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Abstract 

In this paper, we illustrate the method of designing a group-sequential randomized clinical trial 

based on the difference in restricted mean survival time (RMST). The procedure is based on 

theoretical formulations of Murray and Tsiatis (1999). We also present a numerical example in 

designing a cardiology surgical trial. Various practical considerations are discussed. R codes 

are provided in the Supplementary Materials. We conclude that the group-sequential design for 

RMST is a viable option in practice. A simulation study is performed to compare the proposed 

method to the Max-Combo and conventional log-rank tests.  The simulation result shows that 

when there is a delayed treatment benefit and the proportional hazards assumption is untrue, 

the sequential design based on the RMST can be more efficient than that based on the log-rank 

test but less efficient than that based on the Max-Combo test. Compared with Max-Combo test, 

the RMST-based study design yield coherent estimand, statistical inference and result 

interpretation.  
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Introduction 

When the endpoint of a prospective randomized clinical trial is time to an event of interest, such 

a death and disease progression, the Cox model is the commonly used analytic method to test 

and estimate the treatment effect in terms of hazard ratio (HR). Oftentimes, the difference or 

ratio in median survivals or survival probabilities at a fixed time point from two arms is also used 

to supplement the HR for summarizing the size of the treatment benefit for their transparent 

interpretations for clinicians. The HR-based method works well in past decades and facilitates 

numerous advancements in drug development.  However, the oncology treatment undergone a 

rapid revolution more recently: from cytotoxic chemotherapies to cytostatic targeted therapies, 

to immunotherapies, and to cell-based therapies. Oftentimes, the new treatment has a delayed 

but sustained survival benefit in comparison with the standard care.  In such a case, the 

proportional hazards (PH) assumption, which is the key to perform statistical analyses using 

Cox model, becomes problematic.  For example, Garon et al (2015) reported the progression-

free survival distributions in patients with advance melanoma in three groups categorized by 

proportion score (PS) and showed that these three Kaplan Meier (KM) curves were 

approximately the same up to month 2 and then started to separate with the highest PS group 

with the best survival profile.  This is a strong indication that the PH assumption is violated.  In 

the second example, Robert et al. (2015) reported survival distributions in patients with small-

cell lung cancer (SCLC) in three treatment groups (Pembrolizumab Q3w, Pembrolizumab Q2w, 

and lpilimumab).  The KM curves of the survival distributions in Pembrolizumab Q3w and Q2w 

are similar but crossed several times, again suggesting the violation of the PH assumption.  

 

There are several potential reasons for the violation of the PH assumption.  For example, the 

PH assumption would be violated if the patient population can be divided into several strata with 

different stratum-specific baseline hazards and the PH assumption is statisfied only within each 

stratum (Tian, et al., 2019).  
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Several new approaches have been proposed as alternative to the HR-based statistical 

inference in analyzing survival data from randomized clinical trials.  For example, one may 

measure the treatment benefit by the difference in median survival as discussed above.  

However, with the improvement in patient survival, the median survival time may not be 

estimable due to the limited trial duration (Uno, et al. 2014, 2015a).  One may also impose a 

flexible piece-wise exponential model allowing the HR to vary with time and employ the 

maximum likelihood method to estimate the difference in two survival distributions. When the 

primary objective is to test the presence of treatment benefit, many flexible tests have been 

proposed in the literature.  For example,  Chang and McKeague (2019) proposed to the use 

empirical likelihood method to test the difference between two or more stochastically ordered 

survival distributions.  Karrison (2016) proposed to use a Max-Combo test, which has a more 

robust performance than the simple log-rank test, especially when the PH assumption is 

violated. Several omnibus tests based on the weighted difference between two KM curves has 

been proposed by Shen and Cai (2001) and Uno et al. (2015)b, which are also more robust in 

detecting nonPH alternatives. 

  

In this paper, we focus on an appealing alternative method based on the restricted mean 

survival time (RMST) (Royston and Parmar, 2013,  Trinquart, et al, 2016, 2019,  Uno et al. 

2014). The 𝜏-RMST is defined as 𝐸(𝑇 ∧ 𝜏),  the expectation of a truncated survival time, where 𝑇 

is the event time of interest, 𝜏 is a given truncation time point and 𝑎 ∧ 𝑏 = min(𝑎, 𝑏). The RMST 

up to time 𝜏 also equals to  

∫ 𝑆(𝑡)𝑑𝑡
𝜏

0
,      (1) 

where 𝑆(𝑡) = 𝑃(𝑇 > 𝑡) is the survival function of 𝑇.  In two group comparisons, the statistical 

test can be based on a contrast of RMSTs from two arms.  For example, we may estimate  
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𝐷(𝜏) = 𝐸(𝑇1 ∧ 𝜏) − 𝐸(𝑇0 ∧ 𝜏), 

the difference between two RMSTs up to time 𝜏, by 

𝐷̂(𝜏) = ∫ (𝑆̂1(𝑡) − 𝑆̂0(𝑡))𝑑𝑡
𝜏

0
,     (2) 

as a metric of the treatment benefit, where 𝑇𝑗 is the survival time in arm 𝑗,  𝑆̂𝑗(𝑡) is the KM 

estimator for 𝑇𝑗,  𝑗 = 0,1.  The 95% confidence interval (CI) can be constructed based on the 

large sample approximation of the distribution of 𝐷̂(𝜏).  The main advantages of RMST-based 

analysis include its clinical interpretability and associated robust nonparametric inference.  

Furthermore, in clinical trials for some disease and treatment combinations, clinicians are 

interested in time to a clinical event only within a certain time window, because the differences 

beyond that time interval may not be biologically attributable to the treatment.  

