
STATS 306B: Unsupervised Learning Spring 2014

Lecture 5 — April 14

Lecturer: Lester Mackey Scribe: Brian Do and Robin Jia

5.1 Discrete Hidden Markov Models

5.1.1 Recap

In the last lecture, we introduced discrete HMMs as a way of modeling a sequence of dat-
apoints x = (x0, x1, . . . , xT) as emissions from dependent hidden states z = (z0, z1, . . . , zT)
with each zt ∈ {1, . . . , k}. More precisely, we developed the following generative model for
HMMs:

1. Sample the first state: z0 ∼ Mult(π, 1).

2. Sample each new state from a transition distribution determined by the prior state:

zt | zt−1 = j
ind∼ Mult(aj, 1).

3. Sample datapoints xt | zt
ind∼ p(xt|zt, η) from a state-dependent emission distribution.

Recall that π ∈ Rk is the initial state probability vector, each aj ∈ Rk is the transition
probability vector from state j to all other states, and η represents parameters for each
conditional distribution given zt.

Last time, we assumed that all model parameters were known θ = (π,A, η) and developed
recursive schemes for efficient probabilistic inference in this model. Specifically, we developed
α and β recursions to compute the single state conditional probabilities

p(zt|x) =
p(x0:t, zt)p(xt+1:T |zt)

p(x)
,
α(zt)β(zt)

p(x)

for all timepoints t in O(k2T) total time. While this permits us to make inferences about
hidden states in isolation, it is not sufficient to make joint inferences about several hidden
states. For example, since the hidden states are dependent conditioned on x, typically
p(zt, zt−1|x) 6= p(zt|x)p(zt−1|x). In this lecture, we will learn to leverage our α-β recursions
to compute these co-occurrence probabilities and other inferential quantities of interest.

5.1.2 Calculating co-occurrence probabilities

Let us try to calculate the co-occurrence probability p(zt, zt+1|x) using Bayes’ rule and knowl-
edge of the HMM conditional independence structure:

p(zt, zt+1|x) =
p(x|zt, zt+1)p(zt+1, zt)

p(x)
=
p(x|zt, zt+1)p(zt+1|zt)p(zt)

p(x)

=
p(x0:t|zt)p(xt+1|zt+1)p(xt+2:T |zt+1)azt,zt+1p(zt)

p(x)
.

5-1

STATS 306B Lecture 5 — April 14 Spring 2014

In the final equation, we have broken p(x|zt, zt+1) into p(x0:t|zt) (the probability of the
past and present observations given the present state), p(xt+1|zt+1) (the probability of the
next observation given the next state), and p(xt+2:T |zt+1) (the probability of all future ob-
servations given the next state). We notice then that p(x0:t|zt)p(zt) = p(x0:t, zt) = α(zt) and
p(xt+2:T |zt+1) = β(zt+1). Therefore, we can compute the co-occurrence probabilities

p(zt, zt+1|x) =
α(zt)β(zt+1)p(xt+1|zt+1)azt,zt+1

p(x)

using only the results of our α-β recursion and the known transition and emission proba-
bilities. This follows as, for any t, p(x) =

∑
zt
α(zt)β(zt). A derivation of the conditional

distribution of any subsequence of z given all observations x proceeds similarly.

5.1.3 Soft inference for the full hidden sequence z

Suppose that our object of inference was instead the entire sequence of hidden states. Inter-
estingly, calculation of p(z|x) is even more straightforward. Observe that, by Bayes’ rule,

p(z|x) =
p(x|z)p(z)

p(x)
=
π(z0)Π

T−1
t=0 azt,zt+1Πtp(xt|zt)

p(x)
.

Since p(x) is a function of α and β, this expression depends only on known quantities.

5.1.4 Hard inference for z via the Viterbi algorithm

Thus far, we have discussed soft inference, computing the conditional probabilities of hidden
states, but often we are interested in hard assignments that associate each datapoint with
a single state. In particular, as in the mixture modeling setting, we would like to find the
hidden sequence that is most likely given the observations x. However, unlike in the mixture
model setting where hidden states were independent, it is not the case that the most probable
sequence of states argmaxz p(z|x) is equal to the sequence of most probable individual states
argmaxzt p(zt|x). The distinction can be illustrated in the handwriting recognition setting:
an ambiguous set of characters considered in isolation may seem to most likely correspond
to the word “the” but in the context of a surrounding sentence, “I put on a today,” be
more sensibly decoded as “tie.” Thus, we must account for the dependence.

