STATS 306B: Unsupervised Learning Spring 2014
Lecture 7 — April 21
Lecturer: Lester Mackey Scribe: Zhou Fan, Subhabrata Sen

7.1 Spectral Clustering

Last time, we introduced the notion of spectral clustering, a family of methods well-suited
to finding non-convex/non-compact clusters. Recall that the input to a spectral clustering
algorithm is a similarity matrix S € R™*" and that the main steps of a spectral clustering
algorithm are

1. Construct the graph weights W = ¢(5) € R™*",
2. Form the graph Laplacian L = f(W) € R™*",
3. Find the bottom k eigenvectors U = [uq, - - - ,ux] of L.

4. Cluster rows z; of U using k-means.

7.1.1 Graph Laplacian properties

In the last lecture, we discussed three of the most common choices of graph Laplacian L.
Today, we will focus on the random walk normalized Laplacian L,,, = I — D~'W, where

D = diag(dy,--- ,d,) for d; = Zwij
j=1

is the degree matrix and elucidate some of its key properties that make it suitable for
clustering.

Suppose we form a weighted graph GG with our data-points being the vertices and the edge
weights being specified by the weight matrix W. Let us first consider the special case when
the graph G has exactly k components with vertex sets Ay, --- , Ax. Then the Laplacian L,,,
has the following properties.

e For each connected component j, the indicator vector V; = (vj1,- -+, v;,), with v;; =
I(vertex | € A;) is an eigenvector of L,,, with eigenvalue 0.

e The other n — k eigenvalues are > 0. (Note that this implies in particular that L,,, has
all real eigenvalues.)

This motivates the spectral clustering algorithm. In the ideal case, where our selection
of weights segments our data points into k connected components corresponding to true
underlying data clusters, the algorithm eigenvector step returns the exact indicators for each
component and hence for each cluster. Thus the clusters may be easily identified by k-means

7-1

STATS 306B Lecture 7 — April 21 Spring 2014

in the next step. However, in practice, all clusters are typically somewhat connected. Our
hope is that when the weights between clusters components are relatively small, then the
bottom eigenvectors will still reflect the cluster structure.

Next we look at some specific examples of spectral clustering in simulated and real
datasets. We will refer to the plots in the lecture slides whenever applicable.

7.1.2 Examples

Example 1. The first example uses data simulated from a mixture of 4 Gaussian distribu-
tions. The weight matrix is derived from 10 nearest neighbours. See the next section for
a discussion of weight matrix choices. Spectral clustering was performed with two different
graph Laplacians. Please refer to the slides for the plots. In this case, the Gaussians are
well-separated and the points from each distribution are separated into four connected com-
ponents in the resulting graph. We see our theory borne out, as the bottom four eigenvalues
are all zero (since there are four connected components), and the remaining eigenvalues
are positive. Moreover, the eigenvectors exactly indicate to which cluster each datapoint
belongs.

Example 2. The second example again uses spectral clustering with the same mixture of
Gaussians but using a complete graph weight matrix (see the next section for a discussion
of weight matrix choices) that results in all vertices belonging to a single component. Now
there is only one zero eigenvalue, and the first eigenvector is constant as our analysis of L,,,
demands. The next three smallest eigenvalues are non-zero but still small. Moreover, the
next three eigenvectors deviate from cluster indicators but still retain enough information
about cluster belonging to exactly identify to which cluster each datapoint belongs.

Example 3. The third example discusses a data with roughly two annular clusters, which
are roughly concentric. This is a scenario where we expect spectral clustering to outperform
k means clustering. We see that this is exactly the outcome in this case. k-means clustering,
being adapted to the detection of circular or elliptic clusters, fails to recover the structure in
this case. Spectral clustering, on the other hand, correctly recovers the underlying structure.
In the first concentric circle example, we see the clean indicator functions that we have
some to expect from two separated components. In the second noisy example, we see that
the eigenvectors are also noisier with points near the boundary of the two clusters having
ambiguous values. Nevertheless, spectral clustering still captures the cluster structure far
better than k-means in this setting.