 

Despite those merits, there are many challenges to use RMST as the primary analysis in a 

randomized clinical trial.  Especially, it is not clear how to design and analyze a group-

sequential study based on RMST.  Murray and Tsiatis (1999) proposed statistical inference 

procedures for group-sequential studies using the RMST, but did not cover many practical 

issues related to study design such as sample size estimation, which hinders its penetration to 

practice (Fleming et al., 1984).  Hasegawa et al. (2020) has discussed the statistical information 

of RMST difference in group-sequential setting by establishing the connection between the 

RMST differences and weighted logrank test statistics,  which shed more light on our 

understanding of the operational characteristics of RMST-based method in hypothesis testing.  

In this paper, we will focus on how to design a group-sequential study using the RMST in 

practice.  

 

Method 

Designing a group-sequential study needs to consider the following factors:  
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• 𝐾: the number of interim analysis; 

• 𝑡(𝑘): the calendar time for the 𝑘th interim analysis (without loss of generality, we assume 

that calendar time of the study initiation is 0); 

• 𝑡𝐹 = 𝑡
(𝐾+1): the calendar time of the planned final analysis; 

• 𝜏(𝑘): the truncation time chosen for the RMST in the 𝑘th interim analysis; 

• 𝜏𝐹 = 𝜏
(𝐾+1):  the truncation time chosen for the RMST in the final analysis, and 

• 𝛼𝑘: the type one error spent at the 𝑘th interim analysis. 

 

For simplicity, we only consider early stopping for superiority in contrast to futility. In order to 

describe the inference procedure at the interim and final analyses, we introduce the following 

notations: 

 

Let 𝐸𝑖𝑗 be the calendar time, at which the patient 𝑖 from arm 𝑗 is enrolled; 𝑇𝑖𝑗 and 𝐹𝑖𝑗 be survival 

time and time to potential loss of follow-up for the same patient, respectively.  At the 𝑘th interim 

analysis, the censoring time for patient 𝑖 from arm 𝑗 is 

𝐶𝑖𝑗
(𝑘) = 𝐹𝑖𝑗 ∧ (𝑡

(𝑘) − 𝐸𝑖𝑗),     (3) 

for 𝐸𝑖𝑗 < 𝑡
(𝑘), i.e., the patient is enrolled before the interim analysis.  Therefore, survival data 

observed at the interim analysis are 

𝑄𝑗
(𝑘) = { (𝑋𝑖𝑗

(𝑘), 𝛿𝑖𝑗
(𝑘)) = (𝑇𝑖𝑗 ∧ 𝐶𝑖𝑗

(𝑘), 𝐼 (𝑇𝑖𝑗 < 𝐶𝑖𝑗
(𝑘))) ∣∣

∣   𝑖 = 1,⋯ , 𝑛𝑗, 𝐸𝑖𝑗 < 𝑡
(𝑘) } , 𝑗 = 0, 1, 

and we may estimate, 𝐷(𝜏(𝑘)), the difference in RMST up to time 𝜏(𝑘) , by 

𝐷̂𝑘(𝜏
(𝑘)) = ∫ (𝑆̂1

(𝑘)(𝑡) − 𝑆̂0
(𝑘)(𝑡)) 𝑑𝑡,

𝜏(𝑘)

0
   (4) 

where 𝑆̂𝑗
(𝑘)(⋅) is the KM estimator of 𝑆𝑗(⋅) based on data 𝑄𝑗

(𝑘). Here we assume that  

max
𝑖=1,⋯,𝑛1

{𝑋𝑖1
(𝑘)} ∧ max

𝑖=1,⋯,𝑛0
{𝑋𝑖0

(𝑘)
} ≥ 𝜏(𝑘),    (5) 
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i.e., the largest follow-up times at the 𝑘th interim analysis in both arms are greater than 𝜏(𝑘), to 

ensure the identifiability of 𝐷(𝜏(𝑘)).  Under the null hypothesis, it is clear that 

√𝑛

(

 
 

𝐷̂1(𝜏
(1))
⋯

𝐷̂𝐾(𝜏
(𝐾))

𝐷̂𝐾+1(𝜏
(𝐾+1 ))

)

 
 
∼ 𝑁(0, Σ𝐾+1(𝜋1))   (6) 

where 𝑛 = 𝑛1 + 𝑛0 is the total sample size, 𝜋𝑗 = 𝑛𝑗/𝑛 is the proportion of patients randomized to 

arm 𝑗, and the subscript 𝐾 + 1 represents the final analysis.   Note that at the 𝑘th interim 

analysis, (𝐷̂1(𝜏
(1)),⋯ , 𝐷̂𝑘(𝜏

(𝑘))) ′ also follows a multivariate Gaussian distribution centered at 

zero with a variance-covariance matrix of Σ𝑘(𝜋1), under the null hypothesis. In order to 

determine the rejection region at the 𝑘th interim analysis, we note the expansion 

√𝑛(

𝐷̂1(𝜏
(1))
⋯
⋯

𝐷̂𝑘(𝜏
(𝑘))

) = −∑
1

√𝑛𝑗𝜋𝑗
∑

(

 
 
 
 
∫

∫ 𝑆𝑗(𝑠)𝑑𝑠
𝜏(1)

𝑡

𝑃(𝑋
𝑖𝑗
(1)
≥𝑡,𝐸𝑖𝑗<𝑡

(1))
𝑑𝑀𝑖𝑗

(1)
(𝑡)

𝜏(1)

0

⋯
⋯

∫
∫ 𝑆𝑗(𝑠)𝑑𝑠
𝜏(𝑘)

𝑡

𝑃(𝑋𝑖𝑗
(𝑘)
≥𝑡,𝐸𝑖𝑗<𝑡

(𝑘))
𝑑𝑀𝑖𝑗

(𝑘)
(𝑡)

𝜏(𝑘)

0 )

 
 
 
 

