CS250/EE387 - LECTURE 11 - GURUSINAMI-SUDAN

Last time, we saw LIST-DECODING:

A code C=Z" is (p,L)-LIST-DECODABLE if YyEZ, DEF. $\left| \left\{ c \in \mathbb{C} : \delta(c, \gamma) \leq p \right\} \right| \leq L$

- The LIST-DECUDING CAPACITY THM says that there \exists codes that are (p, l'e)-list-decodable with rate $R=1-H_2(p)-\epsilon$, for $p \le 1-l'q$.
- · That's the same trude-off as for random errors!
- Moreover, notice that p can get as big as $1 \frac{1}{2}$. If we demand unique decoding, the Plotkin bound says we can't hope to do better than $\frac{1 \frac{1}{2}}{2}$ with R>O.

OUR NEXT QUESTION: How list-decodable are codes we know and love? For example, Reed-Solomon Codes? Last time we saw the Johnson Bound which says that codes with good distance are decently list - decodable.

- For RS codes, the Johnson bound says that an RS code of rate Rislist-decodable up to distance $p = 1 \sqrt{R}^2$.
- Notice that list-decoding capacity is $p = H_q^{-1}(1-R) \approx 1-R$ for large q. So $p = 1 - \sqrt{R'}$ is less good than it could be.

(1) ASIDE: How hard is it to decoder RS codes?

More precisely, given we Ffg, find ce RSg(n, k) so that S(w, c) is minimized.

How hard this depends a lot on the assumptions we can make about min S(w,c). For example, if $\exists c s.t. S(c,w) < \frac{1-R}{2}$, then Welch-Berlekamp $c \in RS$ will do this in polynomial time. How about if S(q,w) is larger?

traction of envrs p	 	$\frac{1}{2}$	-VR 1-	R. 1.
List-decoding Status	At most one codeword c with ∆(c,w) ≤ p	By the Johnson Bound, there are ≤poly(n) codewords cwith Δ(c,w)≤p	$(\#e s.t. \\ S(e,w) \leq p) \leq ???$ For some choices of RS codes, it's exponential. For duers, O(1). In general, this is not well underslood.	Definitely exponentially many coducerdsc s.e. δ(qw) ≤ p for any p in this range. (Bloof list. dec.cop. thm)
How hard is it b find the closest codewrd?	We can find c efficiently w/ (cg) Welch-Berlekamp Or else efficiently decide no such c exists.	TODAY! We will see how to find all these ≤ poly(n) codewords efficiently, and then we can search to find the closest.	Also ???. But thurc ave some p's in here where doing MLD up to distance p is as hard as discrete log.	For large enough p, this is known to be NP-hord (you'll get a taske of this on your HW).

SUDAN ALGURITHM

The Sudan Alg is a warmup to the Gueuswami-Sudan alg, which will be able to efficiently list-decode RS codes up to the Johnson bound, $P = 1 - \sqrt{R}$.

(2A) BIVARIATE POLYNOMIALS

A bivariate polynomial
$$Q(X,Y) \in \mathbb{H}_q[X,Y]$$
 is:

$$\begin{aligned} & (Q(X,Y) = \sum_{i=0,\dots,m_{\overline{X}}} \alpha_{ij} \cdot \overline{X}^{i} Y^{j}, & \text{where} \quad m_{\overline{X}} =: deg_{\overline{X}}(Q) \\ & i=0,\dots,m_{\overline{X}} & m_{\overline{Y}} =: deg_{\overline{Y}}(Q) \\ & j=0,\dots,m_{\overline{Y}} & m_{\overline{Y}} \end{aligned}$$

Notice that we can also think about (Q as an element of (Fq[X])[Y]:

$$Q(X,Y) = \sum_{j=0,\dots,m_Y} Q_j(X) \cdot Y^j$$

- The coefficients live in Π_{q} [X].

Polynomials in (IFq[X])[Y] behave a lot like a "normal" polynomial in Y.

