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Biostatistics consulting

Data Studio
Every Wednesday 1:30-3:00 during fall, winter, spring quarters
Occasionally a presentation like this one
Drop-in consulting once a month
Usually an in-depth consultation for a Medical School researcher

Want to present your project?
Want to learn about other SOM projects?
Want to see biostatisticians in action?

Individual consultations
Brought to you by Spectrum and DBDS

med.stanford.edu/dbds/cool-tools/data-studio.html
More info, including how to get Data Studio announcements or request a
consultation



Example

161 human blood samples sequenced
3 disease groups: controls, first-degree relatives of T1D patient, AA+
Other measured covariates:

Sex
Age
Sample collection site
RNA processing site
RNA extraction kit
Sequencing batch
RIN



PCA plots
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PCA plots (continued)
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Outline

Mathematical model
Estimating number of latent confounders
Estimating confounders with cate or sva
Testing for differential expression (DE)
More comparisons of results



The model
N samples, G genes, K unmeasured confounders; K � N � G

YN×G = XN×1βT
G×1 + ZN×KΓ

T
G×K + EN×G

Z = XαT
K×1 + WN×K

Y contains RNA-seq measurements suitably massaged
X contains variable being tested for association. Can add more
measured covariates, both primary and nuisance parameters.
E is noise with iid rows: Ei ∼ N(0,Σ) with Σ = diag(σ2

1, . . . , σ
2
G)

W has iid standard normal entries
Not just noise
Needs to be a substantial part of Z or it will be impossible to solve for β

W ⊥⊥ X and E ⊥⊥ (X,Z)

Goal: Test G hypotheses Hg : βg = 0

Difficulty: Z is unknown



Multiple regression version

Y = X0BT
0 + X1BT

1 + ZΓT + E

Z = X0AT
0 + X1AT

1 + W

X1 contains d1 covariates of interest
X0 contains d0 nuisance covariates



Variance stabilizing transformation

RNA-seq counts for a gene typically have variance that increases with
the average
PCA plots and above model require homoscedasticity
log-transformation over-corrects genes with low expression
vst() in DESeq2 gives roughly log2-transformation for highly-expressed
genes but better for other genes
rlog() in DESeq2 is recommended, but it takes too long if you have
very many samples



What about FPKM?

I only have FPKM from Cufflinks. What should I do?

Many benchmarks show that FPKM is not a good normalization
approach:

Dillies et al. (2012)
Seyednasrollah, Laiho and Elo (2013)
Rapaport et al. (2013)
Zhang et al. (2014)
Schurch et al. (2016)

Lior Pachter, whose lab developed Cufflinks, says not to use it
pachterlab.github.io lists it under “retired software”
In CSHL keynote in 2013 (www.youtube.com/watch?v=5NiFibnbE8o
about 35 minutes in), explains that it is wrong:

FPKM discards a proportionality constant
That constant differs between experiments
So FPKM is not appropriate for DE testing



Simple approaches to handle latent factors

Naive: Ignore and just do linear regression of Y on X
Gives unbiased estimate for β + Γα
Fine if α = 0, ie X ⊥⊥ Z

GWAS: Remove leading principal components from Y
Fine if confounder signal much stronger than effect of primary variable
Otherwise, gives biased estimate of Z

Estimate Ẑ by leading principal components of residual matrix from
naive approach

Actually estimates W
Again, fine if X ⊥⊥ Z
OLS of Y on (X Ẑ) will give same estimate of B as naive approach



cate rotation (Wang, Zhao, Hastie and Owen, 2017)

N × N Householder matrix QT such that QT X = ‖X‖2e1

Ỹ = QT Y = ‖X‖2e1βT + Z̃ΓT + Ẽ

Z̃ = QT Z = ‖X‖2e1αT + W̃

Rotation does not change distributions of E or W
Separating first row from the rest:

Ỹ 1 = ‖X‖2βT + Z̃1Γ
T + Ẽ1 ∼ N(‖X‖2(β + Γα)T ,ΓΓT +Σ)

Ỹ−1 = Z̃−1Γ
T + Ẽ−1 has rows iid N(0,ΓΓT +Σ), which is exploratory

factor analysis model



Estimating Number of Confounders



Factor analysis model

Υ = Λ+ ΞΣ1/2 = (
√

NUN×K DVT
G×K + Ξ)Σ1/2

Λ has rank K
Σ same as above

Heteroscedastic noise
Σ = σIG is homoscedastic or white noise

Ξ has iid entries with mean 0 and variance 1
U,V are orthogonal
D = diag(d1, . . . , dK )

Goal: Compute Λ̂ that minimizes loss function ErrΛ(Λ̂) ≡ E(
∥∥∥Λ̂− Λ

∥∥∥2

F
).