𝑛𝑗
𝑖=1

1
𝑗=0 + 𝑜𝑝(1), (7) 

where  𝑀𝑖𝑗
(𝑠)(𝑡) = 𝐼(𝐸𝑖𝑗 < 𝑡

(𝑠)) {𝐼 (𝑋𝑖𝑗
(𝑠)
≤ 𝑡) 𝛿𝑖𝑗

(𝑠)
− ∫ 𝐼 (𝑋𝑖𝑗

(𝑠)
≥ 𝑠) 𝜆𝑗(𝑠)𝑑𝑠

𝑡

0
} and 𝜆𝑗(𝑠) is the hazard 

function of the survival distribution in arm 𝑗.  Therefore, Σ𝑘(𝜋1) can be consistently estimated as  

Σ̂𝑘(𝜋1) = ∑
1

𝑛𝑗𝜋𝑗
∑

(

 
 
 
 
∫

∫ 𝑆̂𝑗
(𝑘)(𝑠)𝑑𝑠

𝜏(1)

𝑡

𝑃̂(𝑋𝑖𝑗
(1)
≥𝑡,𝐸𝑖𝑗<𝑡

(1))
𝑑𝑀̂𝑖𝑗

(1)(𝑡)
𝜏(1)

0

⋯
⋯

∫
∫ 𝑆̂𝑗

(𝑘)(𝑠)𝑑𝑠
𝜏(𝑘)

𝑡

𝑃̂(𝑋𝑖𝑗
(𝑘)
≥𝑡,𝐸𝑖𝑗<𝑡

(𝑘))
𝑑𝑀̂𝑖𝑗

(𝑘)(𝑡)
𝜏(𝑘)

0 )

 
 
 
 

⊗2

,
𝑛𝑗
𝑖=1

1
𝑗=0    (8) 

only using data available at the 𝑘th interim analysis, where 𝑎⊗2 = 𝑎𝑎′, 

𝑃̂ (𝑋𝑖𝑗
(𝑠) ≥ 𝑡, 𝐸𝑖𝑗 < 𝑡

(𝑠)) = 𝑛𝑗
−1∑ 𝐼(𝑋𝑖𝑗

(𝑠) ≥ 𝑡, 𝐸𝑖𝑗 < 𝑡
(𝑠))

𝑛𝑗
𝑖=1

,   (9) 

𝑀̂𝑖𝑗
(𝑠)(𝑡) = 𝐼(𝐸𝑖𝑗 < 𝑡

(𝑠)) {𝐼 (𝑋𝑖𝑗
(𝑠) ≤ 𝑡) 𝛿𝑖𝑗

(𝑠) − ∫ 𝐼 (𝑋𝑖𝑗
(𝑠) ≥ 𝑠)𝑑Λ̂𝑗

(𝑘)(𝑠)𝑑𝑠
𝑡

0
},  (10) 
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and Λ̂𝑗
(𝑘)(𝑠) = − log (𝑆̂𝑗

(𝑘)(𝑡)) .   Note that this estimator of Σ𝑘(𝜋1) is consistent under both null 

and alternative hypotheses.  Another estimator of  Σ𝑘(𝜋1) could be constructed by replacing 

𝑆̂𝑗
(𝑘)(⋅) by 𝑆̅(𝑘)(⋅),  the KM estimator based on the pooled samples as in Murray and Tsiatis 

(1999): it is more precise under the null, but not consistent under alternative. The rejection 

region can therefore be set consecutively.  Specifically,  

• at the 1st interim analysis, we will reject the null hypothesis if √𝑛|𝐷̂1(𝜏
(1))| ≥ 𝑐1, where 

𝑃(|𝑍11| ≥ 𝑐1) = 𝛼1, and 𝑍11 ∼ 𝑁(0, Σ̂1(𝜋1)); 

• at the 2nd interim analysis, we will reject the null hypothesis if √𝑛|𝐷̂2(𝜏
(2))| ≥ 𝑐2, where 

𝑃(|𝑍22| ≥ 𝑐2, |𝑍21| < 𝑐1) = 𝛼2, and (𝑍21, 𝑍22)′ ∼ 𝑁(0, Σ̂2(𝜋1)); 

⋯ 

• at the kth interim analysis, we will reject the null hypothesis if √𝑛|𝐷̂𝑘(𝜏
(𝑘))| ≥ 𝑐𝑘 , where 

𝑃(|𝑍𝑘𝑘| ≥ 𝑐𝑘 , |𝑍𝑘(𝑘−1)| < 𝑐𝑘−1,⋯ |𝑍𝑘1| < 𝑐1) = 𝛼𝑘 , and (𝑍𝑘1, 𝑍𝑘2, ⋯ , 𝑍𝑘𝑘)
′ ∼

𝑁(0, Σ̂𝑘(𝜋1)); 

⋯ 

• at the final analysis, we will reject the null if √𝑛|𝐷̂𝐹(𝜏𝐹)| ≥ 𝑐𝐹 = 𝑐𝐾+1, where 

𝑃(|𝑍(𝐾+1)(𝐾+1)| ≥ 𝑐𝐹 , |𝑍(𝐾+1)𝐾| < 𝑐𝐾 , ⋯ |𝑍(𝐾+1)1| < 𝑐1) = 𝛼𝐾+1, and 

(𝑍(𝐾+1)1, 𝑍(𝐾+1)2,⋯ , 𝑍(𝐾+1)(𝐾+1))′ ∼ 𝑁(0, Σ̂𝐾+1(𝜋1)). 

Note that although Σ̂𝑘(𝜋1) should approximately be the upper-left 𝑘 × 𝑘 submatrix of  Σ̂𝐾+1(𝜋1), 

with latter being a more accurate estimator of the underlying variance-covariance matrix based 

on more data, only the former is available at the 𝑘th interim analysis to determine the 

corresponding rejection region.  

 

The commonly used group-sequential design based on the log-rank test is event driven and the 

variance-covariance matrix of the test statistics under the null can be derived based on the 
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number of events. Therefore, the rejection region at each interim analysis can be determined in 

advance, if the interim analysis is conducted when the planned number of events is reached.  