Spectral clustering is used widely in practice for image segmentation. We look at an
example of the outcome of spectral clustering on an image. It can be seen that this algorithm
is successful in identifying the main features in the image correctly.

7.1.3 Forming the weight matrix

We will next discuss the important issue of constructing the graph edge weight matrix given
a similarity matrix. The aim of this construction is to capture local similarity (i.e., to identify
the most similar pairs of datapoints and ignore or downweight any other pairs). Some of the

7-2

STATS 306B Lecture 7 — April 21 Spring 2014

most common constructions are listed below. Keep in mind that each construction treats
the datapoints as vertices of a graph, retains some of the edges in the graph, and assigns
weights to these edges.

e The e-neighbourhood graph: Here we join any two vertices for which the similarity is
> €. This algorithm assigns the same weight to each edge.

e The k-nearest neighbour graph: In this algorithm, we join two vertices ¢ and j if 7 is
among the k most similar vertices to j or vice versa. The edge-weights are assigned
according to similarity.

e Mutual k-nearest neigbour graph: This scheme is similar to the previous algorithm.
We join two vertices ¢ and j if ¢ is among the & most similar vertices to j and vice
versa. The edge-weights are assigned according to similarity.

e Fully connected graph: This algorithm considers the complete graph. This method
is useful when weights are assigned using “local” similarity measures (such as those
assigned by the Gaussian kernel), which decay rapidly with decreasing similarity.

Example 4. We next looked at the different graphs formed by the different algorithms on
a dataset. (Refer to the slides for the plots)

7.1.4 Optimality?

Finally, it is interesting to know whether spectral clustering is optimal in any sense. This
would provide further motivation for spectral clustering. It may be shown that a variant
of spectral clustering minimizes a relaxation of the normalized cut graph partitioning crite-
rion (Shi and Malik, 2000). A variant of the same algorithm based on L,,, approximately
minimizes the transition probability of the random walk on the weighted graph from one
cluster to another. Moreover, the asymptotic consistency of spectral clustering has been
studied under certain statistical models (Rohe/Chatterjee/Yu ’10- Spectral clustering and
the high-dimensional stochastic block model).

7.2 Dimensionality Reduction

Having focused so far on the clustering or latent class paradigm of unsupervised learning,
we now turn our attention to a second key paradigm, that of dimensionality reduction
or latent feature modeling. The general (and somewhat vague) goal in dimensionality
reduction is to find low-dimensional representation that captures the “essence” of higher-
dimensional data points. There are various motivations:

e Compression for improved storage and computational complexity.

e Visualization for improved human understanding of data—difficult to plot and inter-
pret data in more than 3 dimensions.

e Noise reduction to ameliorate noisy and infrequent or missing measurements.

7-3

STATS 306B Lecture 7 — April 21 Spring 2014

e Preprocessing for supervised learning tasks—reduced/denoised representations may
lead to better performance or act as regularization to reduce overfitting.

e Anomaly detection to characterize normal data values and distinguish them from
outliers.

We will first focus on linear dimensionality reduction, in which, given high-dimensional
data points z; € R? (e.g., images of faces in R3®!), we aim to derive “useful” representations
2 = UTx; € RF where UT € R¥*? is a linear mapping into a low-dimensional space. The
different methods we consider will arise from different notions of the word “useful.”

7.2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is the most common approach to linear dimen-
sionality reduction. The input in this case is a dataset with mean-centered datapoints,
x1,...,T, € RP obeying & = % S i = 0,! and the still somewhat vague goal is to produce
useful derived variables z; = UTxz; € R*, k < p. We will make this precise in the context of
an example:

Example 5 (2D baseball player statistics).