SVD in white noise (Perry, Stanford dissertation, 2009)

Assume Σ = IG and N,G →∞ with G/N → γ. RNA-seq has large γ (at
least 50, say).

‖Ξ‖2F ≈ NG
Λ =

√
NUDVT

ΛTΛ/N has eigenvalues µk = d2
k

Each factor contributes ‖Υk‖2
F = Nµk

µk > G for Υk to exceed noise



SVD in white noise (part 2)

If first K singular values of Υ are
√

Nµ̂k , then µ̂k → µ̃k , where

µ̃k =

{
(µk + 1)

(
1+ γ

µk

)
when µk >

√
γ

(1+√γ)2 otherwise

If any µk <
√
γ, then corresponding eigenvalue of ΥTΥ/N should be

near λ+ from Marchenko-Pastur law.
Including factor k in Λ̂ would increase loss if µk less than roughly γ for
large γ
Invalidates EstDimRMT in isva package, as well as counting
eigenvalues > 1



SVD in white noise (part 3)

4 categories of factors:

Undetectable: µk <
√
γ implies factor undetectable by SVD-based methods

Harmful: √γ < µk < µ∗F implies µ̂k > λ+ without doubt, but including
factor in Λ̂ increases loss

Useful: µk > µ∗F but still O(1) implies including factor will decrease
the loss but factor contribution still smaller than noise

Strong: µk ∼ O(G) implies factor larger than noise and U∗k can be
estimated very well



Heteroscedasticity (Owen and Wang, 2016)
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Scree plots (µ̂k) for simulated heteroscedastic data with 4 useful weak
factors for eigenvalues based on Υ, ΥΣ−1/2, and scale(Υ). Without
scaling, scree plot does not reveal how many factors there are.



Heteroscedasticity (part 2)

No strong factors implies E dominates Λ and column variances σ̂g
approximate σ2

g well
With 4 strong factors, cor(σ̂2

g , σ
2
g) < 0.6 and using scale() gives

slightly greater loss than no scaling
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Heteroscedasticity (part 3)

To emphasize
Do not scale genes to have equal variances when estimating number of
confounding factors if there might be strong factors.

Further invalidates EstDimRMT algorithm . . . not to mention several
aspects of its implementation



Parallel analysis via permutation (Buja and Eyuboglu,
1992)

N →∞ with G fixed
Algorithm:

Compute nonzero singular values νk of Υ
Tk = ν2

k/
∑

` ν
2
`

For b = 1, . . . ,B (B = 20 by default)
Rearrange each column of Υ independently
Compute T (b)

k of permuted matrix as before

For each k, let pk be fraction of b with T (b)
k ≥ Tk .

K = mink{k : pk > α} − 1, where α = 0.1 is hard-wired∑
k νk doesn’t change between first step and permutations because:

Sum of eigenvalues equals trace
Rearranging entries in a column does not change diagonal of ΥTΥ

Weaknesses:
Misses useful weak factors when there are strong factors
In Owen and Wang tests, inflates K̂ when no strong factors and only
one useful factor



Large matrices with strong factors

N,G →∞ with K fixed and µk ∼ G or larger

Owen and Wang tested several methods
Best was sample covariance eigenvalue difference (ED) method of
Onatski (2012)

K̂ = max{k ≤ Kmax : λ
2
k − λ2

k+1 ≥ δ}
Parameters Kmax and δ chosen suitably
Only requires µk diverge in probability
Looks for gaps in eigenvalues, not for eigenvalues themselves to exceed
given threshold



Large matrices with weak factors

N,G →∞ with K fixed and µk = O(1)