On the other hand, the rejection region at each interim analysis based on the RMST needs to be 

derived based on data available at the corresponding interim analysis.  This is due to the more 

complex structure of the variance-covariance matrix of the test statistics. To estimate the power 

or plan the sample size for a new study, we need to consider a specific alternative: 𝑆1(𝑡) vs 

𝑆0(𝑡), 𝑡 ∈ [0, 𝜏𝐹].  Note that under a general alternative,  

√𝑛

(

 
 

𝐷̂1(𝜏
(1)) − 𝐷(𝜏(1))
⋯

𝐷̂𝐾(𝜏
(𝐾)) − 𝐷(𝜏(𝐾))

𝐷̂𝐾+1(𝜏
(𝐾+1 )) − 𝐷(𝜏(𝐾+1))

)

 
 
∼ 𝑁(0, Σ𝐾+1(𝜋1))    (11) 

for large 𝑛. The power of this group-sequential design at the 𝑘th interim analysis is 

1 − 𝛽𝑘 = 𝑃(|𝑍𝑘 + √𝑛𝐷(𝜏
(𝑘))| ≥ 𝑐𝑘 , |𝑍𝑠 + √𝑛𝐷(𝜏

(𝑠))| < 𝑐𝑠, 𝑠 = 1,⋯ , 𝑘 − 1),   (12) 

and the overall power is   

∑ (1 − 𝛽𝑘)
𝐾+1
𝑘=1 ,      (13) 

where (𝑍1, ⋯ , 𝑍𝐾+1)
′ ∼ 𝑁(0, Σ𝐾+1(𝜋1)).    

In order to calculate the power, we need to determine the variance-covariance matrix Σ𝐾+1 (𝜋1) 

first.  To this end, we first specify the joint distribution of (𝐸𝑗 , 𝐹𝑗), 𝑗 = 0, 1 and values of (𝑡𝑘 , 𝜏
(𝑘)),

𝑘 = 1,⋯ ,𝐾 + 1.  Under those assumptions, 

Σ𝐾+1 (𝜋1) = ∑
1

𝜋𝑗
𝐸

(

  
 

∫
∫ 𝑆𝑗(𝑠)𝑑𝑠
𝜏(1)

𝑡

𝑃(𝑇𝑗∧𝐹𝑗∧(𝑡
(1)−𝐸𝑗)≥𝑡)

𝑑𝑀𝑖𝑗
(1)(𝑡)

𝜏(1)

0

⋯
⋯

∫
∫ 𝑆𝑗(𝑠)𝑑𝑠
𝜏𝐹
𝑡

𝑃(𝑇𝑗∧𝐹𝑗∧(𝜏
(𝐾+1)−𝐸𝑗)≥𝑡)

𝑑𝑀𝑖𝑗
(𝐾+1)(𝑡)

𝜏𝐹
0 )

  
 

1
𝑗=0

⊗2

,                            (14) 

which can be estimated either by direct integration or more conveniently by Monte-Carlo 

simulation.   To be specific, one may first simulate a data set of a large sample size 𝑀,  

{(𝐸𝑖𝑗
∗ , 𝐹𝑖𝑗

∗ , 𝑇𝑖𝑗
∗ ), 𝑖 = 1,⋯ ,𝑀𝜋𝑗, 𝑗 = 0, 1} , and then may calculate the centered RMST estimates,  
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𝐼 = √𝑀

(

 
 

𝐷1
∗(𝜏(1)) − 𝐷(𝜏(1))

⋯
𝐷𝐾
∗ (𝜏(𝐾)) − 𝐷(𝜏(𝐾))

𝐷𝐾+1
∗ (𝜏(𝐾+1 )) − 𝐷(𝜏(𝐾+1))

)

 
 
.    (15) 

After repeating this process a large number of, say, 𝐵,  times, Σ̂𝐾+1(𝜋1) can be approximated by 

1

𝐵
∑ 𝐼𝑏

⊗2𝐵
𝑏=1 ,       (16) 

Once an estimator of Σ𝐾+1(𝜋1) is obtained, we can determine {𝑐1,⋯ , 𝑐𝐾+1} based on the 

prespecified alpha-spending plan, i.e., {𝛼1, 𝛼2, ⋯ , 𝛼𝐾+1}, by solving a system of equations: 

𝑃(|𝑍1| ≥ 𝑐1) = 𝛼1,  

𝑃(|𝑍2| ≥ 𝑐2, |𝑍1| < 𝑐1) = 𝛼2, 

⋯ 

𝑃(|𝑍𝐾+1| ≥ 𝑐𝐾+1 , |𝑍𝐾| < 𝑐𝐾 , ⋯ , |𝑍1| < 𝑐1) = 𝛼𝐾+1.  (17) 

With an approximation to Σ𝐾+1 (𝜋1), the variance-covariance matrix of (𝑍1,⋯ , 𝑍𝐾+1)
′,  the cut-off 

values {𝑐1,⋯ , 𝑐𝐾+1}, and the underlying differences in RMST {𝐷(𝜏(1)),⋯ , 𝐷(𝜏(𝐾+1))},  one may 

calculate the power accordingly for any given sample size 𝑛.  Note that Σ𝐾+1 (𝜋1) under the 

alternative is different from that under the null and we propose to set the rejection region 

according to Σ𝐾+1 (𝜋1) under the general alternative to facilitate the power calculation.  Despite 

the fact that there is no general independent increment structure among test statistics in interim 

and final analyses, the power can still be estimated under any given alternatives using the 

proposed method. Lastly, it is important to note that the actual cut-off value at a particular 

interim analysis only becomes identifiable after the data up to that interim analysis become 

available. The actual cut-off value may or may not be close to that from the sample size 

calculation.   

