
CS 250/2=[387  - LECTURE 15 - REED - MULLERGDES !

AGENDAS GASTROPOD FACT

�1� Recall Reed - Muller Codes When  
slugs

 or  snails  mate
, hey

shoot  each other  with
"

love darts
"

�2�
Decoding binary RM codes : Reed 's

Algorithm
.

as part  of the courtship  ritual
.

It's

�3�
Larger field sizes ?

not  well understood the function that

µg
these serve

,

but  it's
thought that they

Increase the likelihood of fertilization
.

€D#M@-

�1� RECALL REED - MULLER CODES

Reed . Muller codes are the

generalization
of RS codes to multiple variables

.

Recall that Fq[X , ,
.

,
Xm ]

is
the space of M - variate

polynomials
over Fg .

The Uotal ) DEGREE of a monomial Xii Xii . . .Ximm is Ej?, ij .

The DEGREE of feFg[X , ,
.

,
Xm ] is the largest degree

of
any

monomial in f.

DEF
.

The M . VARIATE REED . MULLER CODE of DEGREE r over Fg is

RMQLM ,rl= { ( HEI,
. .,fkjmD : feFg[X , ,

... ,×m ]
,

degas ← r }

REMARK
.

Note that we
may

assume that each Xi has
degree

<

of ,
since

×=&% for all de Fg .

We saw BINARY RM CODES back in Lecture 6 When we were

trying
to figure

out how to get good binary
codes

.



PROPERTIES of RMQCM ,r ) :

• Block
length : qm

[ number of
# in Fqm ]

. Dimension : # coefficients in a degree
- r m . vanate polynomial .

• If q=2 : The possible monomials are Is Xi for Sean ]
,

Isler
.

There are (F) + (1) +  '  -
- + (Mr ) of those

,
so that's the dimension

.

• If q
> r : The possible monomials are

In
,

Xidi for EIM
,

disr
.

There are
E

(
J + M -

1)
of those

,
← ASIDE : To see this

,

notice

jer m - 1
that

picking d
, ,

. . ,dm is

so that's the dimension .

the same as picking M -1

"

dividers
"

in  an  
array

of

length rtm - 1 :

• IF z<q< r : Then some of the monomials like Yare
*§ **

i.
1

not allowed since dicq .

AI Fatone
In this case there is no nice expression

furdim
, leg ,ifm=4andr=7 )

it's
just Kainiml :

Ejmiijer and ijcqttj }|
.

Distance

Justas with RS codes
,

RM codes have decent distance because low . degree

( multivariate )
polynomials

don't have to
many

roots
.

The SCHWARTZ - ZIPPEL LEMMA tells Us how
many they

have
,

and the

result Is that
×

see ESSENTIAL

CODING THEORY

for details .

DISTANCE ( RMq( mid ) ) =gma ( 1 -

kg ) where

⇐
alqtltb ,

Oeb<
of

1.

PARSING THIS : if q=2 ,
this is qm

' r

[ what we saw before ; . S= Yqr ]

if
of

> r
,

this is qm( 1- kg ) [ S = 4- %) ]
.



EXAMPLES of RM CODES we
have ALREADY SEEN :

• RMZIM ,
r ) is the binary RM code from LECTURE 6.

Rate = ztm . ( (molt .  . + e) ) an 2-
ml ' - Hdrm ?

Rel
.

Distance = 2-
r

.

RMQH ,
r ) is just RSq(Fg

, n=q,
rit )

Rate .

. ( r 't

)/q

Rd
.

dist  = 1- rlq

•

RMQ ( m
,

1) is the HADAMARD CODE (which we saw on HW ; dual of the
Hamming

code

ifqz)

Rate is Mqm

Rd
.
dist  = 1- "

q

�1�DECODING BINARY RM CODES : Reed 's Algorithm .

Consider
an mvanatepdy fe FIX

, ,
. .

,
Xm ]

, deg
er

.

It looks like this :

flxi
,

...

,
xm ) = [ G . XT

,

where XT :=

,HIX ;

T E [ m ]

Her
and Ge Fz

.

THE PLAN : We will
try to

figure
out each coefficient

cs
, one

. at a
- time

.

More
precisely ,

we will see that for each S
,

there is some partition of symbols st
.

:

-

C) Rmdmr) codewordl¥wsg
.my#nTteymo.@F@wqalsDsodothese

.

There will be
enough

of these
groups

that

ctz of them have
any

errors in them
.

So
 we can just

take the
"

MAJORITY VOTE
"

of all the
groups

.



@ WARM UP : HADAMARD CODES ( r=1 )
.

✓
aka

,
distances

Let's
try to decode Rmzlm , 1) from < 2M¥ =2m2 errors

.