Attempt to estimate number of factors with µk >
√
γ

Owen and Wang tested information criterion of Nadakuditi and
Edelman (2008)
Results for white noise scenario show that:

This is hard because µ̂k ∼ γ or larger
Don’t really want to use harmful factors anyway



Bi-cross-validation (Owen and Wang, 2016)

Maximize log-likelihood for Λ and Σ

Actually unbounded if any σ̂g → 0
Use early stopping criterion of 3 iterations

Randomly partition

Υ =

(
Υ00 Υ01
Υ10 Υ11

)
and do clever linear algebra to estimate prediction error of Υ00
Use cross-validation to choose K̂ that minimizes CV PE
Mathematically justified, not too hard to explain, implemented in cate
package



Estimate Confounders Given K̂



Identifiability issues

If U is orthogonal, then ZUUTΓT = ZΓT .
Z and Γ only determined up to a rotation
Sufficient to identify β

For any M ∈ RK×d :

X(B + ΓM)T + (Z− XMT )ΓT = XB + ZΓT

Impossible to identify projection of β onto column space of Γ.
Common to use either of following:

Negative controls: Require known set C of K or more genes such that
βC = 0 and rank(ΓC) = K
Sparsity: ‖β‖0 ≤ b(G − S)/2c; (ΓC) = K if |C| = S for K ≤ S ≤ G



SVA (Leek & Storey, 2007, 2008)

Idea: If we knew a set C of genes such that βC = 0, then
Y[, C] = ZΓT

C + E[, C] and PCA would give Z.

Ẑ contains top K eigengenes in SVD of R
For j = 1, . . . , J (J = 5 by default)

Compute p-values for B1 in OLS fit of (X, Ẑ)
Compute p-values for Γ in OLS fit of (X0, Ẑ)
Use Bayes theorem to estimate:

Probabilities PX that (B1)g = 0
Probabilities PZ that Γg = 0

P = P̂X (1− P̂Z )
R∗g = PgRg and center columns
Ẑ contains top K eigengenes in SVD of R∗



SmartSVA (Chen et al, 2017)

At end of each iteration, ρ is the Spearman correlation between new
and previous values of P.
Exits iteration when 1− ρ < ε, which is 0.001 by default
Maximum number of iterations is 100 by default
Also uses QR decomposition of X to speedup computations.

Alas, this convergence metric does not measure how much Ẑ is changing.



My convergence criterion

Want to know whether the column space of Ẑ is converging
Let r be the maximum absolute value of the residuals from projecting
columns of Ẑ onto column space of estimate at previous iteration.

Alas, r often doesn’t go to zero, so I used underrelaxation:

If the algorithm using weights wj−1 at iteration j computes that the
weights should be ŵ, instead set wj = wj−1 + ω(ŵ−wj−1)
ω ∈ (0, 1) chosen by trial but 0.5 usually works



cate

Ỹ−1 = Z̃−1Γ
T + Ẽ−1 has rows iid N(0,ΓΓT +Σ). Solve for Σ and Γ.

Package implements 3 methods:

Quasi-maximum likelihood (default)
PCA
Factor analysis using early stopping criterion of bi-cross-validation



DE Testing With Target False Discovery Rate 0.1



cate

Ỹ 1 = ‖X‖2βT + Z̃1Γ
T + Ẽ1 ∼ N(‖X‖2(β + Γα)T ,ΓΓT +Σ)

Use estimated Σ and Γ for inference on α and β

Orthogonal rotation of Γ would also rotate α but not affect β
β and α have G +K parameters but Ỹ 1 is length G , so not identifiable
With sparsity assumption, cast problem as robust regression: nonzero
entries in β correspond to outliers
By default, calibrates t-statistics to account for difference between
asymptotic results and finite sample size
Rank genes by p-values

(Note: Without confounders, plain linear regression.)



limma

Uses linear regression with Gaussian error but moderates the t-statistics
Options for normalization (first two used below):

vst() as above
logCPM from edgeR and intensity-trend option when moderating
t-statistics
voom if library sizes highly variable between samples (see chapter on
RNA-seq in User’s Guide)

Uses B-statistic by default to rank genes
Log-odds that gene is differentially expressed
Will give same order as p-values if there are no missing values