 

Remarks 1.  If a particular level of power, e.g., 80%, is desired, one may estimate the sample 

size 𝑛 by solving the equation 
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∑ 𝑃(|𝑍𝑘 + √𝑛𝐷(𝜏
(𝑘))| ≥ 𝑐𝑘 , |𝑍𝑠 + √𝑛𝐷(𝜏

(𝑠))| < 𝑐𝑠, 𝑠 = 1,⋯ , 𝑘 − 1)
𝐾+1
𝑘=1 = 80% (18) 

in terms of 𝑛.  The expected sample size can be calculated based on the stopping probability at 

the 𝑘th interim analysis:   

𝑛∑ 𝑃(|𝑍𝑘 + √𝑛𝐷(𝜏
(𝑘))| ≥ 𝑐𝑘 , |𝑍𝑠 + √𝑛𝐷(𝜏

(𝑠))| < 𝑐𝑠, 𝑠 = 1,⋯ , 𝑘 − 1)
𝐾+1
𝑘=1 𝑃(𝐸 < 𝑡(𝑘)),   (19) 

assuming the distributions of enrollment time in two arms are identical.  

 

Remarks 2.   The futility stopping can be introduced easily.  For example, at the 𝑘th interim 

analysis, we may decide to 

(1) stop the study for futility if √𝑛𝐷̂(𝜏(𝑘)) < 𝑏𝑘,   

(2) stop the study for efficacy if √𝑛𝐷̂(𝜏(𝑘)) > 𝑐𝑘 and  

(3) continue the study, otherwise.  

In such a case, (𝑏𝑘 , 𝑐𝑘) can be selected to satisfy the condition that  

𝑃(𝑍𝑘𝑘 > 𝑐𝑘 , 𝑍𝑘(𝑘−1) ∈ [𝑏𝑘−1, 𝑐𝑘−1],⋯𝑍𝑘1 ∈ [𝑏1, 𝑐1]) = 𝛼𝑘    

𝑃(𝑍𝑘𝑘 + √𝑛𝐷(𝜏
(𝑘)) < 𝑏𝑘, 𝑍𝑘(𝑘−1) + √𝑛𝐷(𝜏

(𝑘−1)) ∈ [𝑏𝑘−1, 𝑐𝑘−1],⋯ , 𝑍𝑘1 + √𝑛𝐷(𝜏
(1)) ∈ [𝑏1, 𝑐1]) = 𝛾𝑘  

where {𝛾1,⋯ , 𝛾𝐾} are the prespecified probabilities controlling early stopping due to futility under 

the alternative. The introduction of the futility boundary would affect the power negatively.  The 

power at the 𝑘th interim analysis can be calculated as 

𝑃(𝑍𝑘𝑘 + √𝑛𝐷(𝜏
(𝑘)) > 𝑐𝑘 , 𝑍𝑘(𝑘−1) + √𝑛𝐷(𝜏

(𝑘−1)) ∈ [𝑏𝑘−1, 𝑐𝑘−1],⋯𝑍𝑘1 + √𝑛𝐷(𝜏
(1)) ∈ [𝑏1, 𝑐1]).   

One sided group sequential study can be designed similarly by dropping the futility boundary. 

 

Remarks 3.   If the time of interim analysis is relatively close to the final analysis, then it is 

possible to let 𝜏(1) = 𝜏(2) = ⋯ = 𝜏(𝐾+1),  i.e., all analyses share the same parameter of interest. 

In such a case, one may construct a 95% CI for this parameter. The procedure is similar to that 

for constructing the 95% CI for HR in a group-sequential study (Jennison and Turnbull, 1984). 

However, the truncation time points are not required to be the same in general.  
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A Numerical Example 

In this section, we first present a numerical example of designing a group sequential study. To 

this end, we consider a study designed to demonstrate the superiority of bariatric surgery 

approach (treatment arm) in comparison with the standard cardiac ablation procedure (control 

arm). The endpoint of interest is the duration free from atrial fibrillation (AF) after the treatment.  

Assuming the maximum duration of the study is 4 years with the first 2.5 years for enrollment 

and a minimum of follow-up of 1.5 years for all patients.  The randomization ratio is one to one.   

Since the post-surgery clinical treatments will be hard to control, our clinical investigators 

decided to evaluate the surgical treatment effect to be best evaluated within a time window of 1-

2 years after the surgery. The inference based on RMST is an appealing choice. Furthermore, 

there are two types of patients: those with paroxysmal AF and those with persistent AF.  

Historical data suggest the AF-free rate at 1 year after standard treatment is 70% for the former 

and 55% for the latter.  Therefore, we assume that the survival distribution in the entire study 

cohort is a mixture distribution of two exponential distributions with the annual incidence rate of 

0.3567 and 0.5978, respectively.  The mixing proportion of 40% vs 60% is also based on 

historical data.  Assuming a 20% proportionally increasing in AF-free rate at the end of one year 

is clinically significant, i.e., the treatment group should achieve an AF-free rate of 84% and 66% 

by the end of one year, respectively, for those with paroxysmal and persistent AF. The 

corresponding annual incidence rates for the two prognostic groups should be 0.1744 

(paroxysmal AF) and 0.4155 (persistent AF), respectively. Therefore, 

𝑆0(𝑡) = (0.40 𝑒
−0.3567𝑡 + 0.60 𝑒−0.5978𝑡)    (20) 

versus 

𝑆1(𝑡) = (0.40 𝑒
−0.1744𝑡 + 0.60 𝑒−0.4155𝑡)    (21) 

Because of the mixture population, the HR between treatment and control arms is 
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ℎ(𝑡) = [
0.0697𝑒−01744𝑡 + 0.2493𝑒−0.4155𝑡

0.40 𝑒−0.1744𝑡 + 0.60 𝑒−0.4155𝑡
] [

0.1427 𝑒−0.3567𝑡 + 0.3587𝑒−0.5978𝑡

0.40 𝑒−0.3567𝑡 + 0.60 𝑒−0.5978𝑡
]⁄  

The PH assumption is clearly violated. Therefore, we propose to use the RMST up to 1.5 years 

instead of the HR as the measure of the treatment effect, i.e., the estimand of primary interest. 