Since we know how compute p(z|x), we could use brute force to consider all kT possible
sequences z, but that quickly becomes intractable. Instead, we will compute maxz p(z|x) and
its maximizer in an efficient recursive manner analogous to our α recursion. Note that since
p(z|x) = p(z,x)

p(x)
and p(x) does not depend on the specific sequence z, the maximizer of the

conditional probabillity is the same as the maximizer of the joint probability p(z, x) (over z),
and so we will focus on finding maxz p(z, x) and its maximizer using a recursive procedure
called the Viterbi algorithm. Significantly, this algorithm is identical to the forward pass
α-recursion except that we will replace summation over states with maximization over states.

5-2

STATS 306B Lecture 5 — April 14 Spring 2014

The Viterbi algorithm

We begin by defining our targets for recursion

v(zt) = max
z0:t−1

p(z0:t, x0:t) = max
z0:t−1

p(z0:t−1, x0:t, zt).

Note the similarity to α(zt). Instead of summing over past states that may have led to
present hidden state zt and observation xt, we are maximizing over them. Note moreover
that

max
zT

v(zT) = max
zT

max
z0:T−1

p(z0:T−1, x0:T , zT) = max
z
p(z, x),

so if we can compute v(zT) efficiently, we can also compute our target maximum probability.
The Viterbi algorithm accomplishes this computation via a recursive forward pass through

time:

v(z0) = p(x0, z0) = p(z0)p(x0|z0) (Base case)

v(zt+1) = max
z0:t

p(z0:t, x0:t+1, zt+1)

= max
zt

(max
z0:t−1

p(z0:t−1, x0:t, xt)p(xt+1|zt+1)p(zt+1|zt))

= max
zt

v(zt)azt,zt+1p(xt+1, zt+1) (Recursion for all t ≥ 0)

max
z
p(z, x) = max

zT
v(zT) (Final step) .

The equation for v(z0) is just equal to the joint probability of the current state and current
observation occurring together; there are no prior states over which to maximize. For the
derivation of v(zt+1), we can break up the max over all past states into a max over the
proximal state, v(zt), and a max over more distant past states. These distant past states
(z0:t−1) are accounted for in v(zt), which we calculated in the prior recursive step. Altogether,
these establish the base case and the recursive step. As with the α-recursion, calculating
v(zt) for all t takes O(k2T) work.

To recover the maximizing sequence argmaxz p(z, x) as well, it suffices to store pointers
to maximizing states in each recursive step of the Viterbi algorithm. That is, the recursive
computation of vzt+1 involves only a maximization over zt, so one can keep track of the
maximizer m(zt+1) = z∗t . Once the Viterbi computation is complete, one can follow these
pointers backwards from z∗T to obtain the entire sequence that maximizes p(z, x) and hence
p(z|x).

5.1.5 EM for Hidden Markov Models

Our discussion of HMMs so far has assumed that the parameters θ = (π,A, η) are known,
but, typically, we do not know the model parameters in advance. As usual (and as is most
often done in practice), we will turn to the EM to learn model parameters that approximately
maximize the likelihood of our observations.1 Along the way, we will see that many of the
inference routines we have derived will be useful for implementing the EM algorithm.

1In the HMM setting, the EM algorithm is also called the Baum-Welch algorithm.

5-3

STATS 306B Lecture 5 — April 14 Spring 2014

Note that we defined our HMMs in terms of generic emission distributions, and the exact
M-step updates will depend on the emission distributions chosen. To provide a concrete
example of a complete EM algorithm, we will adopt a Gaussian emission model,

p(xt | zt = j; η) = φ(xt;µj,Σj).

Complete log likelihood

As usual, we begin our EM derivation by writing down the complete log likelihood. Let
θ = (π,A, η) denote all the parameters of the model. We have

`c(θ) = log(p(x, z; θ)) = log πz0 +
T−1∑
t=0

log aztzt+1 +
T∑
t=0

log φ(xt;µztΣzt)

=
k∑

j=1

I[z0 = j] log πj +
T−1∑
t=0

k∑
j=1

k∑
l=1

I[zt = j, zt+1 = l] log ajl +
T∑
t=0

k∑
j=1

I[zt = j] log φ(xi;µj,Σj).

