CS 250/EE387 - LECTURE 11- GuRUSNAMI-SLDAN ALG.

AGENDA
(0) Recap
(1) Aside: How hard is decoding RS codes?
(2) Sudan Algorithm
(3) Guruswami- Sudan Algorithm.

GASTROPOD FACT
A typical garden slug will here about 90,000 grandchildren - each slug lays 20-100 eggs several times peryar.
90,000 gametic $\}$ you'd think at least
ONE of them would call once in a while...
(0) Recap.

Last time, we saw LIST-DECODING:

DEF. A code $C \leqq \sum^{n}$ is (p, L)-LIST-DECODABLE if $\forall y \in \Sigma^{n}$,

$$
|\{c \in C: \delta(c, y) \leqslant p\}| \leqslant L .
$$

The LIST-DECODING CAPACITY THM says that there \exists codes that are $\left(p,{ }^{\prime \prime} \epsilon\right.$) tist-decodable with rate $R=1-H_{2}(p)-\epsilon$, for $p \leqslant 1-1 / q$.

- That's the same trade off as for random emors!
- Moreover, notice that p can getas big as $1-1 / q$. If we clemand unique decoding, the Plotkin bound says we can't hope to do better than $\frac{1-1 / 4}{2}$ with $R>0$.

OUR NExT Question: How list-decodable are codes we know and love? For example, Reed-Solomon Coddles?

Last time we saw the Johnson Bound which says that codes with good distance are clecently list-decodable.

- For RS codes, the Johnson bound says that an RS code of rate Risc list-decodable up to distance $P=1-\sqrt{R}$.
- Notice that list-decoding capacity is $p=H_{q}^{-1}(1-R) \approx 1-R$ for la ge q. So $p=1-\sqrt{R}$ is less good than it could be.
(1) AsIDE: How hard is it to decodes RS codes?

More precisely, given $w \in \mathbb{F}_{q}^{n}$, find $c \in \operatorname{RS}(n, k)$ so that $\delta(w, c)$ is minimized.

How hard this depends a lot on the assumptions we can make about $\min \delta(w, c)$. For example, if $\exists c$ s.t. $\delta(c, w)<\frac{1-R}{2}$, then Welch-Berekamp $c \in R S$ will do this in polynomial time. How about if $\delta(c, w)$ is larger?

(2) SUdan Algurithm

The Sudan Alg is a warmup to the Guruswamt-Suban alg, which will be able to efficiently list-decode RS codes up to the Johnson bound, $p=1-\sqrt{R}$.
(2A) BIVARIATE POLYNOMIALS
A bivariate polynomial $Q(X, Y) \in \mathbb{F}_{q}[X, Y]$ is:

$$
Q(X, Y)=\sum_{\substack{i=0, \ldots, m_{I} \\
j=0, \ldots, m_{I}}} \alpha_{i j} \bar{X}^{i} Y^{j} \text {, where } \begin{aligned}
& m_{\bar{I}}=: \operatorname{deg}_{\bar{X}}(Q) \\
& m_{Y}=: \operatorname{deg}_{Y}(Q)
\end{aligned}
$$

Notice that we can also think about Q as an element of $\left(\mathbb{F}_{q}[X]\right)[Y]$:

$$
Q(X, Y)=\sum_{j=0, \ldots, m_{Y}} Q_{j}(X) \cdot Y^{j}
$$

Polynomials in $\left(\mathbb{F}_{q}[X]\right)[Y]$ behave a lot like a "normal" polynomial in Y.
FOR EXAMPLE: Consider $Q(Y)=Y^{2}-1$.
Then $Q(1)=0$, which implies that $(Y-1) \mid Y^{2}-1$
Similarly, consider $Q(X, Y)=Y^{2}-f(X)^{2}$.
Then $Q(X, f(X))=0$, which implies that $(Y-f(X)) \mid Q(X, Y)$

FACT. Let $Q(X, Y) \in \mathbb{F}_{q}[X, Y]$, and let $f \in \mathbb{F}_{q}[X]$. Then

