
STATS 306B: Unsupervised Learning Spring 2014

Lecture 14 — May 14

Lecturer: Lester Mackey Scribe: Renjie You

14.1 Recap

Recall that the goal of sparse / interpretable unsupervised learning is to obtain results that
only depend on a small subset of the input features so that we can better interpret those
results. For now, we will continue to specialize our focus to sparse PCA, where we want to
obtain sparse loadings uj ∈ Rp. Last time we considered several modern approaches to tack-
ling the sparse PCA problem, including combinatorial branch-and-bound, greedy variable
selection approach, and SCoTLASS. Today, we will explore several alternative strategies.

14.2 SPCA

See ESL 14.5.5 for more reading. Like SCoTLASS, SPCA transforms the combinatorial
cardinality-constrained sparse PCA problem into a continuous optimization problem by re-
placing the cardinality constraint with an `1 surrogate. However, SPCA works with a differ-
ent formulation of the PCA optimization problem and employs a different algorithm. More
precisely, SPCA solves the following optimization problem for u1:

min
u1,v1

n∑
i=1

∥∥xi − v1uT1 xi∥∥22 + λ ‖u1‖22 + λ1 ‖u1‖1

s.t. ‖v1‖2 = 1,

which is an `1 penalized variant of the PCA reconstruction formulation (R2) from last lecture.
If we removed the `1 penalty, this would just be PCA, but the `1 penalty encourages sparsity.
Note that λ and λ1 are both tuning parameters. As you vary λ1 for fixed λ, you get different
amounts of sparsity. The vector u∗1 recovered from an optimal solution (u∗1, v

∗
1) to this problem

represents the first sparse loadings vector.

14.2.1 Multi-component version

This SPCA formulation only solves for a single component u1. Suppose that you wanted

to solve for multiple components at once. Then we could define V =


v1
v2
...
vk

 ∈

14-1



STATS 306B Lecture 14 — May 14 Spring 2014

Rk×p and U =


u1
u2
...
uk

 ∈ Rk×p and solve the multi-component optimization problem

(recommended in ESL),

min
U,V

n∑
i=1

∥∥xi − V UTxi
∥∥2
2

+ λ
k∑

j=1

‖uj‖22 +
k∑

j=1

λ1j ‖uj‖1

s.t. V TV = I.

In the multi-component version, we have introduced a tuning parameter λ1j for each j in
order to allow for different sparsity levels in different loadings.

Note that this is a non-convex program subject to local minima for the same reason that
SCoTLASS was. However, we can approximately find a local optimum fairly efficiently using
alternating minimization:

• When V is held fixed, the problem of optimizing over U decouples into k independent
elastic net regression problems, each one with variable uj, that can be solved using
standard elastic net implementations.

• When U is held fixed, optimization over V is a reduced rank Procrustes problem.
If AΣBT is the SVD of XTXU , then the update for V is V = ABT .

• The SPCA algorithm updates U and V until convergence.

14.3 Direct Sparse PCA (DSPCA)

See d’Aspremont et al. (2007) for more reading.

We will next consider a rather different approach to sparse PCA called DSPCA. Here we
will replace the combinatorial cardinality-constrained maximum variance problem with a
convex relaxation problem. Unlike the other surrogates formulations we have seen, this one
is convex, and we can find the global optimum.

Let A =
XTX

n
. Then, our intractable cardinality-constrained problem problem is:

max
u1

uT1Au1

s.t. ‖u1‖2 = 1
card(u1) ≤ c1

We are going to relax this into a convex optimization problem.

First, we will use the trace trick to obtain the equivalent problem

14-2



STATS 306B Lecture 14 — May 14 Spring 2014

max
u1

tr(u1u
T
1A)

s.t. tr(u1u
T
1 ) = 1

card(u1u
T
1 ) ≤ c21.

Then, we will perform semidefinite lifting by introducing M = u1u
T
1 to obtain another

equivalent formulation

max
M∈Rp×p

tr(MA)

s.t. tr(M) = 1
card(M) ≤ c21
M � 0
rank(M) = 1.

The value of this new formulation is that we are maximizing a linear function of our opti-
mization variable instead of maximizing a quadratic function (which is a difficult thing to
do in general). However, we still have a non-convex cardinality constraint and a non-convex
rank constraint to deal with.

We can relax these two constraints to form a convex semidefinite program in the following
way. First let vec(M) denote vectorized form of the matrix M (with the columns stacked into
a single vector. Then note that for any vector h, ‖h‖1 ≤

√
‖h‖0 ‖h‖2.1 Under our problem

constraints we have card(M) = ‖vec(M)‖0 and ‖vec(M)‖2 =
√

tr(MTM) =
√

(uT1 u1)
2 =

1. Hence, ‖vec(M)‖1 ≤
√
‖vec(M)‖0 ‖vec(M)‖2 = c1, so we can replace the cardinality

constraint with the relaxation ‖vec(M)‖1 ≤ c1. Finally, we drop the rank constraint (the
ultimate relaxation).

This gives us the DSPCA relaxation:

max
M∈Rp×p

tr(MA)

s.t. tr(M) = 1
‖vec(M)‖1 ≤ c1
M � 0

This is a convex semidefinite program (SDP), which we know how to solve. We recover
the first component loadings u1 from M by finding a leading eigenvector. The authors
suggest that if your problem is small enough, you can use generic interior point solvers.
However, these have a high complexity, so for larger problems, there is a customized first-
order optimization algorithm.

The paper shows that this approach typically outperforms SPCA in the sense that for a
fixed level of sparsity, it explains more variance, and for a fixed level of variance explained,
it achieves greater sparsity.

1This follows from the arithmetic mean-geometric mean (AM-GM) inequality.