DESeq2

Negative binomial model of count data as output by:
RSEM
Pseudoalignment methods such as Kallisto

In blog post, Love recommends using limma if there are 100s of
samples because it’s much faster.
To rank genes:

DESeq2 documentation recommends ranking by shrunken |LFC| (using
apeglm shrinkage)
Also rank by p-values in results below



Testing for DE Between AA+ and Controls



The samples

status
Control
FDR

NonProg
Prog

source
Italy
Stanford

TrialNet

proc
Stanford
Jinfiniti

EA
UPITT

extract
ABI 6100
Tempus Spin Kit
Thermo Scientific Kingfisher

batch
1 2 3 4 6

sex
female male

status
source

proc
extract

seq batch
sex

Test AA+ (both NonProg and Prog) versus controls



Mathematical model

To avoid singular model matrix and improve its suitability:

Discard extraction method because it is determined by processing site
Combine collection site and processing site into single variable
Combine batches 1, 2 and 3
Discretize age and RIN into 5 equal width bins

Must keep first degree relatives in order to model effects of collection site,
processing site, and batch



Estimate number of latent confounders

Average BCV errors over 20 random seeds:
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Counts of significant DE genes

## test down up
## Known_DESeq 580 194
## Known_Trend 178 141
## Known_Limma 275 164
## Known_Cate 0 0
## Cate_DESeq 455 357
## Cate_Trend 363 392
## Cate_Limma 455 349
## Cate 29 114
## SVA_DESeq 24 8
## SVA_Trend 19 11
## SVA_Limma 18 5

In test name:
Part before underscore indicates
what’s in model:

only measured covariates,
cate confounders, or
sva confounders

Part after underscore indicates DE
testing method
Cate by itself means cate used as
intended



Comparison of discoveries when using only measured
covariates
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Comparison of discoveries when using cate confounders

Cate_DESeq Cate_Trend
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Comparison of discoveries when using sva confounders

SVA_DESeq SVA_Trend

SVA_Limma 14168
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Comparison of discoveries when using limma with
intensity-trend

Known_Trend Cate_Trend

SVA_Trend 13316
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194
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Checking highly ranked genes

Asked SME to determine biological relevance of top 15 genes from:

limma using intensity-trend including:
only measured covariates,
cate confounders, or
sva confounders

DESeq2 prioritizing by |LFC|

(Actually sent a few more genes than this)



Comparison of relevance of top 15 genes
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Comparison of relevance

Counts of relevant genes checked by SME

## test top10 top15 top50
## Known_LFC 0 0 0
## Known_DESeq 1 2 5
## Known_Trend 1 1 6
## Known_Limma 1 2 5
## Known_Cate 1 1 5
## Cate_LFC 0 1 3
## Cate_DESeq 6 7 10
## Cate_Trend 7 7 11
## Cate_Limma 5 7 10
## Cate 5 7 10
## SVA_LFC 1 1 2
## SVA_DESeq 3 3 4
## SVA_Trend 3 3 4
## SVA_Limma 2 3 4

Ranking by |LFC| is very
different from other rankings
Even in top 50, sva
confounders still don’t
discover genes in cate’s top
15
Using only measured
covariates eventually
discovers some genes in
cate’s top 15 but also
discovers more genes that are
probably spurious



Housekeeping gene RNA18S5
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Testing for DE Between Sexes



PCA plots

−25

0

25

−40 −20 0 20

PC1: 3% variance

P
C

2:
 2

%
 v

ar
ia

nc
e

Adjust for cate confounders

−25

0

25

50

−40 −20 0 20 40

PC1: 3% variance

P
C

2:
 2

%
 v

ar
ia

nc
e

Adjust for sva confounders

Pink for girls, blue for boys.