A codeword

we
RMz(m

, 1) is given by

W = ( Fla
, )

,

fldz )
,

...

,
fldzm ) ) for some deg -1 f.

~Any*

degree -1
poly f looks like fk

, ,
.

,
Xm) = Eicixi for cietf

.✓

CHEATING !

Iandonnsottanathwi'T So w= (
I

8g
,

i

8g

,

°

§
, ...

)term
.

We 'll see /
how Io fix this

0

in a Moment . EIG
,

...

, cm )

{
iterating through
all binary vectors

.

= ( G ,x ,
>

,
G. as

,
...

,
4 xzm > )

.

HIEA: Recover each a
,

one . at . a - time

.

OBSERVATION : Ci  = ( c
, ei ) = (4/3)+4 , ptei ) for

any peftm .

This is true by linearity .

This inspires an algorithm :

ALG
. Input :

g
: HIM → E sit

. Ng ,
f) < 2Mt for

some
FERMZCM

, 1)

Output : f.

For  it
,

. .

,
m :

For each pettzm :

Let eilp ) =

gc B) + glptei )

Set a = MAJ { Icp ) : Be Em }

RETURN f ( X
, ,

... ,Xm ) =£i%Xi .



Why
does this algorithm work ?

• A vote di (p
) is correct as

long as neither of the
queries

p
or ptei

were corrupted .

. Notice that the collection of sets { { p , ptei}
:

petfm }

partition tfm into 2Mt sets of size 2 :

QK.ee#mnPk.000&?**essaniy

Now there are 2Mt sets and < 2Mt .

. Ef errors .

So < 2mA of the sets have errors
.

0×0×000000

So < tz of the votes are INCORRECT
, Meaning

>
'

E are CORRECT !

So the
majority

vote is always
correct and we win .

Now let's extend this to m > 1
.

Once
again ,

for each coefficient Ct in £ GXT
,

We will come up
with a bunch ITKR

of disjoint groups
of symbols

Tam '

which Will cast a vote for c .



The
groups

We choose will be

g

na"

all the evaluation pts
that look like Things

"

for various
PEHIM

. r

m

LEMMA Let S ,Te[m ]
,

Isler and her
.

Then fpetfml
"

,

§f÷m
×T =

{
1 if s⇒

0 otherwise

&|[m]1S=P
-

Sit
m\[ s ]

=
Proof

.

first
, suppose

that FS
.

Then D=

=D
- B-

( IF S=T )

[ xs = [ g115=1

aefzm

(
F- HIV (

if yhasaoinit
&|[mN=P

p doesn ,+
then 85=0 ,

so  only I  survives
.

malteratall

S

m\→
OTOH

, say Tts
.

x=

T=*
Then SIT is nonempty ,

since 1T1=r=1S1
.

skis T

nonempty .

Then
5

⇐ i

Extra

[ I = £ VT
's

. p5 ( see panel ,
1. If SFT )

deem

SetTzslTHcmhS-pyeFzsnTisEt.snK.smFns.psjdues@xndonf-yk.qs

#
8ms ' F)

° ( [
sees

'T 1)
~=TiFz

,
since 151-1131

,

and so I Es
'T

1 is even
.

=o
.



COR
.

Let f ( X
, ,

.

,xm) . £ at Xt
.

Then

TE [ m ]

[ fla) =

↳
.

Her

a- Em

45=13

Pot

g§¥gtH
=

¥YsIpI¥¥Y[
an vanisnesfraatts

'

I'§emE¥¥
,

;* )
an distorts

=

Cs

This inspires an
algorithm

:

ALG
.

1
( NOT the final version )

(
this  is half the

mndistanaofRmdmr)

Input :

g :Fzm→E sit
. A( g. f) < 2Mt for some fe # K

, ,
.
,Xm ] wldegtfkr

,
Output :

G for ISI =r
,

where f- ( X ) = £ g.Xs
.

(and the parameter )

Sean ]

Isler

for Sean with ISI

=r
:

for
pe

Fzmr
:

compute a
guess £43) = [ gk)

aefzm

as  

=p

set Es = MAJ { Elp) :

pefhmr}

.



Notice that ALGI doesn't
necessarily

find f
,

it only
finds Cs with lskr

.

We 'll come back to that
.

PROP
.

ALGI is correct
.

Proof .

Let E c- Em beta set of errors between fandg ,
so IEK2mm

.

Notice that the
guess dslp ) is

correct
provided that all the points a st

. As  

=p

were not  in error
,

aka  if E n {xettzm : as  

=p } = ¢
.

The sets { he E
m

: at =p
} are all disjoint ,

and here are Zmrof them
.

