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17.1 PCA with Missing Data

In the last lecture, we posed the question of how to carry out unsupervised learning in the
presence of missing data, and we began to explore a potential solution, adapting unsupervised
procedures to directly cope with data missingness. As a first example, we considered carrying
out principal component analysis in situations in which some feature values are missing. We
defined an observation set 2 satisfying (¢, j) € €2 if and only if component z;; is observed, a
missing data objective
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s.t. rank(M) < k,

and a scheme to approximately solve this problem, iterated SVD. Unfortunately, this
method is unsatisfying for large datasets with large amounts of missingness (such as the
Netflix Prize dataset, where fewer than 1% of features are observed), as simply imputing
and storing all np entries may be prohibitively expensive. In this lecture, we will consider
more scalable approaches to (approximately) solve the missing data PCA problem (17.1).

17.1.1 Factorized Approaches

Factorized approaches to solving (17.1) take advantage of the fact that rank(M) < k if and
only if M = ABT for A € R™* B € RP**. Using this fact, we can transform (17.1) into a
biconvex problem in A and B:
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The terms involving tuning parameters )\i,j\j > 0 are commonly added to regularize the
problem. It is common to set A\; = A and 5\]- = Aor \; = An; and S\j = Apj, for n; the number
of times 7 appears in 2, p; the number of times j appears in €2, and A > 0 a common tuning
parameter. The latter setting is particularly effective when when missingness is non-uniform
across rows or columns.

We still have no general closed form solution for this problem, but because this mini-
mization is biconvex in A and B, a natural strategy is to perform block coordinate descent
on A and B. This is called alternating least squares. Conveniently, when B is fixed, the
problem decouples into n independent ridge regression problems depending on parameters
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a;. This yields closed form updates that are not only easier to calculate, but also very paral-
lelizable. The situation is similar when A is fixed (the problem decouples into p independent
ridge regression problems depending on parameters b;). Surprisingly, recent work has shown
that, with appropriate initialization and under appropriate assumptions on X, this technique
admits reconstruction accuracy guarantees for the missing entries (see the online readings).

A second popular and scalable approach to optimizing (17.2) is stochastic gradient
descent. Here we update parameters using unbiased estimate of the objective gradient by
sampling terms uniformly from €. Let . We can pull the regularization parameters into the
sum over observed entries as follows:

by by
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A typical stochastic gradient algorithm then repeats the following until convergence:

e Sample (4, j) uniformly from Q. (Alternatively and more commonly, iterate over the
entries (7,7) in Q.)

e Update:

)

Ai

s
bj — bj — (ai(ainj — xij) + _Jb]) (175)
Dj

where v is the (tunable) learning rate. Note that we only update parameters for the
entry (i,7) selected in the previous step.

This method uses simple and cheap updates, which scale well to larger problems. Recent
work has shown that this algorithm can also be parallelized with little loss. While this
method has been shown to yield accurate reconstructions in practice, there is as of yet little
theory supporting its success.

17.1.2 Convex Approaches

Instead of attempting to optimize the original non-convex problem directly, we will next
attempt to solve a related convex optimization problem. More precisely, we will replace the
rank constraint rank(M) < k with a convex constraint or penalty. Two surrogates well-
suited for this purpose are the nuclear norm and the max norm. The nuclear norm (also
known as the trace norm) is the sum of all the singular values of M

| M |l.= ) ou(M) =l o(M) [|s - (17.6)

7

The relationship between the nuclear norm and the rank of a matrix rank(M) = .1 (o;(M) # 0) =||
(M) ||o parallels the relationship between the ¢; norm and the ¢, cardinality of a vector.
The max norm is less commonly used and can be defined as

M |lmax= min_ || A a0 || B [|2.00, 17.7
I M max= min | A 200 | B |2, (17.7)
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where we define || - ||2,00 as the max ¢, row norm:
| All200= max || Ay [l - (17.8)
[[ull2=1

A typical convex surrogate formulation for our missing data PCA problem (17.1) goes
by the name nuclear norm heuristic and takes the form

Menxp
(4,5)€Q
where A is a tunable regularization parameter.