éood choice

At bats (mean-adjusted)
=]

2 "“bad choice |

-3 -2 -1 0 1 2 3
Home runs (mean-adjusted)

Suppose that for various baseball players we measure two statistics, at bats and home runs
scored, and plot their values as above. Since these variables are very correlated, we suspect
that a 1D summary of this data would suffice, and we aim to find a 1D projection that cap-
tures most of the data variation. The line labeled “good choice” appears to be a particularly
good choice for this data in that even after projecting each datapoint onto the line, most
of the variation in the data remains. Meanwhile, were we to project these points onto bad
choice, most of the projected values would cluster near zero and lose most of their variability.

'If your datapoints are not mean-centered to begin with, one begins by subtracting away the empirical
mean.

STATS 306B Lecture 7 — April 21 Spring 2014

Extracting one PC

Let us extend this 2D intuition to the more general case of extracting a single principal
component (i.e., k = 1) from data in RP. Each 1D subspace S, is identified by a unit vector
u (with ||ulls = 1). Projection onto S, is given by Z; = uu’z;, and the magnitude of the
projection is ||Z;||2 = ||ullou’2; = uTx;. Let z;1 = vl x; denote this derived variable.

The goal of PCA is to maximize the empirical variance of the derived variable z; over
choices of projection direction u, i.e.

1 T, \2
uy = argmax— E 24 = argmax — E (u” zy)”.
wlull2=1 T wllull2=1 T T

The entries of uj are called the first principal component (PC) loadings, the entries
2% = uiTx; are the first PC scores, and (z},,...,z",) is the first PC.
Letting X = : , we may write the above optimization problem as

xn

"1 TXTX XTX
max ul (Z —1:;6?) u = max wa Aw A1 (> ,
n w:||ul|2=1 n n

u:||ul|2=1
lullz —

where)\ (X X) is the leading eigenvalue of the covariance matrix XTTX (This may be

derived using Lagrange multipliers.) As a result, uj, the argmax, is the corresponding leading
eigenvector of XTTX Thus, one obtains the first principal component of X by multiplying X
by the first eigenvector of its covariance matrix.

Extracting k£ PCs

For k£ > 1, PCA produces a sequence of PC loadings [u},...,u}] := U* and PC scores

_ T
z;; = uj" x; according to

n
* 1 2
u; = argmax — E Zij
wllullz=1,% S0, zijza=0vi<j "' 527

That is, PCA maximizes the variance of the j* derived variable Z; under the constraint
that it is uncorrelated with the previous derived variables {Z;},<;. We may write this as

u;‘-FXTXuj

n

*

u; = argmax
u:||ull2= luTXT u;=0 VI<j

This is another standard eigenvalue problem, so that u* is the ;' leading eigenvector of

J
%, and the objective value for u] is A; () the ;' leading eigenvalue. Thus, PCA

finds the k leading eigenvectors of the data covariance matrix.

7-5

STATS 306B Lecture 7 — April 21 Spring 2014

Variance explained

In PCA contexts, one often speaks of the variance explained by [uf,...,u}]. This is
precisely the sum of the PC variances, which we have shown to be Z?Zl Aj (sz) The

fraction of the total variance explained is

Sy () SN () S ()

n
sum of input z-component variances XTX o XTx\
but a-comp w(5) S ()

Jj=1 n

Second PCA perspective

While we have derived PCA from a variance maximization perspective, a second fruitful
perspective arises from considering the reconstruction error of projections. A projection of
x; onto a k-dimensional subspace can always be written as UU T x; = Uz; for some U € RP*¥
with orthonormal columns UTU = I. PCA chooses the projection which minimizes the data
reconstruction error: .
U*= argmin ZHxi—UUTxiH%.
UeRrxk:.UTU=I ;=]
This problem is also solved by taking the columns of U to be the k leading eigenvectors of
XTx
—.

Note however that computing the covariance X;—X is often an expensive operation, requir-
ing Q(np?) time. An alternative computational procedure is the following: if Uxr X xr V;(FT is
the singular value decomposition of X7, where Uxr and Vyr contain the orthogonal singular
vectors and X xr is the diagonal matrix of singular values, then the PC loadings are given

by the k leading left singular vectors. This requires O(npk) computational time.