14-3



STATS 306B Lecture 14 — May 14 Spring 2014

14.4 Variational renormalization

See Moghaddam et al. (2006) for more reading.

Most sparse PCA techniques attempt to jointly solve the model selection problem (which
loadings are nonzero?) and the model estimation problem (what are the values of the nonzero
entries for the selected model?) and commonly yield suboptimal solutions for the estimation
task (even if the model selection component is accurate). As a result, we can often improve
a generic (single-component) sparse PCA solution by doing the following:

1. Fix the learned nonzero entry locations.

2. Maximize variance assuming the other entries are zero.

This variational renormalization is equivalent to finding an eigenvector of a submatrix
of A. This is an inexpensive operation that typically leads to a better solution than the
original.

14.5 Multiple components

So far we have primarily focused on extracting a single sparse PCA loadings vector. Some
algorithms can be explicitly reformulated to extract many components (e.g., SPCA). Even
those that cannot be reformulated in this way can often be used to extract single components
successively by, for example,

1. Constraining additional loadings to be orthogonal (this may be overly restrictive),

2. Constraining additional component variables (uTj x) to be uncorrelated, or

3. Finding loadings that explain the greatest additional variance.

It is important to note that only the true eigenvectors of A (i.e., the true PCA loadings)
satisfy both (1) and (2) simultaneously, so at least one must be sacrificed in the sparse PCA
setting (unless the true eigenvectors are already sufficiently sparse).

To better understand option (3), we need to formally define a notion of the variance ex-
plained by an arbitrary set of loadings U =

[
u1 · · · uk

]
. We have a definition for the

standard PCA loadings, but in general our loadings may not be orthogonal and may not be

actual eigenvectors of
XTX

n
.

One common way to extend the definition is to define the variance explained by U as the
variance explained by an orthonormal basis Q =

[
q1 · · · qk′

]
for span({u1, . . . , uk}). For

any orthonormal basis, this variance explained is our usual quantity,
k
′∑

j=1

qTj
XTX

n
qj = the

sum of basis component variances.

14-4



STATS 306B Lecture 14 — May 14 Spring 2014

If a new loadings vector uk+1 is extracted, we can extend the basis by calculating q̃k′+1 =
(I − QQT )uk+1, which is the projection onto the orthocomplement, and renormalizing to

obtain qk′+1 =
q̃k′+1

‖q̃k′+1‖2
. The additional variance explained by uk+1 is then

qk′+1
XTX

n
qk′+1 =

uTk+1(I −QQT )X
TX
n

(I −QQT )uk+1

‖(I −QQT )uk+1‖22
.

This suggests the following criterion for selecting new components:

max
uk+1

uTk+1(I −QQT )
XTX

n
(I −QQT )uk+1

s.t.
∥∥(I −QQT )uk+1

∥∥
2

= 1
card(uk+1) ≤ ck+1

Most single component sparse PCA techniques can be adapted to solve this. This is called
generalized deflation (see Mackey 2008).

14.6 Sparse PCA theory

The theory and complexity of sparse PCA under various data generating models is an active
research area.

14.7 Beyond PCA

We could use the ideas discussed so far to find sparse versions of other latent feature models
like FA, CCA, ICA, etc. We can also develop sparse clustering algorithms. Let us detail a
particular example.

14.7.1 Sparse clustering with pairwise dissimilarity

Suppose that our goal is to cluster a set of datapoints and that for each pair (xi, xi′) and
each coordinate j, we have a feature-specific measure of dissimilarity dii′j between xij and
xi′j, e.g., dii′j = (xij − xi′j)2.

A typical non-sparse clustering algorithm (like k-medoids or hierarchical clustering) would

cluster using the dissimilarity matrix with entries dii′ =

p∑
j=1

dii′j, which depends on all

features. Our sparse clustering goal is to obtain a clustering that uses only a relevant subset
of the features. For instance, we could form a dissimilarity matrix based on the weighted

14-5



STATS 306B Lecture 14 — May 14 Spring 2014

sumdii′ =

p∑
j=1

wjdii′j, where many weights wj are zero. However, we are now faced with the

question of how to choose w.

One option, proposed by Witten and Tibshirani (2010), suggests that we first form a feature
dissimilarity matrix D ∈ Rn2×p, where each row represents a pair of data points. Think of
this as (dii′j)(i,i′),j. Then, we run single-component sparse PCA to obtain sparse loadings w
that explain most of the variance in D. Specifically, we solve

max
w

wTDTDw

s.t. ‖w‖2 ≤ 1, ‖w‖1 ≤ c, wj ≥ 0

for c ≥ 1. Note that this can be rewritten as

max
u,w

uTDw

s.t. ‖w‖2 ≤ 1, ‖w‖1 ≤ c, wj ≥ 0
‖u‖2 ≤ 1.

The benefit of this formulation is that it is biconvex. Thus, we can use alternating mini-
mization to update u and w in succession until convergence. The closed form update for u
given w is

u =
Dw

‖Dw‖2
.

The update for w can be computed in several steps. First define a = (DTu)+ (where x+
is the positive part of x) and b = (a − ∆)+ (this is soft thresholding for a value ∆ to be

specified). Finally, we set w =
b

‖b‖2
(defined to be 0 if ‖b‖2 = 0). We choose ∆ such that

‖w‖1 ≤ c. That is, ∆ = 0 if
‖a‖1
‖a‖2
≤ c, and otherwise ∆ is chosen such that ‖w‖1 = c.

The result is that we can form a dissimilarity matrix with entries dii′ =

p∑
j=1

wjdii′j that only

depends on a subset of features. Hence, any clustering algorithm based on this dissimilarity
achieves our goal of only being based on a subset of features. See the accompanying slides
for an example of these ideas used in the hierarchical clustering setting.

14-6


