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Lecture 9 — April 28

Lecturer: Lester Mackey Scribe: Jiyao Kou, Shuo Xie

9.1 Recap

In the last lecture, we discussed the limits of linearity in ordinary PCA and introduced kernel
PCA, a non-linear dimensionality reduction method with little dependence on the dimension
of non-linear feature space in which it operates. This lecture will present a few additional
remarks on kernel PCA and then introduce factor analysis, a probabilistic approach to
linear dimensionality reduction.

9.2 Remarks on Kernel PCA

9.2.1 Kernel PCA and spectral clustering

There is a close relationship between kernel PCA and spectral clustering, even though we
motivated the two methods in quite different ways. To see this, note that kernel PCA finds
the bottom k eigenvectors of I−K for a kernel matrix K while Spectral Clustering finds the
bottom k eigenvectors of a Laplacian matrix. The parallel becomes especially clear when
we choose the symmetric normalized Laplacian, Lsym = I − D− 1

2WD−
1
2 . Notably, if W is

a kernel matrix (meaning it is symmetric positive semidefinite) then D−
1
2WD−

1
2 is also a

kernel matrix. In this case, spectral clustering can be interpreted as embedding datapoints
into an associated feature space and clustering using the recovered reconstruction weights αj
introduced in the context of kernel PCA. The normalization introduced in spectral clustering
implies that even if W = K (a Gaussian kernel matrix is a common choice for either) the
resulting eigenvectors αj could still be quite different. See the accompanying slides for an
empirical comparison of spectral clustering and kernel PCA from ESL.

9.2.2 Mean centering

One must mean-center data in φ-space before applying kernel PCA. Fortunately, it is always
possible to mean-center the data given access only to the kernel matrix Kφ. Indeed, one can

check that K̃φ = (I − 11T

n
)Kφ(1− 11T

n
) is a mean-centered version of Kφ.
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9.2.3 Solving kernel PCA with PCA

Instead of solving kernel PCA as described last time, once Kφ is formed, we can factor it as
Kφ = GGT using, for instance, the Cholesky decomposition and then run standard PCA on
G ∈ Rn×n. In this case G becomes an alternative representation for Φ, since Kφ = ΦΦT .

9.2.4 Data modeling

PCA and kernel PCA are both model-free methods for dimensionality reduction: they are
determined completely by their reduction objectives and make no attempt to explicitly model
the data generating process. We will next explore a classical model-based approach to
dimensionality reduction.

9.3 Factor Analysis

Factor Analysis is a probabilistic latent feature model for the linear dimensionality reduc-
tion of continuous data. The model is often employed when the coordinates of each datapoint
xi are measurements largely explainable by a small set of hidden factors. Common applica-
tion areas include

• Educational and psychological testing, in which one aims to infer abilities or personal
traits from test responses,

• EEG brain scanning to measure neuronal activities, and

• Financial data analysis, in which one attempts infer market confidence and external
driving forces from stock prices.

9.3.1 Model formulation

The factor analysis generative model for datapoints x1, ...., xn ∈ Rp is formulated as

zi
iid∼ N (0, Iq×q)

xi|zi
iid∼ N (µ+ Λzi,Ψ),

where zi is a collection of latent factors in Rq associated with the datapoint xi. We have
the following unknown parameters:

• Ψ ∈ Rp×p, the diagonal covariance matrix,

• µ ∈ Rp, the global mean vector,

• Λ ∈ Rp×q, the factor loading matrix.
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We see that, under this model, each datapoint is viewed as a random draw from a subspace
spanned by the columns of Λ plus noise. Note moreover that all the coordinates of xi depend
on the same small set of hidden factors, which ultimately induces correlations amongst
coordinates of xi; since the noise matrix is diagonal, all correlations amongst the coordinates
of xi must be explained in this manner.

9.3.2 Marginal distribution of xi

To better understand the correlation-inducing nature of the zi’s, let us consider the marginal
distribution of xi under the factor analysis model. First notice that xi = µ+ Λzi +wi where
wi ∼ N (0,Ψ) with wi ⊥⊥ zi. Thus, xi is Gaussian, so it suffices to compute its mean and
covariance to establish the distribution The mean of xi is

E[xi] = µ+ ΛE[zi] + E[wi] = µ,

while the covariance is

Cov(xi) = E[(xi − µ)(xi − µ)T ]

= E[(Λzi + wi)(Λzi + wi)
T ]

= ΛE[ziz
T
i ]Λ + E[wiw

T
i ] + E[Λziw

T
i ] + E[wiz

T
i ΛT ]

= ΛΛT + Ψ + 0 + 0

= ΛΛT + Ψ

The fourth equality is due to the independence of wi and zi and the fact that they have
mean 0. So marginally, xi ∼ N (µ,ΛΛT + Ψ) , where ΛΛT represents low-rank latent factor
covariance structure and Ψ is the diagonal noise variance.