Discoveries on Y chromosome

12 genes on Y chromosome are discovered by any and every method
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Other DE genes

Probably not many autosomal genes DE between sexes
X-chromosome genes that are DE between sexes should mostly be
down-regulated in males



Are discoveries consistent with conjectures on preceding
slide? (part 1)

## test n.auto n.X.up n.X.down top100.X top100.X.up
## NoAdj_LFC 457 14 42 22 2
## NoAdj_DESeq 457 14 42 34 3
## NoAdj_Trend 215 8 39 39 4
## NoAdj_Limma 170 7 39 39 4
## NoAdj_Cate 8 3 30 40 3
## Known_LFC 884 18 54 20 1
## Known_DESeq 884 18 54 38 4
## Known_Trend 604 15 45 38 5
## Known_Limma 658 15 50 38 4
## Known_Cate 7 3 30 39 3



Are discoveries consistent with conjectures on preceding
slide? (part 2)

## test n.auto n.X.up n.X.down top100.X top100.X.up
## Cate_LFC 983 25 63 31 4
## Cate_DESeq 983 25 63 41 4
## Cate_Trend 911 24 58 40 5
## Cate_Limma 885 21 60 41 5
## Cate 50 5 37 41 4
## SVA_LFC 347 15 48 33 3
## SVA_DESeq 347 15 48 43 5
## SVA_Trend 301 14 45 42 5
## SVA_Limma 305 14 47 43 5



Rankings of X-chromosome genes in top 100
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Comparison of methods

For given adjustment (or no adjustment), the X-chromosome genes
discovered by cate are also discovered by all the other methods
Other methods mostly agree on their discoveries
Judging by the autosomal and up-regulated X-chromosome genes, cate
confounders with robust regression seems to give far fewer false
discoveries—and might even be overly conservative.
Using cate confounders in limma or DESeq2 versus using sva
confounders in the same method:

Advantages of cate confounders:
About 30% more down-regulated X-chromosome discoveries
Slightly higher rankings of X-chromosome genes in top 100

Advantages of sva confounders seem to outweigh preceding list:
Roughly 1/3 as many autosomal discoveries
Roughly 2/3 as many X-chromosome discoveries up-regulated in males
1–2 more down-regulated X-chromosome discoveries in top 100

Ranking by |LFC| includes only 75% (or less) as many X-chromosome
genes in top 100 and spreads them out more compared to other
methods using the same model



Wrap-up



Conclusions

Ranking by |LFC| does not work for these comparisons
Might be affected by using apeglm shrinkage method
I didn’t try either of the other 2 shrinkage options

AA+ vs controls: cate confounders clearly better than using sva
confounders
Between sexes:

cate with robust regression gives the fewest likely false discoveries and
probably gives the best top 100 genes
Otherwise, sva confounders seems to give far fewer false discoveries than
using cate confounders in the same method



Correlation between cate confounders and primary variable

Benchmarks with simulated data have shown that sva may perform poorly
when latent factors are correlated with primary variable.
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Confirms that cate confounders are more strongly correlated with being
AA+ in first set of tests than with sex in second set.



Are latent confounders overfitting?

Will using latent factors result in DE genes when none exist?
Finding so many autosomal DE genes when comparing sexes might
increase concern
To check, randomly shuffled the sex labels and repeated DE testing
between “fake” sexes

BCV indicates more latent factors but probably not more than 30
Tried cate with K̂ = 20, 25, 30
PCA plots on next slide have a lot of overlap between groups
Some DE testing with 30 cate confounders:

cate discovered one gene (DDX3Y on Y chromosome)
limma (both versions) found none

Details may depend on random seed before shuffling



PCA plots

Randomly shuffle sex labels; use specified number of cate confounders
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Distributions of test statistics

I’ve been using PCA plots as diagnostic tool
Should also check distributions of test statistics, ignoring “large” values

Does it match distribution assumed in computation of p-values?
With cate calibration (used by default and these results), roughly
normal distribution almost guaranteed
Can alternatively check distribution of p-values

Histogram should be roughly uniform with spike at left end
I found it harder to judge these histograms than histogram of test
statistics

Following slides show a few examples
Ignoring statistics with absolute value greater than 5
Magenta curve is density function of standard normal
Blue dashed line is mean of histogram



Statistics from testing DE between AA+ and controls
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Statistics from testing DE between sexes
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Statistics from DE testing with shuffled sex labels
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Source and additional supporting material

These slides came from http://web.stanford.edu/~lstell/
Some R code demonstrating how to do these analyses to be posted
Updates and additional materials might also be posted

http://web.stanford.edu/~lstell/
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