Moreover, we can find such f's efficiently, and there are at most $\operatorname{deg}_{Y}(Q)$ such f 's.
(2B) Recall the Berlekamp-Welch Algurithm:
Given $\quad y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{q}^{n}$:
Recall, $E(X)$ was supposed to be the ERROR LOCATOR POLY, $E(x)=\prod_{i: y_{i} \neq \overbrace{i}}\left(x-\alpha_{i}\right)$, so that $E\left(\alpha_{i}\right) \cdot f\left(\alpha_{i}\right)=E\left(\alpha_{i}\right) \cdot y_{i} \quad \forall i$

1. Find low-degree polynomials $E(X), B(X)$ st. $E\left(\alpha_{i}\right) \cdot y_{i}=B\left(\alpha_{i}\right) \forall_{i=1,-, n}$
2. Velum $f(x)=B(x) / E(x)$

We con recast this in terms of bivaniate polys:

2. Find a poly $f(x)$ s.t. $Q(X, f(x)) \equiv 0$, and velum f.
$Z_{\text {Music that }} f(x)=8(x)$ Ex) will wack in the Q we were supposed b fid $)$.
Weill use the same famencre for SuOAN'S ALGORTITM for list-deceding.
PRUBLEM: Given $y=\left(y_{1},-, y_{n}\right), k$, and t, find all payyamials $f \in F_{l}[x]$ st:

- $\operatorname{deg}(f)<k$
- $f\left(\alpha_{i}\right)=y_{i}$ for at least t of the α_{i} 's.
(2c) Finally, SUDAN's ALG.
What t's can we handle? We'llse alter!
In this context, Berlekamp-Welch is:

1. Find a LOW-DEGREE poly nomial $Q(X, Y)$ so that $Q\left(\alpha_{i} y_{i}\right)=0 \quad \forall i=1, \ldots, n$
 Retum all such f 's.

- We can do STEP1 as long as we have more variables (coeffo of Q) than ansstrants.
- To make sure that STeP 2 is connect, weill have to argue that whenever $f\left(\alpha_{i}\right)=y_{i}$ for $\geq t$ values of i, then $Q(x, f(x)) \equiv 0$. The fact that the list is small will Follow form the fact that Q is low -dy.

This algorithm basically works, and is culled Sudan's Algorithm.
THM If $t>2 \sqrt{n k}$, then we can solve the list -decoding problem in polynomial time.

Before cue prove the THM, we can ask how good this is.
(\#agreements between f and y) $=t>2 \sqrt{n k}$

$$
\Delta(f, y)=n-t<n-2 \sqrt{n k}
$$

So this works up to radius $p \leq \frac{n-t}{n}=1-2 \sqrt{R}$.
Remember that we were shooting for $1-\sqrt{R}$, so this isn't quite night but well get there!

Now weill prove the TIM, and finish specifying the alg. along the way.
of/algunthm:
STEP 1 (Interpolation). Choose $l=\sqrt{n k}$.
Find $Q(X, Y)$ st. $\operatorname{deg}_{X}(Q) \leqslant l$ and $\operatorname{deg}_{Y}(Q) \leqslant n / l$, so that $Q\left(\alpha_{i}, y_{i}\right)=0 \quad \forall i=1, \ldots, n$.

To do this, we need:

$$
\underbrace{(\# \text { coeffs in } Q)}_{(l+1)\left(\frac{n}{l}+1\right) \text { of these }}>\underbrace{\text { \#constraints) }}_{n \text { of these }}
$$

and indeed we have $(l+1)\left(\frac{n}{l}+1\right)=n+\frac{n}{l}+l+1>n$
pf ctr.
STEP 2. (Root-Finding SEP) Rectum all $f(x)$ st. $Q(X, f(x)) \equiv 0$.
Note that we can do this efficiently, and the size of our list will be at most $\operatorname{deg}_{Y}(Q)=n / l=n / \sqrt{k n}=1 / \sqrt{R}$, a constant.