 

The study design will be under the following assumptions. First, the enrollment of patients is 

uniformly over the first 2.5 year.  We assume that the annual dropout rate is 15% in both arms 

following an exponential distribution.  To this end, the test statistics is the estimated difference in 

RMST. 

 

In this sequential design, the first interim analysis is at year 2 after study initiation with 𝜏(1) = 1.5 

years, and the final analysis is at year 4 with 𝜏𝐹 = 𝜏
(2) = 1.5 years. The underlying difference in 

RMST at both interim and final analyses is 0.139 years with the RMST in two arms being 1.059 

and 1.198 years, respectively.  We plan to have an overall one-sided type I error rate of 2.5% 

with 0.5% error rate spent at the interim analysis. We will stop for efficacy but not for the futility. 

 

Using the specified distributions in Equations (20) and (21) and formulas in Equations (11-19), 

we may estimate the variance-covariance matrix Σ̂2(0.5) and the required sample size.  

However, it is easier to employ the proposed Monte-Carlo method to achieve the same 

objective. The resulting covariance matrix estimate is   

Σ̂2(0.5) = (
1.652 1.001
1.001 1.024

). 

We can then determine the critical value for interim and final analyses: 𝑐1 = 2.5758 × √1.652 

and 𝑐2 = 1.9917 × √1.024,  i.e., we will reject the null, if √𝑛𝐷̂1(𝜏
(1)) ≥ 𝑐1 at the interim or 

√𝑛𝐷̂2(𝜏
(2)) ≥ 𝑐2 at the final analysis.  We may calculate the power for a range of sample sizes 

(Figure 1).  The corresponding sample size for 80% statistical power is 212 per arm.  Under this 
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hypothesized alternative, the stopping probability at interim is 36.2% based on equation (19) 

and the expected total sample size is 197 per arm.  To confirm the power estimation, we also 

conduct a simulation study to estimate the power with Monte-Carlo method.  For each given 

sample size, we repeatedly generate survival data from the hypothesized alternative and 

conduct the group-sequential analysis with estimated rejection regions.  Based on the testing 

result from 4,000 simulated datasets, we record the empirical power, which is consistent with 

the analytical result (Figure 1).  Specifically, the empirical power corresponding to 𝑛 =212 per 

arm is 80.5% (95% CI: 79.3%-81.7%), supporting the estimated sample size. As a reference, 

the sample size for binary proportion at year 1.5 is 235 per arm after accounting for 22% 

dropout due to censoring before the end of 1.5 years. 

 

As an illustration, we consider a more complex design with two interim looks at year 2 and year 

3.  The truncation time point at the interim and final analyses is 1.5, 2.5 and 3.0 years, and the 

underlying RMST difference is 0.139, 0.303 and 0.390 years, respectively.  With Monte-Carlo 

simulations, the estimated variance-covariance matrix is 

Σ̂3(0.5) = (
1.651 1.821 1.959
1.821 4.008 4.134
1.959 4.134 5.184

). 

Suppose we plan to spend 0.4%, 0.6%, and 1.5% one-sided type one error at two interim and 

final analyses,  then the critical values of the rejection regions are 2.652 × √1.651 , 2.445 ×

√4.008, and 2.018 × √5.184 at the two interim and final analyses, respectively.  Note that the 

estimated variance of √𝑛𝐷̂(1.5) at the first interim analysis changes slightly (from 1.652 to 

1.651) due to Monte Carlo variations. The required sample size for 80% power reduces to 138 

patients per arm, reflecting the fact that more information due to prolonged truncation time 

points for RMST is used in the comparison.  In addition, we repeatedly generate survival times 

for 138 patients per arm from the specified model and conduct the proposed group-sequential 
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test using RMST.  Based on results from 4,000 simulated datasets, the empirical power is 

81.1% (95% CI: 79.9%-82.3%).  The probability of rejecting the null is 21.9% at the first interim 

analysis and 34.0% at the second interim analysis. 

 

A Simulation Study 

We have also conducted a simulation study to examine the empirical property of the proposed 

methods. Specifically, we have considered the following simple setting that is similar to those in 

Mehta, et al. (2018). We assume that the sample size for each treatment groups, 𝑛1 = 𝑛0 = 300. 

Patients are uniformly enrolled in the first 12 months, i.e., 𝐸𝑖𝑗 ∼ 𝑈(0, 12) months. Censoring time 

𝐹𝑖𝑗 follows exponential distribution with an annual hazard rate of 0.014. We assume that the 

study duration is 30 months. For control arm, the survival function follows an exponential 

distribution with 𝑆0(𝑡) = exp (−0.1𝑡) We choose the following four scenarios of survival 

distribution for the treatment arm: 

• The first scenario is the null case, where 𝑆1(𝑡) = 𝑆0(𝑡); 

• The second scenario is for constant PH benefit, where 𝑆1(𝑡) = exp (−0.08 𝑡); 

• The third scenario is for delayed treatment benefit, where 

𝑆1(𝑡) = exp{−0.1 𝑡 ∧ 8 − 0.05(𝑡 − 8)+} ;                          (26) 

• The fourth scenario is for early treatment benefit over a short period, where 

𝑆1(𝑡) = exp{−0.05 𝑡 ∧ 4 − 0.08{(𝑡 − 4)+ ∧ 4} − 0.12 (𝑡 − 8)+} ;                    (27) 

• The fifth scenario is also for early treatment benefit over a long period, where 

𝑆1(𝑡) = exp{−0.07𝑡 ∧ 8 − 0.08{(𝑡 − 8)+ ∧ 8} − 0.1286 (𝑡 − 16)+} ;                    (28) 

 

where 𝑎+ = max{0, 𝑎}. There is only one interim analysis at time 𝑡1  and the type one error at the 

interim analysis is a function of timing of the interim analysis: 