Since IEI < 2Mt
't

, strictly fewer than K of these sets intersect E
.

ftp.00.n#p=n
[

There are Zmr disjoint sets
,

and < 2Mt
-

terrors
,

so
< 2Mt

't

sets have
an error in than

.

So > s of the § (
p

) are correct
,

and MAJ returns the

correct answer
.

Now
we just

need to be able to recover ALL of the coeffs ...



ALG . (REED 's MAJORITY LOGIC DECODER)

Input :

g :Fzm→E sit
. Al g. f) < 2mm for some FEHIX

, ,
.
,Xm ] ydegtfkr

,Output :
G for Isler,

where f- ( X ) =

,§igycsXs
.

(and the parameter )

for
j=

r
,

r -1
,

...

,
1 :

Run ALGI on

g(
X

, , ,
xm ) with degree =j

to find all coefficients

Es
, lstj .

glxkgtxtfjesxxs
Return ,s§

.

G. X
'

r.ms
 

umming up
Zix 's

Running time ? 0 ( §
'

( Y ) . 2mi . z ) = 0 ( In . zmttdrml )
-

- (
lleste over

Herat over
a "

P
's

=O(N2 ) where N=2mall sets T

is the block
length

.

So Reed 's Alg runs in time
polynomial

in the block
length .

FUN Exercise : Can Reed 's Alg
be modified to work over larger

fields?

Notice that this algorithm
has an additional nice property

: it 's LOCAL
,

in the sense that we recover one symbol Cs at a time
.

This idea will come back inthenext lecture
.



�2� Larger fields
. Note .

We did not
get

to
part �2�

,

in class
,

it will be partially
rehashed in Lecture 16

.

Now let's find
a

way
to generalizethis basic framework to

larger
fields

.

( We 'll deviate a bit from the specific approach we just saw ) .

Let's
say

that
q

> r

,
so we're in lhat other

regime
where f= ( 1-

rq
)

.

Consider
RMQ ( 2

,
r )

,
so bivaniate

polynomials

:
HX

,
Y ) =

§h Cij
Xi Yi

.

We can think of codewords as

qxq

grids of evaluation points .

zy
flap) ←

pe Eg

t

Suppose I want to recover go =fl 0,0 )
.

*
Fq

As before
,

we Want to find a bunch of LOCAL
,

LINEAR relationships

involving
Ho ,

o )
.

Hao) ← This row is ( Flo,0)
,

HO
, j ) ,

...

,

f (Qyt
'

))
= :(glo)

, glj)
,

...

,glyt
'

) )

where g(Y ) :  
- HQYK ,§←a;

Oi ' Yi

=

,§r
cojyi

<
similarly ,

this column is Hfd where hkl
;§rgoX

'



Hey
,

those are RS codewords ! That's a real nice linear relationship
!

Moreover
,

the restriction of f to ANY line is an RS codeword !

Consider the line # = ( at Z + b.
,ait

+ b.)
,

aiibi E Eg .

Then f( UZI ) =

;§←(
a. Ztb

,
)i(azZ+b

. )
'

'

= some
degree

⇐ r

polynomial
in Z .

So if we are looking
for lots of disjoint sets through

flo
,

01

that tell us

something
about fto ,

0 )
,

here they are
!

fthe
lines through 10,01

are disjoint
flqo) and

- cover

← tahemaapiitekiohttg §
everything .

^(
Confusing but more

E
Less accurate but hopefully more dear

.

accurate



This inspires an algorithm .

p

A bit  worse than

u

half the distance . . .

ALG . Input : h :

Fg
'

→

Fg st
. FFERMGK ,

r )
,

AH
, g)

<

gtjltrq

)
and a position dip

Output : flap)
.

Foreach line L :Fg→Fg2 so that

40=(4/3)

:

. Let glzt :=h( UH )
. End the

unique deger polynomial Ptt) st . Dlp , g)
< 91

a 't it exists )
,using your

favorite RS
decoding alg

. Set fapk) ←

plo)

RETURN MAJ { fapk) : lines L }
.

Same
analysis as before :

. There are
of

lines through lap)
, disjoint except for 14131 .

. The RS decoder is correct if there are <
8÷ errors on a line

. There are <
q (

9¥
) errors total

• So

e
± the lines return the

wrong
answer

,

so MAJ is correct
.

CONCLUSION : This
alg

can correct up
10 ¥q4t

 "

g)
=

distance
14 errors in RMg(2

,
r )

.

This is Not optimal (and there are days
that do better)

,

but it's a good warm-up
for next time

,

when we 'll observe that this
algorithm is REALLY local

.



QUESTIONS to PONDER

�1� Can
you get Reed 's algorithm to run faster ?

�2� Can
you adapt Reed 's

day
to

larger
fields ?

�3� Can
you fix the

large
. field alg . we

gave
to work

up
to distances ?