FOR EXAMPLE: Consider
$$Q(Y) = Y^2 - 1$$
.
Then $Q(1) = 0$, which implies that $(Y - 1) | Y^2 - 1$

Similarly, consider
$$Q(X,Y) = Y^2 - f(X)^2$$
.
Then $Q(X, f(X)) = O$, which implies that $(Y - f(X)) = Q(X,Y)$

FACT. Let
$$Q(X,Y) \in H_q[X,Y]$$
, and let $f \in H_q[X]$. Then

"≡" means "is identically O," aka, all the coefficients are 0.

$$Q(X, f(X)) = 0 \iff (Y - f(X)) Q(X,Y)$$

"divides." also, $Q(X,Y) = (Y-f(X)) \cdot h(X,Y)$ for some $h \in FF[X,Y]$.

Moreover, we can find such f's efficiently, and there are at most $deg_{\gamma}(Q)$ such f's.

2)

Given
$$y = (y_1, ..., y_n) \in \mathbb{F}_q^n$$
:
Recall, $E(x)$ was supposed to be the ERROR LOCATOR POLY,
 $E(x) = \prod_{i:y_i \neq c_i} (x - \alpha_i)$, so that $E(\alpha_i) \cdot f(\alpha_i) = E(\alpha_i) \cdot y_i$ $\forall i$
1. Find low-degree polynomials $E(X)$, $B(X_i)$ s.t. $E(\alpha_i) \cdot y_i = B(\alpha_i) \quad \forall i = 1, n$
2. Return $f(x) = B(x)/E(x)$

We can recast this in terms of bivariate polys:

1. Find
$$Q(X,Y)$$
 $\binom{\text{meant b bc}}{Q(X,Y) = E(X) \cdot Y - B(X)}$ s.t. $Q(\alpha_i, y_j) = 0 \forall i = 1, ..., n$
2. Find a poly $f(X)$ s.t. $Q(X, f(X)) = 0$, and return f .

(Nutice that f(X)= B(X)/E(X) will work in the Q we were supposed by find).

We'll use the same framework for SUDAN'S ALGURITHM for list-decoding.

PROBLEM: Given
$$y = (y_{1}, ..., y_{n})$$
, k , and t , find all polynomials $f \in F_{q}[X]$ s.t.:
• $deg(f) < k$
• $f(\alpha_{i}) = y_{i}$ for at least t of the α_{i} 's.

20 Finally, SUDAN'S ALG. What t's can we handle? We'll see later!

In this context, Berlekamp-Welch is:

~ Matexactly should this mean?

INTERPOLATION Find a (LOW-DEGREE) polynomial Q(X,Y) so that Q(a:,yi)=0 V i=1,...,n 1. STEP

Runt-FINDING 2. Factor Q(X,Y) to find polynomials f(X) s.t. $Q(X,f(X)) \equiv O$. STEP Return all such f's.

· We can do STEP1 as long as we have more variables (coeffs of Q) than anshrunts.

• To make sure that STEP 2 is correct, we'll have to argue that whenever $f(x_i) = y_i$ for $\ge t$ values of i, then $Q(X, f(X)) \equiv 0$. The fact that the list is small will follow from the fact that Q is low-deg.

This algorithm basically works, and is called SUDAN'S AUGORITHM.
THM IF
$$t \ge 2\sqrt{nk^2}$$
, then we can solve the list-decoding problem in polynomial time.
Before we prove the THM, we can ask how good this is.
 $(\#agreements between f and y) = t \ge 2\sqrt{nk^2}$
 $\Delta(f, y) = n - t < n - 2\sqrt{nk^2}$
So this works up to radius $p < \frac{n-t}{n} = 1 - 2\sqrt{n^2}$.
Remember that we were shooting for $1 - \sqrt{n}$, so this isn't quite right -
but we'll get there!