Now we need to argue why this step is a good ides.
Suppose $\operatorname{deg}(f)<k$ and that $f\left(\alpha_{i}\right)=y_{i}$ for $\geqslant t$ vols of i.
We need to show that we will rectum f, so we need to show $Q(x, f(x)) \equiv 0$.
Let $R(X):=Q(X, f(X))$.
Then $\operatorname{deg}(R) \leq \operatorname{deg}_{X}(Q)+\operatorname{deg}(f) \cdot \operatorname{deg}_{Y}(Q)<l+k \cdot \frac{n}{l}=2 \sqrt{n k}$
But $R\left(\alpha_{i}\right)=Q\left(\alpha_{i}, f\left(\alpha_{i}\right)\right)=Q\left(\alpha_{i}, y_{i}\right)=0$ for at least t values of i. we chose We chose
$l=\sqrt{n k}$,
to balance these
two terns.
So R has degree $<2 \sqrt{n k}$, but $t>2 \sqrt{n k}$ roots, hence $R(X) \equiv 0$, as desired.
(3) Guruswami-sudan Alg.

Now well fix this up so that we can actually get up to $p=1-\sqrt{R}$, meeting the Jonson Burl).
Two Changes:

1. We will change how we measure "LOW-DEGREE"
2. We will require something a bit stronger than $Q\left(\alpha_{i}, y_{i}\right)=0$; well l ask for Q to vanish with high MULTPLICETY.

CHANGE 1.
DEF. The $(1, k)$-degree of $\bar{X}^{i} Y^{j}$ is $i+k j$
The $(1, k)$-degree of $Q(X, Y)$ is the max $(1, k)$-degree of any monomial in Q.

Just this change is enough to make SOME progress:
THM If $t>\sqrt{2 n k}$, then we can solve the list-decoding problem in polynomial time.
pf. Same alg, but now demand the $(1, k)$-degree of Q is $\leq \sqrt{2 k n}$

STEP 1. INTERPOLATION. Tumsout (FUN EXERCISE!) there are $>D^{2} / 2 k$ coff in a poly

$$
\begin{array}{ll}
\text { Find } Q(x, y) \text { s.t. } & \text { wy }(1, k)-\text { deg } \leq D \text { So } \\
(1, k) \text {-degis } \leqslant \sqrt{2 k n . ~} & \text { (\#variables) }>\frac{(2 k n)}{2 k}=n=\text { (\#construints) } \\
& \text { and we can find } Q .
\end{array}
$$

STEP 2. Root-finding.
Now we have $\operatorname{deg}(R)=\operatorname{deg}(Q(X, f(x)))<(1, k)-\operatorname{deg}$ of $Q \leq \sqrt{2 n k}$ (Sameasbefore) So the argument goes through asbefure with a slightly better bound.

But we want $1-\sqrt{R}$! Not $1-\sqrt{2 R}$!

CHANGE 2.

DEF. $Q(X, Y)$ has a root of multiplicity r at (a, b) if $Q(X+a, Y+b)$ has no terms of total degree $<r$.

Example: $Q(X, Y)=(X-1)^{2}(Y-1)$ has a wot of multiplicity 3 at $(1,1)$, because $Q(X+1, Y+1)=X^{2} \cdot Y$ which has total degree 3.

Guruswami-sudan algorithm.
Choose a parameter r
Suppose $t \geq \sqrt{k n(1+1 / r)}$

1. Interpolation step.

Find a polynomial $Q(X, Y)$ with $(1, k)$-degree $D=\sqrt{k n \cdot r \cdot(r+1)}$ so that $Q\left(\alpha_{i}, y_{i}\right)=0$ with multiplicity r for $i=1, \ldots, n$.
2. ROot-FINDING STEP.

Rectum all f so that $Q(X, f(X)) \equiv 0$.
[Notice that there are $\leq \operatorname{deg}_{\gamma}(Q) \leq D / k \approx r / \sqrt{R}$ of these.]

ANalysis:
Again we need to show that 1. is possible and that 2. is a good idea.

1. FUN EXERCISE: The number of constraints in " $Q\left(\alpha_{i}, y_{i}\right)=0 \omega /$ mull. r " is $n \cdot\binom{r+1}{2}$. So that's MORE constraints than before, which seems like a bad thing... well see later why it's actually good.