There are several benefits to the convex approach. The convexity implies that a global
optimum can be found in polynomial time. Moreover, under various assumptions on X
and (2, reconstruction accuracy guarantees are available (see, for example, Candes & Recht
'08). Further, many algorithms are available for solving (17.9). One particularly effective
example is the accelerated proximal gradient algorithm (see the paper of Toh and Yun
in the reading). The biggest drawback of this approach is that the methods developed
for solving (17.9) are far less scalable than the factorized approaches we have discussed.
For example, many of the leading convex optimization methods for (17.9) need to perform
repeated truncated singular value decompositions of large matrices (say, once per iteration
of gradient descent). Improving the scalability of convex optimization approaches to missing
data modeling is an active area of research.

17.1.3 Relation between Nuclear Norm Heuristic and Factorized
Approaches with Regularization

A useful fact about the nuclear norm is the following:*

1 , 1 )
I = i 52 el +5 ; 05 11 (17.10)

We can use (17.10) to show that (17.9) is actually equivalent to
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which looks very similar to (17.2). The main difference is that there is no rank constraint
on A and B. If we generalize (17.11) by introducing different weights \; for each row 7 and
A; for each column j, we obtain what is called a weighted trace norm (see the optional
reading).

IThis is left as an exercise to the reader.
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17.2 K-means with Missing Data

The primary lesson from the example of PCA with missingness is that a viable strategy for
dealing with missingness is to phrase an unsupervised learning task as data reconstruction
and then only attempt to reconstruct the observed data entries. We now show that this ap-
proach works for k-means clustering as well. Recall that our k-means objective for complete
data is given by

min > (zi; — m.,;)%, (17.12)
7j

Z1:n,M1:k “

where z;., are the cluster indicators and my.;, the cluster centers. We can account for miss-
ingness by summing only over observed entries

min Z (zij — M) (17.13)

Zlin,M1:k =
(i,5)€Q

We may now find an approximate solution by alternating between the following two updates
until convergence (as in Lloyd’s algorithm):

e Assign each x; to the cluster with the closest center as measured by the observed
features.

e From these assignments update m,;:

Y1z =) 1((i,7) € Q) xy
M = S T m = ol €9 (17.14)

This is the mean over the observed j features in cluster c.

17.3 End of Quarter Summary

We end the quarter with a reflection on what we have accomplished. Overall, we have sur-
veyed a slew of popular and practical methods for unsupervised learning. These included
latent class and clustering, like k-means and Gaussian mixture models, latent feature and
dimensionality reduction models like principal component analysis and independent com-
ponent analysis. We contrasted probabilistic and model free methods (GMM vs k-means;
probablistic PCA vs factor analysis), explored the advantages of hierarchical versus flat
clustering and the benefits of deep learning, and learned to introduce available dependence
structures into our modeling, such as with hidden markov models.

We identified a number of the important challenges that arise in the unsupervised learning
setting along with some partial solutions. We examined the issues of model selection, such as
choosing a number of components or clusters, grappled with the difficulties of initialization
and suboptimal solutions, and confronted the pervasive problem of evaluating our unsuper-
vised models. We also discussed strategies for making our analyses more interpretable and
for coping with missing features.

Despite our quarter of focus, quite a lot remains to be explored in the area of unsupervised
learning. For instance, we made little mention of Bayesian approaches to unsupervised
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learning this quarter, nor have we explored subspace clustering methods for separat-
ing datapoints belonging to disparate lower-dimensional subspaces or spectral method of
moment techniques which provide a modern alternative to EM for fitting discrete latent
variable models. Please review the course project page for some references on these topics.

If you are interested in learning about other modern methods in applied statistics, you
should consider the Modern Applied Statistics sequence Stats 315 A / B.
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