$$
\text { CS 250/EE387 -LECTURE } 15 \text { - REED-MuLER ROES! }
$$

Agenda
(1) Recall Reed-Muller Codes
(2) Decoding binary RM codes: Reed's Algorithm.
(3) Large field ivies?

GASTROPOD FACT
When slugs or snails mete, they
shoot each other with "lovederts"
as part of the courtship ritual. H's
not well understood the function that
thees serve, but it's thought that they
increase the likelihood of fertilization.
(1) Recall Reed-Muller Codes

Reed-Muller codes are the generalization of RS codes to multiple variables.
Recall that $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{m}\right]$ is the space of m-variate polynomials over \mathbb{F}_{q}.
The (total) DEGREE of a monomial $X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{m}^{i / m}$ is $\sum_{j=1}^{m} i_{j}$.
The DEGREE of $f \in \mathbb{F}_{q}\left[X_{1} \ldots, x_{m}\right]$ is the largest degree of any monomial in f.
DEF. The m-VARIATE REED-MULLER CODE of DEGREE r over \mathbb{F}_{q} is

$$
R M_{q}(m, r)=\left\{\left(f\left(\vec{\alpha}_{1}\right), \ldots, f\left(\vec{\alpha}_{q}\right)\right): f \in \mathbb{F}_{q}\left[X_{1}, \ldots, x_{m}\right], \operatorname{deg}(f) \leq r\right\}
$$

Remark. Note that we may assume that each x_{i} has degree $<q$, since $\alpha=\alpha^{q}$ for all $\alpha \in \mathbb{F}_{q}$.

We saw BINARY RM CODES back in Lecture 6 when we were trying to figure out how to get good binary codes.

PROPERTIES of $\operatorname{RM}_{q}(m, r)$:

- Block length: $q^{m} \quad\left[\right.$ numberol pts in $\left.\mathbb{F}_{q}^{m}\right]$
- Dimension: \#coefficients in a degree-r m-vaniate polynomial.
- If $q=2$: The possible monomials are $\prod_{i \in S} X_{i}$ for $S \leq[m],|S| \leq r$.

There are $\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{r}$ of those, so that's the dimension.

- If $q>r$: The possible monomials are $\prod_{i \in[m]} x_{i}^{d_{i}}$ for $\sum_{i=1}^{m} d_{i} \leq r$.

There are $\sum_{j \leq r}\binom{j+m-1}{m-1}$ of those, so that's the dimension.

- If $2<q<r$: Then some of the monomials like $\hat{\jmath}$ are not allowed since $d_{i}<q$.
In this case there is no nice expression fordim, \quad (eg, if $m=4$ and $r=7)$ it's just $\mid\left\{\left(i_{1},-i_{m}\right): \sum_{j=1}^{m} i_{j} \leq r\right.$ and $\left.i_{j}<q \forall_{j}\right\} \mid$.
- Distance

Just as with RS codes, RM coles have decent distance because low-degree (multivariate) polynomials don't have too many roots.

The Schwartz-ZIPPEL LEMMA tells us how many they have, and the
result is that
a SeEESENARL

fir details.

$$
\begin{aligned}
& \operatorname{DISTANCE}\left(\operatorname{RM}_{q}(m, d)\right)=q^{m-a}(1-b / q) \quad \text { where } r=a(q-1)+b, \\
& 0 \leqslant b<q-1 .
\end{aligned}
$$

Paring THIS: if $q=2$, this is $q^{m-r} \quad$ [what we aw before;. $\delta=1 / q^{r}$] if $q>r$, this is $q^{m}(1-r / q)[\delta=(1-r / q)]$.

EXAMPLES of RM CODES we have ALREADY SEEN:

- $R M_{2}(m, r)$ is the binary RM code from LECTURE 6 .

$$
\begin{aligned}
& \text { Rate }=\frac{1}{m^{m}} \cdot\left(\left({ }_{0}^{(m)}\right)+\cdots+(m)\right) \approx 2^{\left.-m\left(1-H_{2} l_{m}^{\prime}\right)\right)} \\
& \text { Rel. Distance }=2^{-r}
\end{aligned}
$$

- $\operatorname{RM_{q}}(1, r)$ is just $R S_{q}\left(\mathbb{F}_{q}, n=q, r+1\right)$

$$
\begin{aligned}
& \text { Rate }=(r+1) / q \\
& \text { Real. dis }=1-r / q
\end{aligned}
$$

- $\operatorname{RM}_{q}(m, 1)$ is the HADAMARD CODE (which we saw on $H W$; duallof the Hemming a de if $~ g=2$) Rate is $\mathrm{m} / \mathrm{q}^{m}$

$$
\text { Rel. dist }=1-1 / q
$$

(I) Decoding Binary RM codes: Reed's Algorithm.

