# Lecture 8: Principal Component Analysis; Kernel PCA

Lester Mackey

April 23, 2014

#### PCA example: digit data



130 threes, a subset of 638 such threes and part of the handwritten digit dataset. Each three is a  $16 \times 16$  greyscale image, and the variables  $X_j$ ,  $j = 1, \ldots, 256$  are the greyscale values for each pixel.

# PCA example: digit data





#### PCA example: digit data

Two-component model has the form

Here we have displayed the first two principal component directions,  $v_1$  and  $v_2$ , as images.

## PCA in the wild: Eigen-faces

**Courtesy: Percy Liang** 

- Turk and Pentland, 1991
  - $\bullet d = \text{number of pixels}$
  - ullet Each  $\mathbf{x}_i \in \mathbb{R}^d$  is a face image
  - $\mathbf{x}_{ji} = \text{intensity of the } j\text{-th pixel in image } i$

Idea:  $\mathbf{z}_i$  more "meaningful" representation of i-th face than  $\mathbf{x}_i$  Can use  $\mathbf{z}_i$  for nearest-neighbor classification

Much faster: O(dk + nk) time instead of O(dn) when  $n, d \gg k$ 

#### PCA in the wild: Latent semantic analysis

Courtesy: Percy Liang

- Deerwester/Dumais/Harshman, 1990
  - $\bullet$  d = number of words in the vocabulary
  - ullet Each  $\mathbf{x}_i \in \mathbb{R}^d$  is a vector of word counts
  - $\mathbf{x}_{ji}$  = frequency of word j in document i

How to measure similarity between two documents?

 $\mathbf{z}_1^{\top}\mathbf{z}_2$  is probably better than  $\mathbf{x}_1^{\top}\mathbf{x}_2$ 

Applications: information retrieval

Note: no computational savings; original x is already sparse  $^{6}$ 

#### PCA in the wild: Anomaly detection

Courtesy: Percy Liang

• Lakhina/Crovella/Diot, '04  $\mathbf{x}_{ji} = \text{amount of traffic on link } j$  in the network during each time interval i



Model assumption: total traffic is sum of flows along a few "paths" Apply PCA: each principal component intuitively represents a "path" Anomaly when traffic deviates from first few principal components



## PCA in the wild: Part-of-speech tagging

Courtesy: Percy Liang

Schütze, '95

Part-of-speech (POS) tagging task:

Input: I like reducing the dimensionality of data . Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .

Each  $x_i$  is (the context distribution of) a word.

 $\mathbf{x}_{ji}$  is number of times word i appeared in context j

Key idea: words appearing in similar contexts tend to have the same POS tags; so cluster using the contexts of each word type

Problem: contexts are too sparse

Solution: run PCA first, then cluster using new representation

## PCA in the wild: Multi-task learning

**Courtesy: Percy Liang** 

- Ando & Zhang 05
- ullet Have n related tasks (classify documents for various users)
- ullet Each task has a linear classifier with weights  ${f x}_i$
- Want to share structure between classifiers

#### One step of their procedure:

given n linear classifiers  $\mathbf{x}_1, \dots, \mathbf{x}_n$ , run PCA to identify shared structure:

$$\mathbf{X} = \left(egin{array}{ccc} \mid & & \mid & \mid \ \mathbf{x}_1 \ldots \mathbf{x}_n \mid & \geq \mathbf{UZ} \end{array}
ight)$$

Each column of U is an eigen-classifier

#### Other step of their procedure:

Retrain classifiers, regularizing towards subspace U

## Choosing a number of components

- As in the clustering setting, an important problem with no single solution
  - May be constrained by goals (visualization), resources, or minimum fraction of variance to be explained
  - Note: Eigenvalue magnitudes determine explained variance
    - e.g., Eigenvalues from face image dataset



- Rapid decay to zero → variance explained by a few components
- Could look for elbow or compare with reference distribution

#### PCA limitations and extensions

- Squared Euclidean reconstruction error not appropriate for all data types
  - Various extensions, like exponential family PCA, have been developed for binary, categorical, count, and nonnegative data (e.g., Collins/Dasgupta/Schapire, A Generalization of Principal Component Analysis to the Exponential Family)
- PCA can only find linear compressions of data
  - What if data best summarized in a non-linear fashion?
  - Kernel PCA allows us to perform such non-linear dimensionality reduction



11

Credit: Percy Liang

#### Blackboard discussion

See lecture notes