Now we'll prove the THM, and finish specifying the alg. along the way.

pf/slgunthm:
STEP1 (INTERPOLATION). Chouse
$$l = \sqrt{nk'}$$
.
Find $Q(X|Y)$ s.t. $deg_X(Q) \leq l$ and $deg_Y(Q) \leq n/l$,
so that $Q(\alpha_i, \gamma_i) = O \quad \forall i = 1, ..., n$.

To do this, we need:

$$(\# \text{constraints})$$

 $(1+1)(\frac{n}{4}+1) \text{ of these}$
and indeed we have $(1+1)(\frac{n}{4}+1) = n + \frac{n}{4} + 1 + 1 > n$

STEP 2 on NEXT PAGE

of ctd.
STEP 2. (ROOT-FINDING SEP) Return all
$$f(X)$$
 st. $Q(X, f(X)) = 0$.
Note that we can do this efficiently, and the size of our list will be at most-
 $deg_{Y}(Q) = N/l = N/ler = 1/\sqrt{R}$, a constant.
Now we need to argue why this step is a good idea.
Suppose $deg(f) < k$ and that $f(d_i) = y_i$, for $\geq t$ vals of i .
We need to show that we will return f , so we need to show $Q(X, f(X)) = 0$.
Let $R(X) := Q(X, f(X))$.
Then $deg(R) \leq deg_X(Q) + deg(f) \cdot deg_Y(Q) < l + k \cdot \frac{n}{L} = 2\sqrt{nk}$.
But $R(d_i) = Q(d_i, f(d_i)) = Q(d_i, y_i) = 0$
 $k = k(d_i) = Q(d_i, f(d_i)) = Q(d_i, y_i) = 0$

So R has degree < $2\sqrt{nk}$, but $t > 2\sqrt{nk}$ roots, hence $R(X) \equiv O$, as desired.

3) GURUSWAMI-SUDAN ALG.

Now we'll fix this up so that we can actually get up to $p = 1 - \sqrt{R}$, meeting the JOHNSON BUUND.

Two CHANGES:

- 1. We will change how we measure "LOW-DEGREE"
- 2. We will require something a bit shronger than (Q(&i, yi)=O; we'll ask for Q to vanish with high MULTIPLICETY.

CHANGE 1.

pf.

DEF. The
$$(1,k)$$
-degree of $X^i Y^j$ is $i+kj$
The $(1,k)$ -degree of $Q(X,Y)$ is the max $(1,k)$ -degree
of any monomial in Q.

Just this change is enough to make SOME progress:

THM IF
$$t > \sqrt{2nk}$$
, then we can solve the list-decoding problem in polynomial time.

$$f_{.}^{\text{Statut}}$$
 Same alg, but now demand the $(1, k)$ -degree of Q is $\leq \sqrt{2kn}$

STEP 1. INTERPOLATION. Tums out (Fun EXERCISE!) there are
$$> D^2/2k$$
 coeffs in a poly
Find Q(X,Y) s.t. $u_{Y}(1,k)$ -deg $\leq D$ So
 $(1,k)$ -deg is $\leq \sqrt{2kn}$. $(\#vaniables) > (2kn) = n = (\#constraints)$
and we can find Q. $2k$

STEP 2. ROOT-FINDING. Now we have $deg(R) = deg(Q(X,f(X))) < (1,k)-deg of Q = \sqrt{2nk}$ (same as before) So the argument goes through as before with a slightly better bound.

But we want 1-VR! Not 1-V2R!

CHANGE 2.

DEF. Q(X,Y) has a root of multiplicity r at (a,b) if Q(X+a, Y+b) has no terms of total degree < r.

Example: $Q(X,Y) = (X-1)^2(Y-1)$ has a not of multiplicity 3 at (1,1), because $Q(X+1,Y+1) = X^2 \cdot Y$ which has total degree 3.

GURUSWAMI-SUDAN ALGORITHM.