Consider an m-variate poly $f \in \mathbb{F}_{2}\left[X_{1}, \ldots, X_{m}\right]$, deg \leqslant.
It looks like this:

$$
f\left(X_{1}, \ldots, X_{m}\right)=\sum_{\substack{T \leq[m] \\|T| \leq r}} c_{T} \cdot X^{\top}, \quad \text { where } X^{\top}:=\prod_{i \in T} X_{i}
$$

The PLAN: We will try to figure out each coefficient c_{S}, one-at-a-time. More precisely, we will see that for each S, there is same partition of symbols st.:

There will be enough of these groups that
$<\frac{1}{2}$ of them have any errors in them.
So we can just take the "MAJORITY VOTE"
of all the groups.
(AA) WRRM-UP: HADAMRED CODES $(r=1)$.
Let's thy to decode $R M_{2}(m, 1)$ from $<\frac{2^{m-1}}{2}=2^{m-2}$ emors.
A codeword $w \in \operatorname{RM}_{2}(m, 1)$ is given by

$$
w=\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{2}\right)\right) \text { for some deg-1 } f .
$$

Any ${ }^{*}$ degree-1 poly f looks like $f\left(x_{1}, \ldots, x_{m}\right)=\sum_{i} c_{i} X_{i}$ for $c_{i} \in \mathbb{F}_{2}$.
(HEATNG!
Ir not allowing a constant So term. Well see how 10 fix this in a moment.

$$
\left.=\left(\left\langle c, \alpha_{1}\right\rangle,\left\langle c, \alpha_{2}\right\rangle, \ldots,\left\langle c_{1} \alpha_{2}\right\rangle\right\rangle\right) .
$$

IDEA: Recover each c_{i}, one-st-s-time.
OBSERVATON: $c_{i}=\left\langle c, e_{i}\right\rangle=\langle c, \beta\rangle+\left\langle c, \beta+e_{i}\right\rangle$ for any $\beta \in \mathbb{F}_{2}^{m}$.
This is true by linearity.
This inspires on algorithm:
ALG. Input: $g: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ st. $\Delta(g, f)<2^{m-2}$ forme $f \in R M_{2}(m, 1)$
Output: f.

$$
\begin{aligned}
& \text { For } i=1, \ldots, m: \\
& \text { For each } \beta \in \mathbb{F}_{2}^{m}: \\
& \quad \operatorname{let} \hat{c}_{i}(\beta)=g(\beta)+g\left(\beta+e_{i}\right) \\
& \text { Set } \hat{c}_{i}=\operatorname{MAJ}\left\{\hat{c}_{i}(\beta): \beta \in \mathbb{H}_{2}^{m}\right\}
\end{aligned}
$$

RETURN $f\left(X_{1}, \ldots, X_{m}\right)=\sum_{i} \hat{c}_{i} X_{i}$.

Why does this algorithm work?

- A vote $\hat{c}_{i}(\beta)$ is correct as long as neither of the queries β or $\beta+e_{i}$ were compted.
- Notice that the collection of sets $\left\{\left\{\beta, \beta+e_{i}\right\}: \beta \in \mathbb{F}_{2}^{m}\right\}$ partition \mathbb{F}_{2}^{m} into 2^{m-1} sets of size 2 :

Now there are 2^{m-1} sets and $<2^{m-2}=\frac{2^{m-1}}{2}$ errors.
So $<2^{m-1} / 2$ of the sets have errors.

So $<\frac{1}{2}$ of the votes are incorrect, meaning $>\frac{1}{2}$ are CORRECT!
So the majority vote is always correct and we win.

Now let's extend this to $m>1$.
Once again, for each coefficient C_{T} in $\sum_{|T| \leqslant r} C_{T} X^{\top}$,
we will come up with a bunch of disjoint groups of symbols $T \leq[m]$ which will cast a vote for C.

The groups we choose will be

LEMMA Let $S, T \leq[m],|S|=r$ and $|T| \leqslant r$. Then $\forall \beta \in \mathbb{F}_{2}^{m-|S|}$,

$$
\sum_{\alpha \in \mathbb{F}_{2}^{m}} \alpha^{\left.\alpha\right|_{[m][s}=\beta}<1= \begin{cases}1 & \text { if } s=T \\ 0 & \text { otherwise }\end{cases}
$$

Proof. First, suppose that $T=S$. Then

OTOH, say $T \neq S$.
Then SIT is nonempty, since $|T| \leqslant r=|S|$.