9.3.3 Unsuperivsed learning goal

As usual, our unsupervised learning goal is to infer latent factors z1:n from observations
x1:n. We will first examine how to carry out probabilistic inference of p(zi|xi) assuming
all parameters θ = (Λ,Ψ, µ) are known. Our strategy, which we appeal to frequently in
the Gaussian context, is to first compute the joint distribution p(zi, xi) and then derive the
conditional distribution from this joint. A key observation is that (zi, xi) = (zi, Λzi+wi+µ)
are jointly multivariate Gaussian, since they are affine functions of jointly Gaussian variables.
Hence their joint distribution is determined by the mean value and covariance matrix. The
mean value is

E

([
zi
xi

])
=

[
0
µ

]
while the covariance matrix is

Cov

([
zi
xi

])
=

[
Cov(zi) Cov(zi,xi)

Cov(xi, zi) Cov(xi)

]
where we know that
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• Cov(zi) = I

• Cov(xi) = ΛΛT + Ψ

• Cov(zi, xi) = E[zi(xi − µ)T ] = E[zi(Λzi + wi)
T ] = E[ziz

T
i ]ΛT + E[ziw

T
i ] = ΛT + 0.

Thus we have:

(zi, xi) ∼ N

([
0
µ

]
,

[
I ΛT

Λ ΛΛT + Ψ

])
.

To obtain the conditional distribution of zi given xi, we use a key fact about Gaussian
conditioning (which can be found in the assigned multivariate Gaussian chapter):

Fact 1. If (z, x) ∼ N
([

µz
µx

]
,

[
Σzz Σzx

Σxz Σxx

])
and Σxx > 0, then z|x is Gaussian distributed

with mean
µz|x = µz + ΣzxΣ

−1
xx (x− µx)

and covariance:
Σz|x = Σzz − ΣzxΣ

−1
xxΣxz

Remark 2. We see that the conditional mean µz|x is the marginal mean µz adjusted by a
term ΣzxΣ

−1
xx (x− µx) that accounts for the covariance between x and z.

Moreover, the conditional variance Σz|x is a reduced form of the marginal covariance Σzz,
reduced because observing more information x can only decrease the variance. The matrix
Σzz−ΣzxΣ

−1
xxΣxz can also be identified as the Schur complement of the full joint covariance

with respect to Σxx.

Using the above fact in our setting, we see that zi|xi is Gaussian distributed with mean

E[zi|xi] = 0 + ΛT (ΛΛT + Ψ)−1(xi − µ)

= (I + ΛTΨ−1Λ)−1ΛTΨ−1(xi − µ) (9.1)

and covariance

Cov(zi|xi) = I− ΛT (ΛΛT + Ψ)−1Λ

= (I + ΛTΨ−1Λ)−1 (9.2)

Note the initial expressions in (9.1) and (9.2) both involve p × p matrix inversions, while
the final expressions only require q × q matrix inversions. This rewriting is achieved by the
Sherman-Morrison-Woodbury formula. Moreover, in (9.2) we see that variance has been
reduced from I to (I + ΛTΨ−1Λ)−1 by observing xi. This distribution enables soft inference
of zi. For hard inference (point estimation) of zi, it is common to use the conditional mode
E[zi|xi].
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9.3.4 Estimation of unknown parameters θ

In the previous section we assumed that all parameters were known, but we often need to
estimate θ in practice. Consider for instance maximizing the log-likelihood of x1:n,

log p(x1:n; θ) =
n∑
i=1

log p(xi; θ)

= −n
2

log |ΛΛT + Ψ| − 1

2

∑
i

(xi − µ)T (ΛΛT + Ψ)−1(xi − µ) + const

where const is a parameter-free term. Fortunately, this admits a closed-form maximum over

µ: µ̂MLE =
1

n

∑n
i=1 xi. Thus, when estimating Ψ and Λ, we can subsitute µ̂MLE for µ in

likelihood. In fact, this is equivalent to modeling mean centered data xi ← xi − µ̂MLE with
fixed µ = 0. However, even with this simplification, no closed form Ψ and Λ maxima exist,
since they are coupled by the inverse and determinant in the log likelihood. To conquer this
difficulty, we will decouple these parameters via the EM algorithm in the next class.
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