:t). We may also be interested
in inference regarding a previous hidden state – that is, in calculating p(zt|x0:T), t < T ,
assuming our parameters θ are known. This is called the smoothing task. There are two
standard recursive approaches to smoothing:

• The two-filter algorithm described in the SSM chapter is analogous to the forward-
backward / α - β algorithm for HMMs

• The Rausch - Tung - Streibel smoother is analogous to the α-γ algorithm for HMM
inference in the HMM chapter. This is the more common algorithm (in the LGSSM
setting, not in the HMM setting), and hence it is the approach that we will focus on.

11.4 RTS Smoothing

Let us outline our plan of attack for smoothing.

1. We will first run the Kalman filter from time 0, ..., T to obtain the filtered and one-step
prediction quantities ẑt|t, ẑt+1|t, Pt|t, Pt+1|t.

2. We will next initialize the smoother with ˆzT |T and PT |T .

3. Finally, we will recursively compute p(zt|x0:T), given p(zt+1|x0:T). We know this is a
Gaussian with mean ẑt|T and covariance Pt|T . As such, we just need to find this mean
and covariance.

11-3

STATS 306B Lecture 11 — May 5 Spring 2014

To tackle the final item, we will make use of the fact that zt ⊥ xt+1:T | zt+1 (recall our
graphical model chain structure). As such, conditioning on zt+1 will simplify the smoothing
computation and set us up nicely for recursion. To compute the full conditional distribution
p(zt|zt+1, x0:T) = p(zt|zt+1, x0:t), we first compute the joint probability p(zt, zt+1|x0:t) and
then use Gaussian conditioning.

Computing p(zt, zt+1|x0:t)

We know that p(zt, zt+1|x0:t) is Gaussian, so it suffices to compute its mean vector and its
covariance matrix. We know the mean vector is[

ẑt|t
ẑt+1|t

]
,

where ẑt+1|t = Aẑt|t. We will use this when calculating the cross covariance:

Cov(zt, zt+1|x0:t) = E[(zt − ẑt|t)(zt+1|t − ẑt+1|t)
T |x0:t]

= E[(zt − ẑt|t)(Azt + wt − Aẑt|t)T |x0:t]
= Pt|tA

T

Thus, we obtain the covariance matrix[
Pt|t Pt|tA

T

APt|t Pt+1|t

]
.

Computing p(zt|zt+1, x0:T) = p(zt|zt+1, x0:t)

Now we will compute p(zt|zt+1, x0:T) via p(zt|zt+1, x0:t) by Gaussian conditioning. We find
that

E[zt|zt+1, x0:T] = E[zt|zt+1, x0:t] = ẑt|t + Lt(zt+1 − ẑt+1|t)

where

Lt = Pt|tA
TP−1t+1|t.

We also use Gaussian conditioning to compute

Cov(zt|zt+1, x0:T) = Cov(zt|zt+1, x0:t) = Pt|t − LtPt+1|tL
T
t

Computing p(zt|x0:T)

Recall that our final goal is to compute p(zt|x0:T); we can achieve this by taking an expecta-
tion over zt+1 in p(zt|zt+1, x0:T). To do so, two key conditioning properties of general random
vectors X, Y, and Z.

• Tower Property: E[Z|X] = E[E[Z|Y,X]|X]

• Law of Total Conditional Variance: Cov[Z|X] = Cov[E[Z|Y,X]|X]+E[Cov[Z|Y,X]|X]

11-4

STATS 306B Lecture 11 — May 5 Spring 2014

We will apply the above two properties, using Z = zt, Y = zt+1, X = x0:T . First, we compute
the smoothed mean ẑt|T .