E-Step

In the E-Step, we compute the expected complete log likelihood under the distribution
z ∼ p(z | x; θ). We can see from the form of the complete log likelihood that it is sufficient
to compute two types of statistics:

1. γt(j) = E[I[zt = j] | x; θ] = p(zt = j | x; θ) for each t ∈ {0, . . . , T} and j ∈ {1, . . . , k}

2. ξt(j, l) = E[I[zt = j, zt+1 = l] | x; θ] = p(zt = j, zt+1 = l | x; θ) for each t ∈ {0, . . . , T}
and (j, l) ∈ {1, . . . , k}2.

Fortunately, we have already learned how to compute these quantities using the α and β
recursions. This completes the E-Step.

M-Step

According to our E-step computations, the expected complete log likelihood takes the form

E[`c(θ)] =
k∑

j=1

γ0(j)πj +
T−1∑
t=0

k∑
j=1

k∑
l=1

ξt(j, l) log ajl +
T∑
t=0

k∑
j=1

γt(j) log φ(xi;µj,Σj).

In the M-Step, we maximize the ECLL with respect to θ. As it turns out, there are closed
form update formulas:

πj = γ0(j)

ajl =

∑T−1
t=0 ξt(j, l)∑T−1
t=0 γt(j)

The µj and Σj updates, as you might expect, are exactly the same as in the GMM case, with
γt(j) in place of τij. The formulas for πj and ajl are also intuitive. For π, γ0(j) is just the

conditional probability that z0 = j. For A, the numerator
∑T−1

t=0 ξt(j, l) is the (conditionally)

expected number of transitions from state j to l, while the denominator
∑T−1

t=0 γt(j) is the
(conditionally) expected number of times the system is in hidden state j, before time T .

5-4

STATS 306B Lecture 5 — April 14 Spring 2014

5.1.6 Beyond HMMs

HMMs are widely used and widely applicable, but they are still limited by a specific form of
dependence structure. Fortunately, efficient generalizations of the α-β recursions (known as
belief propagation or the sum-product algorithm) exist for carrying out probabilistic
inference in models with more general tree-like dependence structures.

For many dependence structures (e.g., those with cyclic dependencies), exact probabilistic
inference is computationally intractable. However, approximate inference can be carried out
efficiently by repeatedly applying related loopy belief propagation procedures.

5.2 Beyond Flat Clustering

Thus far in the course we have considered only “flat” or structureless approaches to clus-
tering. Each method has been designed to capture similarity within a cluster, but none
have modeled the relationships that may exist amongst clusters. Moreover, these methods
all have the often undesirable feature that clusters may change arbitrarily as the number of
clusters k varies. That is, it is not necessarily the case that clusters produced when k = 4
are subsets of those produced when k = 3. Hierarchical clustering techniques address
these issues by producing a nested series of clusterings that reflect the similarity between
clusters.

The most ubiquitous versions of hierarchical clustering are model-free and depend on
a user-specified dissimilarity measure d between any two datapoints xi and xj. Common
choices Euclidean distance ||xi−xj||2 and negative Pearson correlation, but any dissimilarity
measure is supported. The measure is used by the hierarchical clustering algorithm to
induce dissimilarity measures between and within clusters. As with k-medoids, the standard
hierarchical clustering algorithms require access only to the matrix of pairwise datapoint
dissimilarities dij = d(xi, xj); the original data need not be retained.

The standard output of a hierarchical clustering run is a dendrogram. A dendrogram is
a binary tree in which each node represents a cluster. Each leaf (terminal) node is a cluster
containing a single datapoint, each parent node represents the cluster formed by merging
its two daughter clusters, and the root node represents a single cluster containing the entire
dataset. One useful characteristic of a dendrogram is that the height of each node in the
dendrogram represents the dissimilarity between its 2 daughter nodes. All terminal nodes lie
at height 0 because they have no daughter nodes. This yields an interpretable visualization
of the clustering sequence. Moreover, a user can slice a dendrogram at any intercluster
dissimilarity level to obtain a single clustering with a number of clusters that varies between
1 (at the root node level) to n, the number of datapoints, (at the zero dissimilarity level).

Remark. The dendrogram height interpretation is only appropriate when the hierarchical
clustering algorithm maintains a certain monotonicity property ensuring that daughter dis-
similarity associated with a parent node is never smaller than the daughter dissimilarity
associated with a child node. However, this property is maintained by the most widely used
hierarchical clustering approaches.

There are two principal hierarchical clustering paradigms: agglomerative (bottom-up,
starting from individual datapoints and merging similar clusters) and divisive (top-down,

5-5

STATS 306B Lecture 5 — April 14 Spring 2014

starting with the entire dataset and gradually dividing into dissimilar clusters). In the next
lecture, these two paradigms will be discussed in detail.

5-6