The number of variables is still $D^{2} / 2 k$, so we need

$$
\frac{k n \cdot r \cdot(r+1)}{2 k} \geqslant n \cdot\binom{r+1}{2}=\frac{n \cdot r \cdot(r+1)}{2}
$$

which is TRUE. \downarrow
2. Let $R(X)=Q(X, f(X))$ as before.

Then not only does $R(X)$ have $\geqslant t$ roots [as before], it has $\geqslant t$ roots which EACH have multiplicity r.

Justification on nat page...

ANALYSIS cod.
CLAIM. If $f\left(\alpha_{i}\right)=y_{i}$, then $\left(X-\alpha_{i}\right)^{r} \mid R(X)$.
Pf. Let's drop the i subscripts for notational sanity.
Recall that since Q has a root of multiplicity r at (α, y),
$Q(X+\alpha, Y+y)$ has no terms of total degree $<r$.
Now, consider $\bar{f}(x):=f(x+\alpha)-y$. We have

$$
R(X+\alpha)=Q(X+\alpha, f(X+\alpha))=\underbrace{Q(X+\alpha, \bar{f}(x)+y)}_{\substack{\text { This is a sum of monomials } \\ \bar{X}^{c} \cdot \bar{f}\left(\overline{)^{d}}\right)^{\text {where }} c+d \geqslant r .}}
$$

Now, since $f(\alpha)=y, \quad \bar{f}(0)=0$, so \bar{f} hes no constant term. Thus, those monomials $\mathbb{X}^{c} \bar{f}(\mathbb{Z})^{d}$ are all divisible by X^{c+d}, and hence are all divisible by X^{r}.
Then $\mathbb{X}^{r} \mid R(X+\alpha)$, which means $(X-\alpha)^{r} \mid R(X)$, as desired.

Now given this claim, the fact that $f\left(\alpha_{i}\right)=y_{i}$ for at least t different i 's means that $R(X)$ has $t \cdot r$ roots, counting multiplicities.

Since $\operatorname{deg}(R) \leqslant D$, if R is nonzero we must have OK to take a hit in the number of

$$
\begin{aligned}
t r & <D \\
\sqrt{k n\left(1+\frac{1}{r}\right)^{\prime}} \cdot r & <\sqrt{k n r(r+1)} \\
\sqrt{k n r(r+1)} & <\sqrt{k n r(r+1)}
\end{aligned}
$$

That's not thrive, so $R(X) \equiv 0$, and the proof concludes as before.

This proves the following theorem:
THM If $t>\sqrt{n k\left(1+^{1 / r}\right)}$ then we can solve the list-decoding problem in poly (n) time, with list size $r \cdot \sqrt{\frac{n}{k}}$.

Once again, we calculatethat this means we can take $P=\frac{n-t}{n}=1-\sqrt{R\left(1+\frac{1 r}{r}\right)}$, So we conclude

THM. Viral $r>0$, RS codes of rate R are $(1-\sqrt{R(1+1 / r)}, r / \sqrt{R})$ List-decodable, and the Guruswami-Sudan algorithm can do the list-decoding in time poly (n, r).

Thus, we can racket up r as large as we like (say, $r=p o l y(n)$) and approceh the Johnson bound with polynomial - time algorithms. HOORAY!

The moral of the story:
WE CAN EFFICIENTLY uST-DECUDE RS CODES up to the JOHnson Bund

Note.
As presented, the Guruswami-Sudan algorithm nuns in time $O\left(n^{3}\right)$, but people have optimized the heck out of it and it can be macle to mun in time $O(n \log (n))$.

Questions to Ponder
(1) What breaks in the GS algorithm beyond the Johnson bound?
(2) Can you come up with a "bad" list of close-togather RS codewords beyond the Johnson bound?
(3) What if I modify the constraints so that instead of "f($\left.\alpha_{i}\right)=y_{i}$ " they are " $f\left(x_{i}\right) \in\left\{y_{i}, y_{i}, y_{i}^{\prime \prime}\right\}$ "