ẑt|T = E[zt|x0:T]

= E[E[zt|zt+1, x0:T]|x0:T]

= E[ẑt|t + Lt(zt+1 − ẑt+1|t)|x0:T]

= ẑt|t + Lt(ẑt+1|T − ẑt+1|t)

We see that our final expression consists of our filtering estimate ẑt|t added to a correction
term Lt(ẑt+1|T − ẑt+1|t). Now, all that remains is to apply thte law of total conditional
variance to find Pt|T :

Pt|T = Cov[zt|x0:T]

= Cov(E[zt|zt+1, x0:T]|x0:T) + E[Cov[zt|zt+1, x0:T]|x0:T]

= Cov(ẑt|t + Lt(zt+1 − ẑt+1|t)|x0:T) + E[Pt|t − LtPt+1|tL
T
t |X0:T]

= LtPt+1|TL
T
t + Pt|t − LtPt+1|tL

T
t

= Pt|t + Lt(Pt+1|T − Pt+1|t)L
T
t

We note again that our final expression consists of our filtering estimate and a correction
term.

11.5 EM for the Linear Gaussian State Space Model

Now that we have learned how to conduct inference in LGSSMs for known model parameters
θ, we turn to the question of estimating those parameters. Unfortunately, there are no
closed-form MLEs, so we turn as usual to the EM algorithm. Let us begin by formulating
the complete log likelihood:

log p(x0:T , z0:T ; θ) = −1

2

(
log |Σ0|+ zT0 Σ−10 z0 +

T∑
t=1

log |Q|+ (zt − Azt−1)TQ−1(zt − Azt−1)

+
T∑
t=0

log |R|+ (xt − Czt)TR−1(xt − Czt)

)
+ constants

Introduce the shorthand M0 = z0z
T
0 ,

M =
1

T

T∑
t=1

(zt − Azt−1)(zt − Azt−1)T , and N =
1

T + 1

T∑
t=0

(xt − Czt)(xt − Czt)T ,

where N is the same conditional sample covariance that we saw in the factor analysis setting.
With this notation, the complete log likelihood becomes

log p(x0:T , z0:T ; θ) = −1

2

(
log |Σ0|+ tr(M0Σ

−1
0)

+T [log |Q|+ tr(MQ−1)] + (T + 1)[log |R|+ tr(NR−1)]
)

+ constants

where we have used the same trace trick as in factor analysis. Now, we turn to the E-step.

11-5

STATS 306B Lecture 11 — May 5 Spring 2014

11.5.1 E step

In the E step we form the expected complete log likelihood under the conditional distribution

qs(z0:T) = p(z0:T |x0:T ; θ(s)),

where θ(s) are the parameters from the previous step in the algorithm. It suffices to compute
Eqs [M0] = E[z0z

T
0 |x0:T], which we know from smoothing, Eqs [M], and Eqs [N]. Eqs [N] depends

on E[zt|x0:T] and

E[ztz
T
t |x0:T] = Cov(zt|x0:T) + E[zt|x0:T]E[zTt |x0:T],

for each t, both of which are known from smoothing. Eqs [M] also depends on Eqs [ztz
T
t−1|x0:T]

for all t ≥ 1, which we have not directly computed. However, we note that

E[ztz
T
t−1|x0:T] = Cov(ztzt−1|x0:T) + E[zt|x0:T]E[zTt−1|x0:T],

and both of these terms are computable from smoothing/filtering (work this out for yourself
- consider p(zt−1|zt, x0:T)). The takeaway message is that we can carry out the E step by
running the Kalman filter and RTS smoothing.

11.5.2 M step

Now, we optimize the ECLL. As in factor analysis, there exists a closed form for the updates:

C(s+1) =

(
T∑
t=0

xtEqs [z
T
t]

)(
T∑
t=0

Eqs [ztz
T
t]

)−1

A(s+1) =

(
T∑
t=1

Eqs [ztz
T
t−1]

)(
T∑
t=1

Eqs [zt−1z
T
t−1]

)−1
Σ

(s+1)
0 = Eqs [M0]

R(s+1) = Eqs [N]

Q(s+1) = Eqs [M],

where after some rearrangement we have

R(s+1) = Eqs [N] =
1

T + 1

[
T∑
t=0

xtx
T
t − C(s+1)

T∑
t=0

Eqs [zt]x
T
t

]

Q(s+1) = Eqs [M] =
1

T

[
T∑
t=1

Eqs [ztz
T
t]− A(s+1)

T∑
t=1

Eqs [zt−1z
T
t]

]
.

11-6