𝛼1 =
𝛼(1−exp(

5𝑡1
30
))

1−exp (5)
,     (29) 
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where 𝑡1 = 15, 18, 21, 24 and 27 months. Specifically, corresponding alpha spent at the interim 

analysis is 0.38%, 0.65%, 1.1%, 1.8% and 3.0%, respectively,  when the total type one error 

𝛼 = 0.05.  The RMST for interim and final analyses are up to 𝜏1 = 𝑡1 − 1  and  𝜏2 = 30 − 1 = 29 

months for interim and final analyses, respectively, to ensure identifiability. The survival curves 

of four alternatives are given in Figure 2.   We have compared the group-sequential design 

based on the difference in RMST with two alternative methods: the log-rank test and the Max-

Combo test for  two-group comparisons  (Lin et al, 2018).  In the Max-Combo test, the test at 

the kth interim analysis is based on the test statistics 

𝑀 = max(𝑍𝑘
00, 𝑍𝑘

10, 𝑍𝑘
01),     (30) 

where 

𝑍𝑘
𝑎𝑏 = 𝑠𝑘

𝑎𝑏/ 𝜎̂𝑘
𝑎𝑏 ,       (31) 

 𝑠𝑘
𝑎𝑏 is the weighted logrank test statistics with the weight 𝑆̅(𝑡)𝑎 (1 − 𝑆̅(𝑘)(𝑡))

𝑏
 at the failure time 

𝑡  and 𝜎̂𝑘
𝑎𝑏 is the estimated standard deviation of the weighted logrank test statistics under the 

null.  Here 𝑆̅(𝑘)(𝑡) is the KM estimator of the survival function based on data pooled from two 

arms at the 𝑘th interim analysis.  For each simulated data set, we have conducted group 

sequential analyses based on logrank test, Max-Combo test, and the test via the difference in 

RMST.  We also have conducted the corresponding analysis without any interim analysis. We 

repeated the analyses in 40,000 simulated datasets and therefore the Monte-Carlo standard 

error for estimating 5% type one error and 80% power is 0.1% and 0.2%, respectively.  The 

results are summarized in Table 1.  

 

Based on the simulation results, the type one errors of all tests are well preserved. The 

statistical power of the RMST is very close to but slightly lower than the power of logrank test 

under the PH alternative.  The power of RMST is slightly higher than that of Max-Combo test in 

this case.  In the third setting with delayed treatment benefit, RMST-based test is less powerful 
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than other two competitors.  It is anticipated, since RMST is not sensitive to the delayed 

treatment benefit (Tian et al. 2018).  In the fourth setting with early treatment benefit, the RMST-

based test is more powerful than logrank test but still inferior to the Max-Comb test. In this  

setting, it interesting to note that the group sequential tests are substantially more powerful than 

the corresponding single test at the final analysis.  This is mainly due to the fact that the power 

of interim analysis was boosted by early treatment benefit. In the fifth setting with early 

treatment benefit over a longer period than that in the fourth setting, the RMST-based test is 

slightly more powerful than either logrank test or the Max-Comb test in the group-sequential 

analysis. It is also interesting to note that in cases with PH or delayed treatment benefit (settings 

2 and 3), the group sequential design doesn’t lose much power in comparison with a single final 

analysis. Overall, the Max-Combo test is the most powerful or nearly most powerful method 

across different scenarios investigated here. When it is not optimal, its power is not much lower 

than the better alternatives.  Its main limitation is that there is no simple interpretable estimand 

quantifying the treatment effect associated with the method due to its adaptive nature.  

 

Discussions 

In this paper, we have illustrated the method of designing a group-sequential randomized 

clinical trial based on the difference in RMST.  Compared with HR-based method, the proposed 

method is more interpretable and less dependent on stringent model assumptions, such as PH 

assumption.  One concern is that the decision at the interim analysis based on RMST may be 

premature regardless of its statistical significance level, since the time window of the RMST is 

too narrow.  On the other hand, the HR-based method has the same limitation, which is caused 

by the fact that the maximum follow-up time at the interim analysis may be too short and all 

statistical inferences at the interim analysis including those for HR is restricted within this shorter 

time span. Therefore, it is crucial to choose the timing of the interim analysis, such that the 

follow-up time is adequately long to allow meaningful clinical decision based on the analysis 
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result. 𝜏(𝑘), the truncation time point in the RMST, should be no greater than 𝑡𝑘.  Otherwise, the 

difference in RMST is not estimable nonparametrically.  In general, we should let 𝜏(𝑘) as close 

to 𝑡𝑘 as possible to avoid unnecessary loss of information. In Tian et al (2020), we have shown 

that 𝜏(𝑘) can be chosen as the minimum of the largest follow-up time in two arms despite the 

fact that such a choice is data-dependent.  

 

In practice, we often have different milestones in clinical trials. For examples, phase III oncology 

trial uses overall survival as the primary endpoint but the progress-free survival time as a 

secondary endpoint. Therefore, the interim analysis 𝜏(1) can be selected based on the milestone 

time for progress free survival. Another example is the ESCAPe trial (NCT01283009, 

www.clinicaltrials.gov), where the primary endpoint is 60-day mortality and secondary endpoints 

include the mortality at ICU discharge, etc. If the ESCAPe trial uses the RSMT approach, the 

primary endpoint could be 60-day RMST and the 𝜏(1) can be 14 days mortality to measure the 

mortality at ICU discharge. For a superiority trial with the null hypothesis of no difference, a 

smaller but clinically meaningful 𝜏(1) (< 𝜏(𝐹)) can help to reject the null hypothesis of no 

difference sooner for large efficacy or potential detrimental effect to patients (two-sided interim 

analysis) but will not be proper for futility. Furthermore, for a non-inferiority analysis, we should 

choose 𝜏(1) = 𝜏𝐹, because otherwise, non-inferior at time 𝜏(1) cannot imply the non-inferiority at 

time 𝜏𝐹. 