Then

$$
\begin{aligned}
& \sum_{\substack{\left.\alpha \in \mathbb{F}_{2}^{m} \\
\alpha\right|_{\text {cm] }} ^{m}=\beta}} \alpha^{\top}=\sum_{\substack{\delta \in \mathbb{F}_{2} S \backslash T \\
\gamma \in \mathbb{F}_{2}}} \gamma^{\text {inT }} \cdot \beta^{\bar{s}} \\
& =\sum_{\delta \in \mathbb{F}_{2}^{s i T}} \frac{\left(\sum_{\gamma \quad \Gamma_{2}^{s T T}} \gamma^{T n s} \cdot \beta^{\bar{s}}\right)}{\text { desesit dependons }}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \equiv 0 \text { in } F_{2}, \text { since }|S T T| \geq 1 \text {, } \\
& =0 \text {. }
\end{aligned}
$$

COR. Let $f\left(x_{1},-, x_{m}\right)=\sum_{T \leq[m]} c_{T} X^{\top}$. Then

$$
\begin{aligned}
& \sum_{\substack{\alpha \in \mathbb{F}_{2}^{m} \\
\alpha l_{s}=\beta}} f(\alpha)=c_{s} . \\
& \hline
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& \sum_{\alpha \in \mathbb{F}_{2}^{m}} f(\alpha)=\sum_{\alpha \in \mathbb{F}_{z}^{m}} \sum_{\substack{T \in[m] \\
|T| \leqslant \Gamma}} c_{T} \alpha^{\top} \\
& \left.\alpha\right|_{\bar{s}}=\left.\beta \quad \alpha\right|_{\bar{s}}=\beta \quad|T| \leq r \\
& =\sum_{\substack{T \leq[m] \\
|T| \leq r}} C_{T}\left(\sum_{\substack{\left.\alpha \in \mathbb{T}_{2}^{m} \\
\alpha\right|_{S}=\beta}} \alpha^{T}\right) \quad \begin{array}{l}
\text { This wenishes for all } T \neq S \text {, } \\
\text { and is } 1 \text { for } T=S
\end{array} \\
& =c_{S}
\end{aligned}
$$

This inspires analyoithm:
ALG. 1
Input: $g: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ st. $\Delta(g, f)<\mathcal{2}^{m-r-1}$ for some $f \in \mathbb{F}_{2}\left[X_{1,-1}, X_{m}\right] w / \operatorname{deg}(f) \leq r$,
Output: c_{S} for $|s|=r$, where $f(x)=\sum_{\substack{s \in c(m) \\|s|=r}} c_{5} x^{s}$.
for $S \subseteq \mathbb{F}_{2}^{m}$ with $|S|=r$:
for $\beta \in \mathbb{F}_{2}^{m-r}$:
compute a guess $\hat{c}_{S}(\beta)=\sum_{\alpha \in \mathbb{F}_{2_{2}^{m}}^{m}} g(\alpha)$

$$
\operatorname{set} \hat{c}_{S}=\operatorname{MAJ}\left\{\hat{c}_{S}(\beta): \beta \in \Gamma_{2}^{m-r}\right\}^{\alpha / s^{-}}
$$

Notice that ALG1 duesn't necessarily find f_{1} it only finds C_{S} with $|S|=r$.
Weill come back to that.

Prop. Alg is correct.
Proof. Let $E \subseteq \mathbb{F}_{2}^{m}$ be the set of enors between f and g, so $|E|<2^{m-r-1}$. Notice that the guess $\hat{c}_{S}(\beta)$ is correct provided that all the points α st. $\left.\alpha\right|_{s}=\beta$ were not in error, aka if $E \cap\left\{\alpha \in \mathbb{E}_{2}^{m}: \alpha_{\bar{s}}=\beta\right\}=\phi$.

The sets $\left\{\alpha \in \mathbb{F}_{2}^{m}:\left.\alpha\right|_{s}=\beta\right\}$ are all disjoint, and there are 2^{m-r} of them. Since $|E|<2^{m-r-1}$, strictly fewer than $1 / 2$ of these sets intersect E.

There are 2^{m-r} disjoint set, and $<2^{m-r-1}$ errors, so $<2^{m r-1}$ sets have en error in them.

So $>\frac{1}{2}$ of the $\hat{C_{S}}(\beta)$ are correct, and MAJ relums the comet answer.

Now we just need to be able to recover ALL of the coff...