Choose a parameter r Suppose t ≥ [kn(1+1/r)]

1. INTERPULATION STEP.

Find a polynomial Q(X,Y) with (1,k)-degree $D = \sqrt{kn \cdot r \cdot (r+1)}$ so that $Q(\alpha_i, y_i) = 0$ with multiplicity r for i=1,...,n.

2. ROOT-FINDING STEP. Return all f so that $Q(X_1 f(X)) = O$. [Notice that there are $\leq \deg_Y(Q) \leq D/R \approx T/R$ of these.]

ANALYSIS:

Again we need to show that 1. is possible and that 2. is a good idea.

FUN EXERCISE: The number of constraints in "Q(a:, y;)=0 w/ mult.r" is n. (r+1).
 So that's MORE constraints than before, which seems like a bad thing....
 we'll see later why it's actually good.

The number of variables is still $D^2/2k$, so we need

$$\frac{k n \cdot r \cdot (r+1)}{2k} \ge n \cdot \binom{r+1}{2} = \frac{n \cdot r \cdot (r+1)}{2}$$
which is TRUE.

Z. Let R(X) = Q(X, f(X)) as before. Then not only does R(X) have ≥t roots [as before], it has ≥t roots which EACH have multiplicity r.

Justification on next page ...

<u>CLAIM</u>. If $f(a_i) = y_i$, then $(X - a_i)^r | R(X)$.

<u>Pf.</u> Let's drop the i subscripts for notational sanity. Recall that since Q has a root of multiplicity rat (x,y), Q(X+x, Y+y) has no terms of total degree < r.

Now, consider
$$\overline{f}(X) := f(X + x) - y$$
. We have.

$$R(X+\alpha) = Q(X+\alpha, f(X+\alpha)) = Q(X+\alpha, \overline{f(X)} + \gamma)$$

This is a sum of monomials $\overline{X}^{c} \cdot \overline{f}(\overline{X})^{d}$ where $c + d \ge r$.

Now, since $f(\alpha) = y$, $\overline{F}(0) = 0$, so \overline{F} has no constant term. Thus, those monomials $\overline{X}^c \overline{F}(\overline{X})^d$ are all divisible by \overline{X}^{c+d} , and hence ore all divisible by \overline{X}^c .

Then $X \cap R(X+\alpha)$, which means $(X-\alpha) \cap R(X)$, as desired.

Now given this claim, the fact that $f(k_i) = y_i$ for at least t different i's means that R(X) has tor roots, counting multiplicities.

That's not true, so $R(X) \equiv O$, and the proof concludes as before.

This proves the following theorem:

THM If $t > \ln k(1+\frac{1}{r})'$ then we can solve the list-decoding problem in poly(n) time, with list size $r \cdot \sqrt{\frac{n}{k}}$.

Once again, we calculate that this maans we can take $P = \frac{n-t}{n} = 1 - \sqrt{R(1+t_r)}$, so we conclude

THM. For all r > 0, RS codes of rate R are $(1 - \sqrt{R(1+1/r)}, \sqrt{r})$ List-decodable, and the Guruswami-Sudan algorithm can do the list-decoding in time poly(n,r).

Thus, we can rachet up r as large as we like (say, r=poly(n)) and approach. the Johnson bound with polynomial-time algorithms. HOORAY!

The moral of the story: WE CAN EFFICIENTLY LIST-DECUDE RS CODES up to the JOHNSON BOUND

NOTE.

As presented, the Guruswami-Sudan algorithm runs in time $O(n^3)$, but people have optimized the neck out of it and it can be made to run in time $O(n \log(n))$.

QUESTIONS TO PONDER

disclaimer: maybe there's another bylog(n) fuctor in there, I forget.

- () What breaks in the GS algorithm beyond the Johnson bound?
- (2) Can you come up with a "bad" list of close-together RS codewords beyond the Johnson bound?
- (3) What if I modify the constraints so that instead of "f(x;)=y;" they are "f(x;) ∈ {y;, y;, y;"}"