 

Different test methods are sensitive to different alternatives and the RMST-based method is not 

the most powerful test to detect crossing survival functions (Tian et al. 2018).  In such a case, 

the Max-Combo test can be more powerful.  However, one may argue that detecting crossing in 

survival functions is merely the first step and a less important step, since in order to claim 

superiority of one treatment versus another, one needs to consider the difficult trade-off 

http://www.clinicaltrials.gov/
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between short term and long-term survival benefits in such a case. Another important alternative 

is delayed treatment benefit as in our simulation study. The RMST-based method can still be 

used.  However, in that case, it is even more imperative to make sure that 𝑡𝑘 and also 𝜏(𝑘) are 

big enough so that the study will not stop prematurely for missing the long-term treatment 

benefit. A more sensitive measure is the difference in RMST within a prespecified time window 

[𝜏1, 𝜏2]:  

∫ {𝑆1(𝑡) − 𝑆0(𝑡)}𝑑𝑡
𝜏2

𝜏1

. 

One may expect substantial gain in power, if the time window is chosen appropriately (Horiguchi 

et al. 2018). The group-sequential design based on this generalized RMST is also 

straightforward. As we discussed in the example, an important potential source of PH 

assumption violation is the treatment effect heterogeneity.  There is a possibility of boosting the 

power of the overall comparisons and present treatment effect for different subgroups of 

patients at the same time.  For example, Mehrotra et al. (2012) have proposed to first estimate 

stratum-specific treatment effects and then combine the resulting estimates in an overall 

comparison.  The success of such approaches relies on discovering the patient population 

structure reflecting the treatment effect heterogeneity.  

 

The Cross-pharma Working Group (Roychoudhury et al., 2019) recommended the use of Max-

Combo test based on the weighted log-rank test for statistical inference of survival endpoints 

that fail the PH assumption. A Max-Combo test can also be constructed based on the weighted 

K-M tests (Shen and Cai, 2001), in which the simple RSMT test is one of the components of the 

test. Both these tests can be more powerful, but they do not directly associate with an estimand 

of the clinical interest, namely the HR, the difference in RMST, or any other metric for the 

treatment effect.  It is a better practice to choose a statistical inference method containing a 

hypothesis testing procedure consistent with the estimand of interest.  



 

 19 

 

R-code for designing Group-Sequential study based on RMST can be found in the 

Supplementary Materials of the paper and at https://web.stanford.edu/~lutian/Software.HTML 
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Table 1.  Simulation Results for test based on log-rank test, Max-Combo test and RMST with 
and without interim analysis (40,000 simulations). 
 

Scenario IA 
(wks) 

Single Look 2-Stage Prob Early Stopping 
Logrank Max-

Comb 
RMST Logrank Max-

Comb 
RMST Logrank Max-

Comb 
RMST 

NULL 15  
 
 
 
 

5.0% 

 
 
 
 
 

4.8% 

 
 
 
 
 

5.0% 

4.8% 4.9% 5.1% 1.1% 1.1% 1.1% 
18 4.8% 4.8% 5.2% 1.6% 1.5% 1.6% 
21 4.9% 4.8% 5.2% 2.2% 2.1% 2.3% 
24 4.9% 4.9% 5.2% 2.9% 2.8% 3.0% 
27 4.9% 4.8% 5.2% 3.8% 3.7% 3.9% 

PH 15  
 
 
 
 

71.8% 

 
 
 
 
 

68.0% 

 
 
 
 
 

71.5% 

70.7% 67.2% 71.4% 28.3% 25.3% 29.6% 
18 70.8% 67.3% 71.5% 39.8% 36.7% 40.8% 
21 70.8% 67.3% 71.6% 49.9% 46.5% 50.9% 
24 70.9% 67.3% 71.7% 58.4% 54.7% 59.1% 
27 71.0% 67.4% 71.7% 65.4% 61.8% 66.1% 

Late 
 Benefit 

15  
 
 
 
 

75.7% 

 
 
 
 
 

94.5% 

 
 
 
 
 

69.1% 

74.0% 94.2% 69.3% 2.6% 4.8% 3.1% 
18 74.0% 94.1% 69.4% 8.7% 18.9% 10.0% 
21 73.8% 94.0% 69.4% 24.6% 48.9% 22.7% 
24 73.7% 94.1% 69.4% 44.7% 74.1% 39.3% 
27 73.6% 94.2% 69.3% 62.2% 88.0% 55.9% 

Early 
Benefit (I) 

15  
 
 
 
 

48.0% 

 
 
 
 
 

88.5% 

 
 
 

 
 

65.0% 

78.3% 90.6% 81.7% 76.9% 86.0% 78.4% 
18 69.9% 89.1% 78.0% 68.3% 85.2% 75.4% 
21 60.2% 87.9% 74.1% 57.8% 83.8% 71.7% 
24 53.9% 87.6% 70.4% 51.0% 84.3% 68.1% 
27 50.2% 87.6% 67.6% 48.0% 86.1% 65.9% 
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Early 
 Benefit (II) 

15  
 
 
 
 

72.4% 

 
 
 
 
 

81.8% 

 
 
 
 
 

80.7% 

78.3% 81.9% 82.9% 65.3% 61.7% 66.4% 
18 80.8% 82.3% 84.1% 75.2% 72.6% 76.7% 
21 80.7% 82.0% 84.2% 77.8% 76.8% 80.1% 
24 78.9% 81.6% 83.4% 77.1% 78.9% 80.7% 
27 76.2% 81.3% 82.3% 75.0% 80.4% 80.6% 
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Figure 1. Sample Size and Power Estimation for the Numerical Example (solid thick line: analytic 
estimates of the power; circle and vertical bar: empirical power estimator and the 95% CI based 
on the simulations) 
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Figure 2.   Survival curves of two arms used in the simulation study 

 
 

 