ALG. (REED's MAJORITY LOGIC DECODER)
In nut: $g: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ st. $\Delta(g, f)<2^{m-r-1}$ for some $f \in \mathbb{F}_{2}\left[X_{1,-1}, X_{m}\right] \omega / \operatorname{de}(f) \leq r$,
Output: c_{S} for $|s| \leqslant r$, where $f(x)=\sum_{\substack{s \in(m) \\ 1 s \mid \leqslant r}} c_{s} x^{s}$.
(and the promemeror)
for $j=r, r-1, \ldots, 1$:
Run ALG1 on $g\left(x_{1},-x_{m}\right)$ with degree $=j$ to find all coefficients $\hat{C}_{s},|S|=j$.

$$
g(\bar{x}) \leftarrow g(\bar{x})-\sum_{|s|=j} \hat{c}_{s} \bar{x}^{s}
$$

Return $\sum_{|s| \leq r} \hat{c}_{s} \cdot x^{s}$

$$
\begin{aligned}
& \text { is the block length. }
\end{aligned}
$$

So Read's Ag nuns in time polynomial in the block length.
Fun Exercise: Can Reed's Alg be modified to work over larger fields?

Notice that this algorithm has an additional nice property: it's LOCAL, in the sense that we recover ore symbol c_{S} at a time.

This ide a will come back in the next lecture.
(2) Larger fields.

NOTE. We did not get to part (2), in class, it will be partially rehashed in Lecture 16.
Now let's find a way to generdizthis basic frame work to larger field. (Well deviate a bit from the specific approach we just saw).

Let's say that $q>r$, so were in that other regime where $\delta=(1-r / q)$.
Consider $R M_{q}(2, r)$, so bivariate polynomials:

$$
f(X, Y)=\sum_{i+j \leqslant r} c_{i, j} X^{i} Y^{j}
$$

We can think of codewords as $q \times q$ grids of evaluation points. \longrightarrow

Suppose I want to recover $c_{00}=f(0,0)$.
As before, we want to find a bunch of LOCAL, LINEAR relationships involving $f(0,0)$.

$\left.f_{0,0}\right)$				

$$
\begin{aligned}
\leftarrow \text { This row is } & \left(f(0,0), f(0, \gamma), \ldots, f\left(0, \gamma^{q-1}\right)\right) \\
= & \left(g(0), g(\gamma), \ldots, g\left(\gamma^{-1}\right)\right)
\end{aligned}
$$

where $g(Y):=f(O, Y)=\sum_{i, j \leqslant r} c_{i j} O^{i} \cdot Y^{j}$

$$
=\sum_{j \leqslant r} c_{j} Y^{j}
$$

\sum Similarly, this column is $\left(\begin{array}{c}h(0) \\ h(\gamma) \\ \vdots \\ h\left(y^{-1}\right)\end{array}\right)$ where $h(X)=\sum_{j \leqslant r} c_{j 0} X^{j}$

Hey, those are RS codewords! That's a real nice linear relationship!
Moreover, the restriction of f to ANY line is an RS codeword!
Consider the line $L(z)=\left(a_{1} z+b_{1}, a_{2} z+b_{2}\right)$,

$$
a_{i}, b_{i} \in \mathbb{F}_{q} .
$$

Then $f(L(Z))=\sum_{i+j \leqslant r}\left(a_{1} Z+b_{1}\right)^{i}\left(a_{2} Z+b_{2}\right)^{j}$
$=$ some degree $\leqslant r$ polynomial in Z.

So if we are looking for lots of disjoint sets through $f(0,0)$ that tellus something about $f(0,0)$, here they are!

CLessaccurate but hopefully more clear.

This inspires an algorithm.
ALG. Input: $h: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}$ s.t. $\exists f \in R M_{q}(2, r), \Delta(f, g)<\frac{1}{4} q^{2}(1-r / q)$ and a position α, β
Output: $f(\alpha, \beta)$.
For each line $L: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}^{2}$ so that $L(0)=(\alpha, \beta)$:

- Let $g(z):=h(L(z))$
- Find the unique dey $\leqslant r$ polynomial $p(z)$ st. $\Delta(p, g)<\frac{q-r}{2}$ (if it exists), using you favorite RS decoding alg.
- Set $\hat{f}_{\alpha, \beta}(L) \leftarrow p(0)$

RETURN $\operatorname{MAJ}\left\{\hat{f}_{\alpha, \beta}(L):\right.$ lines $\left.L\right\}$.

Same analysis ar before:

- There are q lines through (α, β), disjoint except for (α, β).
- The RS decoder is correct if there are $<\frac{q-r}{2}$ emos on aline.
. There are $<q\left(\frac{q-r}{4}\right)$ enors total
- So $<\frac{1}{2}$ the lines retum the mong answer, so MAJ is correct.

CONCLUSION: This alg can correct up lo $\frac{1}{4} q^{2}(1-r / q)=$ distance /4 errors in $R M_{q}(2, r)$.
This is NOT optimal (and there are alas that do better), but it's a good wamm-up for next time, when weill observe that this algorithm is REALCY local.

Questions to PONDER
(1) Can you get Reed's algorithm to munfuster?
(2) Can you adapt Reed's alg to larger fields?
(3) Can you fix the large-fied all. we gave to work up to distance/2?

